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Abstract. Introducing a new method, we give sharp estimates
of the Hermitian Toeplitz determinants of third order for the
class S of functions univalent in the unit disc. The new approach
is also illustrated on some subclasses of the class S.
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1 Introduction

Let A be the class of functions f that are analytic in the open unit disc
D = {z : |z| < 1} and normalized such that f(0) = f ′(0) − 1 = 0, and let
S ⊂ A be the class of univalent functions in the unit disc D (functions that
are analytic, one-on-one and onto).

For functions f ∈ A of the form f(z) = z+a2z
2 +a3z

3 + · · · and positive
integers q and n, the Toeplitz matrix is defined by

Tq,n(f) =


an an+1 . . . an+q−1

an+1 an . . . an+q−2
...

...
...

an+q−1 an+q−2 . . . an

 ,
where ak = ak. Thus, the second Toeplitz determinant is

|T2,1(f)| = 1− |a2|2

and the third is

|H3,1(f)| =

∣∣∣∣∣∣
1 a2 a3

a2 1 a2

a3 a2 1

∣∣∣∣∣∣ = 2 Re (a2
2a3)− 2|a2|2 − |a3|2 + 1. (1)
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The concept of Toeplitz matrices plays an important role in functional
analysis, applied mathematics as well as in physics and technical sciences
(for more details, see [28]).

If an is real, then the Toeplitz matrix Tq,n(f) is an Hermitian one, i.e.,

it is equal to its conjugate transpose: Tq,n(f) = [Tq,n(f)]T . Determinants of
Hermitian matrices are real numbers. Additionally, if n = 1, the determi-
nant |Tq,1(f)| is rotationally invariant, i.e., for any real θ, the determinants
|Tq,1(f)| and |Tq,1(fθ)| of the Hermitian Toeplitz matrices of functions f ∈ A
and fθ(z) := e−iθf(eiθz) have the same values.

Recently, various problems regarding upper bounds, preferably sharp, of
determinants involving coefficients of univalent functions, were rediscovered
and attract significant interest. The highest focus is on the Hankel deter-
minant and valuable references with overview of older results and the new
ones are [2, 3, 6–9,11,18–25,27–29].

Naturally rises the question of finding lower and upper bound estimates of
the determinant of the Hermitian Toeplitz matrices for the class of univalent
functions and its subclasses. This problem was initiated by Cudna et al.
( [4]) and Kowalczyk et al. ( [5]), and sharply solved in [4] for the classes of
starlike and convex functions of order α, 0 ≤ α < 1, defined respectfully by

S∗(α) =

{
f ∈ A : Re

[
zf ′(z)

f(z)

]
> α, z ∈ D

}
and

C(α) =

{
f ∈ A : Re

[
1 +

zf ′′(z)

f ′(z)

]
> α, z ∈ D

}
.

For finding sharp estimates of the Hermitian Toeplitz determinant of
second order, it is enough to know sharp estimate for the second coefficient.
The same question for the third order determinant turns out to be more
complicated.

In this paper, we introduce new method for obtaining estimates of the
Hermitian Toeplitz determinants of third order and receive sharp result for
the general class S of univalent functions.

We illustrate the new method also on the class of convex functions, re-
ceiving the same sharp result as in [4]. In a similar manner, we study classes

Us(λ) =

{
f ∈ U(λ) :

f(z)

z
≺ 1

(1 + z)(1 + λz)

}
(0 < λ ≤ 1)

and

G(δ) =

{
f ∈ A : Re

[
1 +

zf ′′(z)

f ′(z)

]
< 1 +

δ

2
, z ∈ D

}
(0 < δ ≤ 1),
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where

U(λ) =

{
f ∈ A :

∣∣∣∣∣
(

z

f(z)

)2

f ′(z)− 1

∣∣∣∣∣ < λ, z ∈ D

}
(0 < λ ≤ 1)

and ”≺” denotes the ususal subordination. Class U(λ) is not included in
the class of starlike functions S∗ := S∗(0), nor vice versa (see [13, 14]).
Therefore, estimates for S∗ can not be transferred to the class U(λ). Sharp
upper bound of the Hankel determinant of second and third order for the
class U := U(1) are given in [19].

One can note that U = Us(1), since for all functions f from U , z/f(z) ≺
1/(1 + z)2 (see [12]), while the general implication

f ∈ U(λ) ⇒ f(z)

z
≺ 1

(1 + z)(1 + λz)
,

0 < λ < 1, was claimed in [15], but proven to be wrong in [10] by giving a
counterexample.

2 Main results

We start with the following sharp estimates for the Hermitian Toeplitz de-
terminants.

Theorem 1 If f ∈ S, then

−3 ≤ |T2,1(f)| ≤ 1 and − 1 ≤ |T3,1(f)| ≤ 8.

All inequalities are sharp.

