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A NOTE ON r–CIRCULANT MATRICES

INVOLVING GENERALIZED NARAYANA NUMBERS

MARKO PEŠOVIĆ AND ZORAN PUCANOVIĆ ∗

(Communicated by N. Elezović)

Abstract. In order to further connect structured matrices and integer sequences, r -circulant ma-
trices involving the generalized Narayana numbers are considered. Estimates for spectral norms
bounds of such matrices are presented and their eigenvalues are determined. Moreover, the con-
ditions under which the circulant matrix and the skew circulant matrix involving generalized
Narayana numbers are invertible are given. In particular, it is shown that every circulant matrix
with Narayana numbers is necessarily invertible.

1. Introduction

In the middle of the 14th century, the Indian mathematician Narayana Pandit posed
the following problem: A cow produces one calf every year. Beginning in its fourth year,
each calf produces one calf at the beginning of each year. How many cows and calves
are there altogether after 20 years?

This problem leads to the Narayana cows sequence, also known as the supergolden
sequence, which is given by a third-order recurrence relation:

N n = N n−1 +N n−3 , n � 3 , (1)

where N 0 = 0, N 1 = 1 and N 2 = 1. Thus, the initial values of the Narayana cows
sequence are:

0,1,1,1,2,3,4,6,9,13,19,28,41,60,88,129, . . . (sequence A000930 in [22])

The Narayana cows sequence, or Narayana sequence for short, is probably less well
known than the famous Fibonacci sequence given by fn = fn−1 + fn−2 , n � 2, with
initial values f0 = 0, f1 = 1, but these sequences are closely related. That is why it
is often called the Fibonacci–Narayana sequence. It is well known that the Fibonacci
sequence has a wide application in various fields, from biology to art and architecture,
but how about the Narayana cows sequence?
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In recent years, starting with [1], the Narayana sequence has been the subject of
great interest. It turns out that Narayana’s numbers also has a wide range of important
applications especially in automata theory, as well as the availability for additional
research. We shall try to give as brief a summary of them.

Some basic properties of the Fibonacci–Narayana numbers and the generalized
Fibonacci–Narayana quaternions are presented in [12]. There is a rich literature con-
cerning different types of generalizations of the Narayana sequence. As a generaliza-
tion, Ramirez and Sirvent in [21] introduced the k -Narayana numbers and studied their
properties via matrix methods. Another generalization, called the generalized order k -
Narayana’s cows sequence, was given by Bilgici in [3]. T. Goy in [13] established con-
nection between the Fibonacci–Narayana numbers and the Fibonacci numbers via the
Toeplitz–Hessenberg determinants. Some relations between the generalized Fibonacci–
Narayana sequences and one type of upper Hessenberg matrix are studied in [20]. The
Narayana’s sequence also has interesting properties which can be used in cryptographic
and key generation applications. Kirthi and Kak (see [17]) presented one method of
universal coding based on the Narayana’s sequence. An interesting application of the
Narayana’s sequence to the construction of optimal gate circuits that can be used for
quantum computation is given in [28].

On the other hand, structured matrices whose entries are some of the well-known
integer sequences have been extensively studied in recent years. A family of structured
matrices such as Toeplitz, Hankel, Vandermonde, circulant, Hessenberg, Cauchy and
other well-known families of special matrices naturally arise in different areas, such
as data approximation, physics, engineering, economics, signal and image processing,
numerical analysis, communications, error correcting code theory, statistics, and so
forth.

Given the importance of the Narayana’s cows sequence, as well as the importance
of structured matrices, it seems interesting to consider r -circulant matrices involving
the Narayana numbers.

The plan of the paper is the following: In Section 2, we define the generalized
Narayana sequence and establish its basic properties. In particular, the identities estab-
lished by Lemma 1 and Proposition 2 are necessary for the rest of the paper. In this
section we define r -circulant matrices and give a brief overview of their importance in
applications as well as previous results on this topic.

Section 3 contains the main results: Theorem 1 and Theorem2, as well as Theorem
3 and Theorem 4 which can be considered as the corollaries of Theorem 2. However,
these results are important itself.

2. Preliminaries

A special type of Toeplitz matrix, such that each row is a circular shift of the first
row, is called a circulant matrix. In recent years, a particular attention has been paid
on circulant matrices and their relatives. For some of the results concerning this class
of matrices the reader may wish to consult [9, 10, 14]. According to Davis ([10]), the
r -circulant matrix is defined as follows.
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DEFINITION 1. Let n � 2 be an integer, u = (c0,c1, . . . ,cn−1)T ∈ Cn , and r ∈ C .
A matrix C = Circr(u) ∈ Mn(C) is called a r -circulant matrix if

ci j =

{
c j−i , j � i ,

rcn+ j−i , j < i ,

i.e., if C has the following form:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c0 c1 c2 · · · cn−2 cn−1

rcn−1 c0 c1 · · · cn−3 cn−2

rcn−2 rcn−1 c0 · · · cn−4 cn−3
...

...
...

. . .
...

