

UNIVERZITET U BEOGRADU GRAĐEVINSKI FAKULTET

MIRKO AĆIĆ

PRILOG REŠENJU PROBLEMA GRANIČNIH STANJA ZIDNIH NOSAČA OD ARMIRANOG BETONA

- Doktorska disertacija -

JUNI 1978. BEOGRAD

UNIVERZITET U BEOGRADU G R A D J E V I N S K I F A K U L T E T

MIRKO AĆIĆ

PRILOG REŠENJU PROBLEMA GRANIČNIH STANJA ZIDNIH NOSAČA OD ARMIRANOG BETONA

DOKTORSKA DISERTACIJA

1247.5

Q.)

Izradom ovoga rada rukovodili su Akademik Dr.h.c. DJORDJE LAZAREVIĆ, redovni profesor i Dr. MILORAD IVKOVIĆ, redovni profesor.Koristim ovu priliku da im se najtoplije zahvalim za veoma dragocene savete, sugestije i uputstva u toku izrade rada.

Takodje se zahvaljujem diplomiranim tehničarima Milovanu Petroviću i Miodragu Saviću, zatim VKV radniku Dušanu Filipoviću i KV radniku Ratku Pestiću, za uspešnu saradnju i veliko zalaganje u toku izvodjenja eksperimentalnog dela rada.

Svoju zahvalnost dugujem i dipl.tehničaru Dejanu Božiću, majstoru fotografije Slavomiru Matejiću i daktilografu Dušanki Maksimović za uloženi trud na kvalitetnoj tehničkoj obradi rada.

Na kraju, zahvaljujem se kolektivu Gradjevinskog fakulteta u Beogradu i Zajednici za naučni rad SR SRBIJE koji su finanskijim sredstvima pomogli realizaciju ovog relativno obimnog istraživačkog programa.

AUTOR

57

S A D R Z A J

55.	rana
<i>uvop</i>	1
1. ANALIZA R <mark>ez</mark> ultata značajnijih eksperimentalnih istraži-	
VANJA O P <mark>ON</mark> AŠANJU ARMIRANOBETONSKIH ZIDNIH NOSAČA	5
1.2 Zaključa <mark>k</mark>	15
2. SOPSTVENA EKSPERIMENTALNA ISTRAŽIVANJA PONAŠANJA ARMI-	
RANOBETONSKIH ZIDNIH NOSAČA	18
2.1. Program ispitivanja	18
2.1.1 Geometrijske karakteristike zidnih nosača	19
2.1.1.1. Dimenzije nosača	19
2.1.1.2. Armatura nosača	20
2.1.1.2.1. Armatura za savijanje-glavna armatura	20
2.1.1.2.2. Armatura za osiguranje zidnih nosača od glavnih	
napona zatezanja	26
2.1.1.2.3. Armatura za neposredno prihvatanje "obešenog"	
opterećenja	26
2.1.2. Materijali	29
2.1.2.1. Čelik	29
2.1.2.2. Beton	29
2.1. ³ . Uredjaji za izvodjenje ogleda	32
2.1.4. Opterećenje	34
2.1.5. Meren <mark>e ve</mark> ličine i merna tehnika	35
2.1.6. Dopuš <mark>teno</mark> opterećenje	38
2.2. REZULTATI ISPITIVANJA I NJIHOVA ANALIZA	41
2.2.1. Nastajanje prislina, njihov razvoj, naprezanje ar-	
matur <mark>e i beto</mark> na, opterećenje koje izaziva lom nosa-	
ča i vrste loma	41
2.2.1.1. Zidní nosači opterećeni po gornjoj ivici	43
2.2.1.2. Zidni nosači opterećeni po donjoj ivici	77
2.2.2. PRIMENA REZULTATA OGLEDA PRI DIMENZIONISANJU ZIDNIH	
NOSAČA	03
2.2.2.1. Granična stanja zidnih nosača usled dejstva	
momenata savijanja 1	03
2.2.2.2. Granična stanja zidnih nosača usled dejstva	
transverzalnih sila1	08
2.2.3. ZAKLJUČCI	16