Proof. From the Bieberbach’s theorem ( [1]) we have |a2| ≤ 2 for all func-
tions from S with Koebe’s function k(z) = z/(1 − z)2 =

∑∞
k=1 kz

k as an
extremal one. Now both estimates for |T2,1(f)|, together with their sharp-
ness, directly follow.

We continue with study of the third Toeplitz determinant. Since for the
class S, |a3 − a2

2| ≤ 1 (see [25, p.5]), then

|a2|4 + |a3|2 − 2 Re (a2
2a3) = |a3 − a2

2|2 ≤ 1, (2)

and hence,
2 Re (a2

2a3) ≥ |a2|4 + |a3|2 − 1.

Now, by using (1) we have

|T3,1(f)| ≥ (|a2|2 − 1)2 − 1 ≥ −1,
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which is sharp as the function f1(z) = z/(1 − z + z2) = z + z2 − z4 − · · ·
shows.

As for the upper bound of |T3,1(f)|, from (1), by using that Re (a2
2a3) ≤

|a2|2|a3|, we obtain

|T3,1(f)| ≤ −|a3|2 + 2|a2|2|a3| − 2|a2|2 + 1 =: ϕ(|a3|),

where

ϕ(t) = −t2 + 2|a2|2t− 2|a2|2 + 1 and 0 ≤ t = |a3| ≤ 3.

We need to find maxϕ(t) for t ∈ [0, 3].
In that sense we have two cases. The first one is 0 ≤ |a2|2 ≤ 3, i.e.,

0 ≤ |a2| ≤
√

3, when

maxϕ(t) = ϕ(|a2|2) = (|a2|2 − 1)2 ≤ 4.

The second case is 3 ≤ |a2|2 ≤ 4, i.e.,
√

3 ≤ |a2| ≤
√

2, when

maxϕ(t) = ϕ(3) = 4|a2|2 − 8 ≤ 8.

Therefore, maxϕ(t) = 8, when t ∈ [0, 3].
The result is sharp as the Koebe function k(z) shows. �

Remark 1

(i) The same result as in Theorem 1 holds for the class S∗ = S∗(0) (see
Corollary 1 and Corollary 3 in [4]).

(ii) The same result as in Theorem 1 holds for the class U = U(1) since
U ⊂ S and both extremal functions f1 and k belong to U .

Remark 2 It is evident that for applying the method used in the proof of
Theorem 1 on other classes of univalent functions, it is enough to know the
sharp estimates for |a2|, |a3| and |a3 − a2

2| and apply them on

|T2,1(f)| = 1− |a2|2 (3)

and on

|T3,1(f)| ≤ −|a3|2 + 2|a2|2|a3| − 2|a2|2 + 1 =: ϕ(|a3|), (4)

where ϕ(t) = −t2 + 2|a2|2t− 2|a2|2 + 1 and t = |a3|.

In the sense of Remark 2, for the class Us(λ), using the sharp estimates

|a2| ≤ 1 + λ, |a3| ≤ 1 + λ+ λ2 and |a3 − a2
2| ≤ λ, (5)

(estimate |a2| ≤ 1 + λ is sharp on the whole class U(λ)) given in [16], [17]
and [10], we receive the following theorem.
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Theorem 2 If f ∈ U(λ), then

−λ(2 + λ) ≤ |T2,1(f)| ≤ 1,

and if additionally f ∈ Us(λ), then

−λ2 ≤ |T3,1(f)| ≤
{

1, 0 ≤ λ ≤ λ0,
λ2(1 + λ)(3 + λ), λ0 ≤ λ ≤ 1,

where λ0 = 0.44762 . . . is the positive real root of the equation

λ2(1 + λ)(3 + λ)− 1 = 0.

All inequalities are sharp.

Proof. The estimates for the second Hermitian Toeplitz determinant follow
directly from (3) and (5), and they are sharp due to the functions f3(z) = z
and

f4(z) =
z

1− (1 + λ)z + λz2
=

z

(1− z)(1− λz)

= z + (1 + λ)z2 + (1 + λ+ λ2)z3 + · · · .

For the lower bound of the third Hermitian Toeplitz determinant, from
(4) and (5), we have

|T3,1(f)| ≥
(
|a2|2 − 1

)2 − λ2 ≥ −λ2,

with sharpness for the function f2(z) = z/(1 − z + λz2) = z + z2 + (1 −
λ)z3 + · · · . Function f2 is analytic on D since 1− z+λz2 equals zero on the
unit disk only when λ = 0 and λ = −2.

For the upper bound of |T3,1(f)| we consider two cases.
In the first one, when 0 ≤ |a2|2 ≤ 1 + λ+ λ2, the vertex of the parabola

ϕ(t) is obtained for t = |a2|2 and lies in the range of t = |a3|. Thus,

|T3,1(f)| ≤ maxϕ(t) = ϕ(|a2|2) =
(
|a2|2 − 1

)2

≤
{

1, |a2|2 ≤ 2,
λ2(1 + λ)2, 2 ≤ |a2|2 ≤ 1 + λ+ λ2,

=

{
1, 0 < λ ≤ (

√
5− 1)/2,

λ2(1 + λ)2, (
√

5− 1)/2 ≤ λ ≤ 1.