...
rc2 rc3 rc4 · · · c0 c1

rc1 rc2 rc3 · · · rcn−1 c0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Thus, an r -circulant matrix is fully specified by one vector (c0,c1, . . . ,cn−1)T and
the parameter r . We will write C = Circr(c0,c1,c2, . . . ,cn−1) , or Cr for short, if the
order of the matrix is known. It turned out that r -circulant matrices have many useful
properties, and have become one of the most important research subjects in the fields
of pure and applied mathematics.

Hence, the circulant matrices are r -circulant matrices if r = 1 and skew circulant
matrices are r -circulant matrices if r = −1. In particular, 0-circulant matrix is an
upper triangular Toeplitz matrix (which is sometimes called a semicirculant matrix). In
what follows, we assume that r is nonzero.

Recently, there have been many papers on r -circulant matrices involving integer
sequences. For example, Solak in [25] have found the bounds of spectral norms of cir-
culant matrices with the Fibonacci and Lucas numbers. In [23] Shen and Cen studied
the bounds for the spectral norms of r -circulant matrices involving the Fibonacci and
Lucas numbers. Some improvements of previous results on r -circulant matrices in-
volving the Fibonacci numbers are presented in [19]. The paper [6] deals with circulant
matrices with the Jacobsthal and Jacobsthal–Lucas numbers. Bozkurt and Tam obtained
some useful formulas for the determinants and inverses of r -circulant matrices involv-
ing an arbitrary second order recurrence sequence (see [7]). In [4] E. Boman derived
a simple formula for the Moore–Penrose pseudoinverse of a general n×n r -circulant
matrix. In [24] and [29] the authors considered the norms of r -circulant and geometric
circulant matrices with the generalized r -Horadam numbers. For some other results on
r -circulants whose entries are various integer sequences we recommend [2, 16, 26].

In this paper, we explore the r -circulant matrices

Circr(N 0,N 1,N 2, . . . ,N n−1) (3)

where n � 2 is a positive integer and N i is the i-th Narayana number.
We estimate the upper and lower bounds for the norms of these matrices and des-

ignate their eigenvalues. In addition, we obtain similar results for r -circulant matrices

Circr(u0,u1,u2, . . . ,un−1) (4)
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involving generalized Narayana’s type numbers defined by (7).
Moreover, if n � 2, as a consequence of the obtained results we get that all circu-

lant matrices involving Narayana numbers are invertible, while skew circulant matrices
Circ−1(N 0,N 1, . . . ,N n−1) are invertible if and only if n �= 3.

The Binet formula allows the expression of a sequence {N n}n∈N as a function of
the roots α,β and γ of the characteristic equation

x3− x2−1 = 0. (5)

If Δ = 3

√
2

29+3
√

93
and ω3 = 1+i

√
3

2 , then the roots of the characteristic equation (5) are

α = 1
3 (1 + Δ + Δ−1) , β = 1

3 (1−ω3Δ + ω2
3 Δ−1) and γ = 1

3 (1 + ω2
3 Δ−ω3Δ−1) . Thus, the

n–th Narayana number is (see [12, Theorem 3.3])

N n =
αn+1(γ −β )+ β n+1(α − γ)+ γn+1(β −α)

(α −β )(β − γ)(γ −α)
. (6)

One can generalize the Narayana’s sequence by varying the initial conditions. Let
us define the generalized Narayana’s type of sequence {un}n∈N as follows:

un = un−1 +un−3 , n � 3 , (7)

where u0 = a , u1 = b , u2 = c , for some nonnegative integers a , b and c such that
a2 +b2 + c2 �= 0. Clearly,

un = aN n−2 +bN n−3 + cN n−1 , n � 3. (8)

Namely, u3 = a+ c = aN 1 + bN 0 + cN 2 . From the preceding, the required result
can be easily proved by induction.

The previous equation establishes one useful connection between the generalized
Narayana numbers and the ordinary Narayana numbers. Essentially, the properties of
the generalized Narayana numbers are determined by the properties of the Narayana
sequence {N n}n∈N .

For the sake of completeness, let us mention another way to obtain equality (8).
Since {un}n∈N satisfy a recurrence relation (7), it follows that

⎡
⎣ un

un+1

un+2

⎤
⎦=

⎡
⎣0 1 0

0 0 1
1 0 1

⎤
⎦

n⎡
⎣u0

u1

u2

⎤
⎦=

⎡
⎣N n−2 N n−3 N n−1

N n−1 N n−2 N n

N n N n−1 N n+1

⎤
⎦
⎡
⎣a

b
c

⎤
⎦ , n � 3,

whence un = aN n−2 +bN n−3 + cN n−1 , for n � 3, as requested.
The specific values of a , b and c give various Narayana’s type integer sequences.

Some examples of the first few values of the generalized Narayana’s type sequences
listed in The On-Line Encyclopedia of Integer Sequences (OEIS) are given in Table 1.
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a b c u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 OEIS

{N n}n∈N 0 1 1 1 2 3 4 6 9 13 19 28 41 A000930

{An}n∈N 3 1 1 4 5 6 10 15 21 31 46 67 98 A001609

{Bn}n∈N 1 2 2 3 5 7 10 15 22 32 47 69 101 A097333

{Cn}n∈N 2 1 2 4 5 7 11 16 23 34 50 73 107 A164316

Table 1: The first few terms of the generalized Narayana-type sequences.

Since the characteristic equation (5) remains unchanged, the Binet formula for the
generalized Narayana’s sequence becomes

un = Xαn +Yβ n +Zγn, n � 3, (9)

where u0 = a , u1 = b , u2 = c , and

X =
aβ γ−b(β+γ)+c
(α−γ)(α−β ) , Y = − aαγ−b(α+γ)+c

(β−γ)(α−β ) , Z =
aαβ−b(α+β )+c

(α−γ)(β−γ) .

First, we are going to prove some results on the properties of the generalized
Narayana numbers necessary for the rest of the paper. Note that some parts of these
results are similar to the results for the ordinary Narayana numbers obtained in [11].

LEMMA 1. Let {N n}n∈N and {un}n∈N be the Narayana cows sequence and the
generalized Narayana sequence. Then, each of the following identities holds true:

1◦) Sn := u0 +u1 +u2 + · · ·+un = un+3− c.

2◦) M2n := u0 +u2 +u4 + · · ·+u2n = 1
3(u2n+4 +u2n +a−b− c) .

3◦) M2n+1 := u1 +u3 +u5 + · · ·+u2n+1 = 1
3(2u2n+4−u2n−a+b−2c) .

4◦) un+m = un−1N m+2 +un−2N m +un−3N m+1 , n � 3 , m � 0 .

Proof. The first identity follows immediately since ∑n
k=0(uk+3 − uk+2− uk) = 0.

Therefore,
M2n+1 +M2n = S2n+1 = u2n+4− c . (10)

On the other hand, ∑n
k=0(u2k+3−u2k+2−u2k) = 0. Hence, it follows that

M2n+1−2M2n = u2n+2−u2n+3 +b−a . (11)

Thus, the solution of a system of linear equations (10), (11) yields identities 2◦) and
3◦) .

If m = 0, then equation 4◦) is reduced to the identity un = un−1 +un−3 . The rest
of the proof follows easily by induction using (8). �
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COROLLARY 1. (See [11]) The Narayana numbers satisfies the following iden-
tity:

N 2n = N 2
n+1 +N 2

n−1−N 2
n−2 . (12)

Proof. Assume that n = k + 1 and m = k− 1. According to the previous lemma
(part 4◦)), we have

N 2k = N kN k+1 +N k−1N k−1 +N k−2N k = N 2
k−1 +N k(N k+1 +N k−2)

= N 2
k−1 +(N k+1−N k−2)(N k+1 +N k−2) = N 2

k−1 +N 2
k+1−N 2

k−2 ,

as required. �

PROPOSITION 1. Let n � 2 be an integer. The sum of the squares of the first n+1
Narayana numbers is:

Dn = N 2
0 +N 2

1 + · · ·+N 2
n =

1
3
(N 2n+2 +N 2n−2 +1)−N 2

n−2. (13)

Proof. By property (12), we have

n−1

∑
k=2

N 2k =
n−1

∑
k=2

N 2
k−1 +

n−1

∑
k=2

N 2
k+1 −

n−1

∑
k=2

N 2
k−2 .

Therefore, we get M2n−2−N 2−N 0 = Dn−2N 2
0 −N 2

1 −N 2
2 +N 2

n−2 . According
to the initial conditions, N 0 = 0, N 1 = N 2 = 1, hence

Dn = M2n−2 +1−N 2
n−2 .

Applying Lemma 1 to the previous equation, we conclude the proof. �
According to (13), it is easy to obtain the sum ∑n

k=0 N 2
k . However, given the

change in initial values, there is no such nice formula for ∑n
k=0 u2

k .

PROPOSITION 2. Let n � 1 be an integer. If we define Pn :=
n
∑

k=0
u2

k , then

Pn =
1
3
((2a+2b− c)2−2a(5b− c)+2unun+1 +4un−1un+1 +4unun+2−u2

n+3). (14)

Proof. Let n � 1 be an integer, Pn = ∑n
k=0 u2

k , Qn = ∑n
k=0 ukuk+2 and Rn =

∑n
k=0 ukuk+1 . According to (7), we have uk = uk+3 −uk+2 and consequently:

Pn =
n

∑
k=0

(uk+3 −uk+2)2 =
n

∑
k=0

u2
k+3 +

n

∑
k=0

u2
k+2 −2

n

∑
k=0

uk+2(uk+2 +uk)

=− c2 +u2
n+3−2Qn ,

Qn =
n

∑
k=0

ukuk+2 = ac+
n

∑
k=1

uk(uk+1 +uk−1) = ac−ab+2Rn−unun+1 .
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Similarly, as uk = uk+1−uk−2 , and therefore u2
k = ukuk+1−ukuk−2 , we obtain

Pn−a2−b2 =
n

∑
k=2

ukuk+1−
n

∑
k=2

ukuk−2

=−ab−bc+Rn−Qn +un−1un+1 +unun+2 .