Similarly, in the second case, 1 + λ+ λ2 ≤ |a2|2 ≤ (1 + λ)2, we have that
the vertex lies on the right of the range of t = |a3|. Thus,

|T3,1(f)| ≤ maxϕ(t) = ϕ(1 + λ+ λ2) ≤ λ2(1 + λ)(3 + λ).



6 M. PBRADOVIĆ AND N. TUNESKI

By using all these facts, we conclude that

|T3,1(f)| ≤
{

1, 0 < λ ≤ λ0,
λ2(1 + λ)(3 + λ), λ0 ≤ λ ≤ 1,

where λ0 = 0.44762 . . . is the positive real root of the equation

λ2(1 + λ)(3 + λ)− 1 = 0.

The upper bound of the third order determinant is also sharp with ex-
tremal function f3 when 0 < λ ≤ λ0 and f4 when λ0 ≤ λ ≤ 1. �

For λ = 1, we receive the following corollary with the same estimates as
for the class S already discussed in Remark 1(ii).

Corollary 1 If f ∈ U ≡ U(1), then −3 ≤ |T2,1(f)| ≤ 1, and if f ∈ Us ≡
Us(1), then −1 ≤ |T3,1(f)| ≤ 8. All inequalities are sharp.

We conclude with two more applictions of Remark 2.

Theorem 3 If f ∈ C := C(0), then 0 ≤ |T3,1(f)| ≤ 1. The estimate is
sharp.

Proof. For the class C of convex functions, we know that

|a3 − a2
2| ≤

1

3
(1− |a2|2)

(see [26]). Therefore, from (4) we have

|T3,1(f)| ≥ 8

9

(
1− |a2|2

)2 ≥ 0.

The function f5(z) = z/(1− z) = z + z2 + z3 + · · · shows that this result is
sharp.

On the other hand, since 0 ≤ |a2| ≤ 1 = max |a3|, we have

|T3,1(f)| ≤ maxϕ(t) = ϕ(|a2|2) = (|a2|2 − 1)2 ≤ 1,

with equality for f3(z) = z.
Therefore, 0 ≤ |T3,1(f)| ≤ 1, which is the same result as in Corollary 6

in [4]. �

Theorem 4 If f ∈ G := G(1), then we have sharp estimates

1

2
≤ |T3,1(f)| ≤ 1.
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Proof. For the class G, we have

|a2| ≤
1

2
, |a3| ≤

1

6
and |a3 − a2

2| ≤
1

4

(see [16]). Then

|T3,1(f)| ≥
(
1− |a2|2

)2 − 1

16
≥
(

3

4

)2

− 1

16
=

1

2
.

The result is sharp as the function f6(z) = z − z2/2 shows.
As for the upper bound, for 0 ≤ |a2|2 ≤ 1/6 = max |a3|, we have

maxϕ(t) = ϕ(|a2|2) = (|a2|2 − 1)2 ≤ 1,

while for 1/6 ≤ |a2|2 ≤ 1/4,

maxϕ(t) = ϕ

(
1

6

)
=

35

36
− 5

3
|a2|2 ≤

35

36
− 5

3
· 1

6
=

25

36
,

which implies that |T3,1(f)| ≤ maxϕ(t) = 1 for 0 ≤ t = |a3| ≤ 1/6 . The
result is sharp for f3(z) = z.

This result can be easily generalized on the class G(δ) using the sharp
estimates require for the method given in [16]. �
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[15] Obradović M., Ponnusamy S., and Wirths K.J., Geometric studies on
the class U(λ), Bull. Malays. Math. Sci. Soc., 39(2016), no. 3, 1259-
1284. https://doi.org/10.1007/s40840-015-0263-5

https://doi.org/10.1017/s0004972717001125
https://doi.org/10.1007/s40840-018-0683-0
https://doi.org/10.1007/s40840-018-0683-0
https://doi.org/10.20944/preprints201907.0200.v1
https://doi.org/10.1186/1029-242x-2013-281
https://doi.org/10.1186/1029-242x-2013-281
https://doi.org/10.1080/23311835.2016.1160557
https://doi.org/10.1002/mana.19951750114
https://doi.org/10.1007/s40840-015-0263-5


HERMITIAN TOEPLITZ DETERMINANTS FOR THE CLASS S OF UNIVALENT FUNCTIONS 9
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[17] Obradović M., Ponnusamy S., and Wirths K.J., Logarithmic coeffi-
cients and a coefficient conjecture for univalent functions, Monatsh.
Math., 185(2018), no. 3, pp. 489-501. https://doi.org/10.1007/s00605-
017-1024-3
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