The previous identities implies the system of linear equations

Pn + 2Qn = u2
n+3− c2

Qn − 2Rn = a(c−b)−unun+1

Pn + Qn − Rn = a2 +b2− (a+ c)b+un−1un+1 +unun+2 ,

whence we get the required formula (14), as well as the summation formulas for Qn

and Rn . �

REMARK 1. Note that formula (14) can be expressed in terms of the initial con-
ditions a , b , c and the ordinary Narayana’s sequence {N n}n∈N using the identity (8).
It is also obvious that (13) follows directly from (14) for a = 0, b = 1 and c = 1. How-
ever, we still decided to include the proof of Proposition 1, which better reflects some
nice properties of Narayana’s numbers.

DEFINITION 2. Let n � 2 be an integer, u = (u0,u1, . . . ,un−1)T , and C = Circ(u) .
The representer Φn,u of the circulant matrix C is a polynomial in the indeterminate t
defined by:

Φn,u (t) :=
n−1

∑
k=0

uk tk.

The following proposition gives an explicit formula for the representer Φn,u .

PROPOSITION 3. Let n � 3 be an integer and u = (u0,u1, . . . ,un−1)T . Then

(1− t− t3)Φn,u(t) = a+(b−a)t+(c−b)t2−unt
n−un−2t

n+1−un−1t
n+2.

Proof. Note that uk = uk−1 +uk−3 , for all k � 3. Therefore, we obtain

Φn,u(t) = u0 +u1t +u2t
2 +

n−1

∑
k=3

(uk−1 +uk−3)tk

= a+bt + ct2 + t
n−2

∑
k=2

ukt
k + t3

n−4

∑
k=0

ukt
k

= a+bt + ct2 + t(Φn,u(t)−a−bt−un−1t
n−1)+ t3(Φn,u(t)−

3

∑
k=1

un−kt
n−k)

= (t + t3)Φn,u(t)+a+(b−a)t+(c−b)t2−unt
n−un−1t

n+2−un−2t
n+1,

as required. �
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COROLLARY 2. Let n � 3 be an integer and N = (N0,N1,N2, . . . ,Nn−1)T .
Then

(1− t− t3)Φn,N (t) = t −Nn tn−Nn−2 t n+1−Nn−1 t n+2.

According to (8), every vector u = (u0,u1,u2, . . . ,un−1)T depends only on the
initial values a = u0, b = u1 , c = u2 , and the properties of the Narayana sequence
{N n}n∈N . Therefore, it can be expressed as a linear combination of vectors:

A := (1, 0, N0, N1, N2, N3, . . . , Nn−3)T ,

B := (0, 1, 0, N0, N1, N2, . . . , Nn−4)T ,

C := (0, N0, N1, N2, N3, N4, . . . , Nn−2)T ,

i.e., u = aA+bB+ cC. In particular, N = B+C . Hence,

Φn,u(t) = aΦn,A(t)+bΦn,B(t)+ cΦn,C(t),

where Φn,A, Φn,B and Φn,C are determined by

Φn,A(t) = t2Φn,N (t)+1−Nn−2t
n−Nn−1t

n+1,

Φn,B(t) = t3Φn,N (t)+ t−Nn−3t
n−Nn−2t

n+1−Nn−1t
n+2,

Φn,C(t) = t Φn,N (t)−Nn−1t
n.

If r is a nonzero complex number, one can observe a matrix polynomial ∑n−1
k=0 ukT k ,

where T is n×n matrix defined by

T :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
r 0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Obviously,

Circr(u0,u1,u2, . . . ,un−1) = Φn,u(T ) = aΦn,A(T )+bΦn,B(T )+ cΦn,C(T ).

Since Tn = rIn , where In is the corresponding identity matrix, it is easily verified that
the related matrices Φn,A(T ) , Φn,B(T ) and Φn,C(T ) are determined by:

Φn,A(T ) = T 2Φn,N (T )+ (1− rNn−2)In− rNn−1T,

Φn,B(T ) = T 3Φn,N (T )− rNn−3In +(1− rNn−2)T − rNn−1T
2,

Φn,C(T ) = TΦn,N (T )− rNn−1In.

Also note that Φn,N (T ) = Φn,B(T )+ Φn,C(T ) .
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3. Main results

Let us first recall some notation and results which we will use. Throughout,
Mn(C) is a ring of n×n matrices over the complex numbers and r is an arbitrary com-
plex number that we shall commonly assume to be nonzero. Any n -th root of r and any
primitive n -th root of unity are denoted by r1/n and ωn , respectively. We use symbols
{λ j}n−1

j=0 and |A| to stand for the eigenvalues and the determinant of A ∈ Mn(C) , re-
spectively. For a given matrix C = [ci j] ∈ Mn(C) , its Frobenius norm, sometimes also
called the Euclidean norm ‖C‖E and spectral norm ‖C‖2 , are defined by

‖C‖E :=

(
∑

1�i, j�n
|ci j |2

)1/2

and ‖C‖2 :=
(

max
0� j�n−1

λ j(C∗C)
)1/2

,

where C∗ is the conjugate transpose of C . Note that C∗C is a Hermitian, positive
semi-definite matrix, and ‖C‖2 = σmax(C) is the largest singular value of C . There is
a well-known inequality between these norms:

1√
n
‖C‖E � ‖C‖2 � ‖C‖E . (15)

Given any two m× n matrices A and B , the Hadamard product (also known as the
Schur product) C = A◦B , is the componentwise product of matrices A and B . That is
to say, the elements of m×n matrix C are given by ci j = ai jbi j . It is well known [15,
Theorem 1.2.] that

‖A◦B‖2 � r1(A)c1(B), (16)

where r1(A) is the maximum row length norm of A , and c1(B) is the maximum column
length norm of B , i.e.,

r1(A) = max
1�i�m

√
n
∑
j=1

|ai j |2 and c1(B) = max
1� j�n

√
m
∑
i=1

|bi j |2 . (17)

THEOREM 1. Let n � 2 be an integer, C = Circr(u0,u1,u2, . . . ,un−1) and

Pn−1=
n−1

∑
i=0

u2
i =

1
3
((2a+2b−c)2−2a(5b−c)+2un−1un+4un−2un+4un−1un+1−u2

n+2).

Then we obtain the following estimations:

1◦) If |r| � 1, then
√

Pn−1 � ‖C‖2 �
√

(|r|2(Pn−1−a2)+1)Pn−1 . (18)

2◦) If |r| < 1, then |r|
√

Pn−1 � ‖C‖2 �
√

nPn−1 . (19)

Proof. 1◦) Suppose that |r| � 1. Then, we have

‖C‖2
E =

n−1

∑
i=0

(n− i)u2
i +

n−1

∑
i=1

i |r|2u2
i �

n−1

∑
i=0

(n− i)u2
i +

n−1

∑
i=1

iu2
i = n

n−1

∑
i=0

u2
i .
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So, ‖C‖E/
√

n �
√

∑n−1
i=0 u2

i , which implies ‖C‖2 �
√

∑n−1
i=0 u2

i =
√

Pn−1 . For the sec-
ond inequality note that C = A◦B , where A and B are the following n×n matrices:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1 1
run−1 1 1 · · · 1 1
run−2 run−1 1 · · · 1 1

...
...

...
. . .

...
...

ru2 ru3 ru4 · · · 1 1
ru1 ru2 ru3 · · · run−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u0 u1 u2 · · · un−2 un−1

1 u0 u1 · · · un−3 un−2

1 1 u0 · · · un−4 un−3
...

...
...

. . .
...

...
1 1 1 · · · u0 u1

1 1 1 · · · 1 u0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then we get

r1(A) = max
1�i�n

√
n
∑
j=1

|ai j |2 =

√
n
∑
j=1

|an j |2 =

√
|r|2 n−1

∑
i=1

u2
i +1 =

√
|r|2 n−1

∑
i=0

u2
i +1−|r|2a2 ,

c1(B) = max
1� j�n

√
n
∑
i=1

|bi j |2 =
√

n
∑
i=1

|bin |2 =

√
n−1
∑
i=0

u2
i .

Therefore, applying Proposition 2 and inequality (16), we obtain

‖C‖2 �
√
|r|2

n−1
∑
i=0

u2
i +1−|r|2a2

√
n−1
∑
i=0

u2
i =

√
(|r|2(Pn−1−a2)+1)Pn−1 .

2◦) If |r| < 1, we may proceed in a similar way. Then we have

‖C‖2
E �

n−1

∑
i=0

(n− i)|r|2u2
i +

n−1

∑
i=1

i |r|2u2
i = n |r|2

n−1

∑
i=0

u2
i .

Thus, ‖C‖E/
√

n � |r|
√

n−1
∑
i=0

u2
i , which implies ‖C‖2 � |r|

√
n−1
∑
i=0

u2
i = |r|√Pn−1 .

Let us present the matrix C as a Hadamard product C = A◦B , where A and B are
matrices defined by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1 1
r 1 1 · · · 1 1
r r 1 · · · 1 1
...

...
...

. . .
...

...
r r r · · · 1 1
r r r · · · r 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u0 u1 u2 · · · un−2 un−1

un−1 u0 u1 · · · un−3 un−2

un−2 un−1 u0 · · · un−4 un−3
...

...
...

. . .
...

...
u2 u3 u4 · · · u0 u1

u1 u2 u3 · · · un−1 u0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then we obtain

r1(A) = max
1�i�n

√
n
∑
j=1

|ai j |2 =

√
n
∑
j=1

|a1 j |2 =

√
n
∑
j=1

1 =
√

n ,
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c1(B) = max
1� j�n

√
n
∑
i=1

|bi j |2 =
√

n
∑
i=1

|bi1 |2 =

√
n−1
∑
i=0

u2
i .

According to (16), we have ‖C‖2 �
√

n∑n−1
i=0 u2

i =
√

nPn−1 , which completes the proof.
�

Clearly, the previous formulas can be easily modified to the case

C = Circr(uk,uk+1, . . . ,uk+n−1),

for k � 1. Let us emphasize the obtained result with the following example.

EXAMPLE 1. Suppose that Cr = Circr(N 0,N 1,N 2, . . . ,N n−1) and let us de-
note by L(|r|,n) and R(|r|,n) the lower and upper bounds for the spectral norm ‖Cr‖2 ,
respectively. According to (18) and (19) we have

[L(|r|,n),R(|r|,n)] =

{[√
Pn−1,

√
(|r|2Pn−1 +1)Pn−1

]
, |r| � 1,

[ |r|√Pn−1,
√

nPn−1 ] , |r| < 1.

The following table illustrates some bounds for the largest singular value σmax(Cr) for
|r| = 1/2, |r| = 1 and |r| = 2.

n [L(1,n),R(1,n)] [L(1/2,n),R(1/2,n)] [L(2,n),R(2,n)]

2 [1,
√

2] ≈ [1,1.41] [ 1
2 ,
√

2] ≈ [0.5,1.41] [1,
√

5] ≈ [1,2.24]

3 [
√

2,
√

6] ≈ [1.41,2.45] [ 1
2

√
2,
√

6] ≈ [0.71,2.45] [
√

2,3
√

2] ≈ [1.41,4.24]

4 [
√

3,2
√

3] ≈ [1.73,3.46] [ 1
2

√
3,2

√
3] ≈ [0.87,3.46] [

√
3,
√

39] ≈ [1.73,6.25]

5 [
√

7,2
√

14] ≈ [2.65,7.48] [ 1
2

√
7,
√

35] ≈ [1.32,5.92] [
√

7,
√

203] ≈ [2.65,14.25]

6 [4,4
√

17] ≈ [4,16.49] [2,4
√

6] ≈ [2,9.80] [4,4
√

65] ≈ [4,32.25]

7 [4
√

2,4
√

33] ≈ [5.66,22.98] [2
√

2,4
√

14] ≈ [2.83,14.97] [4
√

2,4
√

258] ≈ [5.66,64.25]

8 [7
√

2,21
√

22] ≈ [9.90,98.50] [ 7
2

√
2,28] ≈ [4.95,28] [7

√
2,7

√
786] ≈ [9.90,196.25]

Table 2: Upper and lower bounds for σmax(Cr) , |r| ∈ {1,1/2,2} .

Let us see how accurate these estimates are. If r = eiϕ , consider for example
ϕ = π/2 and the matrix Ci = Circi(N 0,N 1,N 2,N 3,N 4,N 5) , i.e.,

Ci =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 2 3
3i 0 1 1 1 2
2i 3i 0 1 1 1
i 2i 3i 0 1 1
i i 2i 3i 0 1
i i i 2i 3i 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

A direct calculation shows that σmax(Ci) = (10
√

2+6
√

3+5
√

6+19)1/2 ≈ 7.48. Sim-
ilarly, for matrices C1/2 = Circ1/2(0,1,1,1,2,3) and C2 = Circ2(0,1,1,1,2,3) one can
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find σmax(C1/2) ≈ 6.03 and σmax(C2) ≈ 13.52. Note that previous example suggests
that σmax(Cr) can be expected to be close to the (L(|r|,n)+R(|r|,n))/2.

In order to determine the eigenvalues of the matrix C = Circr(u0,u1,u2, . . . ,un−1) ,
we need the following result.

LEMMA 2. ([9], Lemma 4) Let C = Circr(c0,c1,c2, . . . ,cn−1) be an r -circulant
matrix. Then the eigenvalues of C are

λ j =
n−1

∑
i=0

ci(r1/nω− j
n )i, j = 0,1, . . . ,n−1, (20)

where r1/n is any n-th root of r and ωn is any primitive n-th root of unity.

THEOREM 2. Let n � 2 be an integer. Suppose that α,β ,γ are the roots of the
characteristic equation x3− x2−1 = 0 , and

X =
aβ γ −b(β + γ)+ c

(α − γ)(α −β )
, Y = −aαγ −b(α + γ)+ c

(β − γ)(α −β )
, Z =

aαβ −b(α + β )+ c
(α − γ)(β − γ)

.

Then, the eigenvalues {λ j}n−1
j=0 , of the matrix C = Circr(u0,u1,u2, . . . ,un−1) are given

by the following formulas:

1◦) If r1/nω− j
n /∈ {1/α,1/β ,1/γ} , then

λ j =
a− run− (a−b+ run−2)r1/nω− j

n − (b− c+ run−1)r2/nω−2 j
n

1− r1/nω− j
n − r3/nω−3 j

n
.

2◦) If r1/nω− j
n = 1/α , then λ j = nX +

αn−β n

αn−1(α −β )
Y +

αn − γn

αn−1(α − γ)
Z.

3◦) If r1/nω− j
n = 1/β , then λ j =

β n−αn

β n−1(β −α)
X +nY +

β n− γn

β n−1(β − γ)
Z.

4◦) If r1/nω− j
n = 1/γ , then λ j =

γn−αn

γn−1(γ −α)
X +

γn −β n

γn−1(γ −β )
Y +nZ.

Proof. 1◦) Note that x3 + x− 1 = (x−α−1)(x− β−1)(x− γ−1) . Therefore, if
r1/nω− j

n /∈ {α−1,β−1,γ−1} , then r1/nω− j
n is not the root of the polynomial x3 +x−1.
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Hence, using Lemma 2 and Proposition 3, we have the following identity:

λ j =
n−1

∑
i=0

uir
i/nω−i j

n = Φn,u(r1/nω− j
n )

=
a+(b−a)r1/nω− j

n +(c−b)(r1/nω− j
n )2

1− r1/nω− j
n − (r1/nω− j

n )3

− un(r1/nω− j
n )n +un−2(r1/nω− j

n )n+1 +un−1(r1/nω− j
n )n+2

1− r1/nω− j
n − (r1/nω− j

n )3

=
a− run− (a−b+ run−2)r1/nω− j

n − (b− c+ run−1)r2/nω−2 j
n

1− r1/nω− j
n − (r1/nω− j

n )3
.

2◦) Previously we have observed that un = αnX + β nY + γnZ . Therefore, by
Lemma 2, we have the following identity

λ j =
n−1

∑
i=0

uir
i/nω−i j

n

= X
n−1

∑
i=0

(αr1/nω− j
n )i +Y

n−1

∑
i=0

(β r1/nω− j
n )i +Z

n−1

∑
i=0

(γr1/nω− j
n )i.

(21)

Assume that r1/nω− j
n = 1/α . From (21), it follows that

λ j = X
n−1

∑
i=0

(α
α

)i
+Y

n−1

∑
i=0

(
β
α

)i

+Z
n−1

∑
i=0

( γ
α

)i

= nX +
αn −β n

αn−1(α −β )
Y +

αn− γn

αn−1(α − γ)
Z.

Similarly, if r1/nω− j
n = 1/β or r1/nω− j

n = 1/γ , we can proceed in the same way as in
the second case to obtain 3◦) and 4◦) . Thus, the theorem is proved. �

Research papers [5], [8] and [18] motivate us to move on to some questions about
the invertibility of the introduced matrices. Using Theorem 2, one can give some par-
tial results on the invertibility of circulant and skew circulant matrices involving the
generalized Narayana numbers. First we need the following proposition.

PROPOSITION 4. The matrix C = Circr(u0,u1,u2, . . . ,un−1) is invertible if and
only if

gcd(Φn,u(t), tn− r) = 1.

Proof. Let C = Circr(u0,u1, . . . ,un−1) and assume that {λ0,λ1, . . . ,λn−1} are the
eigenvalues of C . Then C is singular iff λ j = 0 for some j ∈ {0,1, . . . ,n−1} .

According to Lemma 2, the j -th eigenvalue of the matrix C is equal to

λ j =
n−1

∑
k=0

uk(r1/nω− j
n )k = Φn,u(r1/nω− j

n ),
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where r1/n is any n -th root of r and ωn is any primitive n -th root of unity. Therefore,
the matrix C is singular if and only if Φn,u(r1/nω− j

n ) = 0 for some j ∈ {0,1, . . . ,n−1} .
Since

(r1/nω− j
n )n = r,

r1/nω− j
n is the root of the polynomial tn − r , and we are done. �

THEOREM 3. Let m be any positive integer. The circulant matrix

C = Circ(u0,u1, . . . ,un−1)

is singular if and only if C has one of the following forms:

Circ(m,m), Circ(m,m,m), Circ(m,0,m,2m),
Circ(m,2m,m,2m), Circ(m,0,0,m,m,m),
Circ(4m,2m,m,5m,7m,8m) or Circ(0,m,0,0,m,m,m,2m).

Proof. Obviously, Circ(a,b) is singular if and only if a = b , so let us suppose
that n � 3. Since r = 1, we can take r1/n = ωk

n , for some positive integer k , k < n .
According to Theorem 2, we have that the j -th eigenvalue λ j , for j = 0,1, . . . ,n− 1,
is equal to

λ j = Φn,u(ωk− j) =
a−un +(b−a−un−2)ω

k− j
n +(c−b−un−1)ω

2(k− j)
n

1−ωk− j
n −ω3(k− j)

n

.

Since |C |= ∏n−1
i=0 λ j , the matrix C is singular if and only if

a−un +(b−a−un−2)ωk− j
n +(c−b−un−1)ω

2(k− j)
n = 0 (22)

for some j = 0,1, . . . ,n−1. Let us consider the following cases:

1. If k �= j , then ωk− j
n is the complex number such that |ωk− j

n | = 1. Then it should
be a−un = c−b−un−1 , that is a+b−c= un−3 . If n � 10, then un−3 �= a+b−c
since

a(Nn−5−1)+b(Nn−6−1)+ c(Nn−4 +1) > 0. (23)

Namely, expressions in parentheses are positive integers, while a , b and c are
nonnegative integers such that a2 +b2 + c2 �= 0.

If 3 � n < 10, one can easily examine all cases such that a+b−c = un−3 . Taking
into account that a , b and c are nonnegative integers such that a2 +b2 +c2 �= 0,
it is straightforward to check the following:

1.1. Circ(a,b,b) is singular if and only if a = b .

1.2. Circ(a,b,a,2a) is singular if and only if b = 0 or b = 2a .

1.3. Circ(a,2c−a,c,a+ c,3c) is regular for all a and c .
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1.4. Circ(a,2c,c,a+c,a+3c,a+4c) is singular if and only if a = 4c or c = 0.

1.5. Circ(a,b,0,a,a+b,a+b,2a+b) is regular for all a and b .

1.6. Circ(a,b,0,a,a+b,a+b,2a+b,3a+2b) is singular if and only if a = 0.

1.7. Circ(0,b,0,0,b,b,b,2b,3b) is regular for all b .

2. If k = j , then ω j−k
n = 1. Therefore, the equality (22) reduces to

a−un +b−a−un−2+ c−b−un−1 = 0,

or equivalently un+2 = c . Thus, we obtain

aNn +bNn−1 + c(Nn+1−1) = 0,

which is impossible. �

From the theorem just proved, we get as an immediate consequence the result on
the invertibility of circulant matrices involving the ordinary Narayana numbers.

COROLLARY 3. The circulant matrix

C = Circ(N 0,N 1,N 2, . . . ,N n−1)

is invertible for all n � 2 .

THEOREM 4. The skew circulant matrix C = Circ−1(u0,u1, . . . ,un−1) is singular
if and only if the matrix C is of the form C = Circ−1(0,m,m) for some positive integer
m.

Proof. Clearly, Circ−1(a,b) is regular for all a and b (we assume a2 +b2 �= 0),

so let us suppose that n � 3. Since r = −1, we can take r1/n = ωk/2
n , for some positive

integer k , k < n . According to Theorem 2, we have that the j -th eigenvalue, j =
0,1, . . . ,n−1, is equal to

λ j = Φn,u(ωk/2− j) =
a+un +(b−a+un−2)ω

k/2− j
n +(c−b+un−1)ω

2(k/2− j)
n

1−ωk/2− j
n −ω3(k/2− j)

n

.

Since |C |= ∏n−1
i=0 λ j , the matrix C will be singular if and only if

a+un +(b−a+un−2)ω
k/2− j
n +(c−b+un−1)ω

2(k/2− j)
n = 0,

for some j = 0,1, . . . ,n−1. Let us consider the following cases:

1. If k/2 �= j , then ωk/2− j
n is the complex number such that |ωk/2− j

n | = 1. Then it
should be a+un = c−b+un−1 , i.e., c−a−b = un−3 .



1308 M. PEŠOVIĆ AND Z. PUCANOVIĆ

If n � 7, along the same argument as in (23), we see that

a(Nn−5 +1)+b(Nn−6 +1)+ c(Nn−4−1) > 0.

Therefore, un−3 �= c−a−b .

If 3 � n < 7, one can quickly check the remaining cases assuming that a , b and
c are nonnegative integers such that a2 +b2 + c2 �= 0.

1.1. Circ−1(a,b,2a+b) is singular if and only if a = 0.

1.2. Circ−1(a,b,a+2b,2a+2b) is regular for all a and b .

1.3. Circ−1(0,0,c,c,c) is regular for all c .

1.4. Circ−1(0,0,c,c,c,2c) is regular for all c .

2. If k = 2 j , then ωk/2− j
n = 1. Hence, C is singular if and only if

a+un +b−a+un−2+ c−b+un−1 = 0 ⇔ un+2 = −c

i.e., aNn +bNn−1 + c(Nn+1 +1) = 0, which is impossible. �

As a consequence of the previous theorem, we get the following interesting result
on the invertibility of skew circulant matrices involving the ordinaryNarayana numbers.

COROLLARY 4. Let n � 2 be an integer. The skew circulant matrix

C = Circ−1(N 0,N 1,N 2, . . . ,N n−1)

is invertible if and only if n �= 3 .

4. Discussion

If r1/nω− j
n /∈ {1/α,1/β ,1/γ} , in order to conclude whether the given matrix Cr =

Circr(u0,u1,u2, . . . ,un−1) is singular or not, we are referred to the equation

a− run− (a−b+ run−2)r1/nω− j
n − (b− c+ run−1)r2/nω−2 j

n = 0. (24)

As can be seen, the general case is quite difficult. Basically, except for the members of
the Narayana sequence, (24) depends only on the initial conditions and the parameter
r . This provides the possibility to obtain an invertible matrix by varying the initial
conditions.

In Theorems 3 and 4, we have discussed special cases for r = 1 and r = −1.
Besides, any single case can be considered separately using equation (24), which can
produce notable interesting results on the invertibility of such matrices.
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