3. GRANIČNE VREDNOSTI NAPONA U BETONU ZA RAVNO STANJE	
NAPONA	120
3.1. Analiza značajnijih istraživanja u svetu o ponašanju	
betona <mark>u obla</mark> st <mark>i g</mark> ranične ravnoteže	120
3.2. Predlog novog uslova loma za beton	129
3.3. Primena ekstremalnih principa pri rešavanju nekih za-	
dataka granične ravnoteže	135
3.3.1. Primer 1	137
3.3.2. Primer 2	140
4. PONAŠANJE ARMIRANOG BETONA SA PRSLINAMA U USLOVIMA	
RAVNOG NAPONSKOG STANJA	144
4.1. Osnovne teorijske pretpostavke i opšte karakteritike	
deformisanja armiranobetonskog elementa	145
4.2. Naponi u armaturi i srednje deformacije armiranobet-	
onskog elementa, vezane za razvoj prslina	154
4.3. Deformacije betonske trake i njen uticaj na ukupnu	
deformaciju armiranobetonskog elementa	160
4.4. Prsline	
4.5. Stanje granične nosivosti	164
5 PRIMENA METODE KONAČNIH ELEMENATA PRI REŠAVANJU PROBLE-	
MA ARMIRANOG BETONA	166
5.1. Uvod i pretpostavke	166
5.2. Brojčani primer	168
5.2.1. Analiza rezultata	170
5.3. O mogućnostima tačnije aproksimacije ponašanja i pro-	
računa armiranobetonskih konstrukcija	175
LITERATURA	178

U V O D

Kao što je poznato, zidni nosači spadaju u grupu površinskih nosača, opterećenih u svojoj ravni kod kojih je visina poprečnog preseka H istog reda veličine kao i raspon . Obično se, u praktičnim proračunima, odnos H/[=0,5 usvaja kao granica koja ih deli od linijskih nosača, premda se odstupanja od Bernoulli-eve hipoteze ravnih preseka i Navier-ovog zakona o linearnoj raspodeli normalnih napona, javljaju i pri nižim odnosima.

Rešenje problema stanja napona i deformacija u zidnim nosačima, za homogen, izotropan i elastičnan materijal, u literaturi je dobro poznat. Medjutim, ta rešenja je mogućno primeniti samo na armirano betonske zidne nosače u fazi pre pojave prslina-u takozvanom naponskom stanju I. U nosaču sa prslinama (stanje II), koje se mogu pojaviti i pri radnom-eksploatacionom opterećenju, dolazi do preraspodele unutrašnjih sila u odhosu na stanje I. Tada nosač manje-više gubi elastična svojstva i postepeno poprima karakteristike elastoplastičnog materijala. Stoga, primena klasične teorije na rešavanje problema u ovim a pogotovu u onim stanjima koja predhode lomu nosača, nije moguća, jer uopšte ne daje realnu sliku o ponašanju nosača.

Sa obzirom na vrlo široku primenu armiranobetonskih zidnih nosača u gradjevinarstvu (primenjuju se kao zidovi silosa, bunkera,podruma, raznih dijafragmi, u krupnopanelnoj gradnji i drugo) i na oskudne eksperimentalne podatke o njihovom ponašanju u oblasti obrazovanja i daljeg razvoja prslina, posebno u oblasti granične nosivosti, autor se odlučio na izvodjenje sopstvenih ogleda.

Osnovni zadatak rada sastoji se u tome da se_lna osnovu rezultata eksperimentalnih istraživanja i njihove analize_jbar donekle,upotpuni slika o ponašanju zidnih nosača od armiranog betona za pojedina granična stanja, koja su od posebnog interesa za teoriju i praksu.

Proučavanje ovih problema je vrlo interesantno i iz ekonomskih razloga, jer se, poznavajući stvarno ponašanje nosača, posebno u stanju granične nosivosti, pruža veća mogućnost racionalnijem projektoRad ima i nešto širi značaj. U njemu se, u uslovima ravnog naponskog stanja. I problem graničnih vrednosti napona u betonu, kao i problem ponašanja armiranog betona u karakterističnim fazama, počev od pojave prvih prslina pa do iscrpljenja gra-

Rad se sastoji iz pet poglavlja.

U 1. poglavlju hronološkim redom ,daje se analiza rezultata značajnih eksperimentalnih istraživanja u svetu o ponašanju armiranobetonskih zidnih nosača. Pri tome se konstatuje da su, i pored ogromnog doprinosa na razjašnjenju niza pojava koje prate ponatane ovih nosača, neka veoma značajna pitanja ostala i dalje nedooljno istražena. Tako, na primer, nije dovoljno istražen uticaj stepena oslonačkih pojačanja na ponašanje ovih nosača, posebno u stanju granične ravnoteže. Takodje, nije istražen ni doprinos dela nosača koji se nalazi iznad I = i (kod nosača odnosa H) nanaponsko deformacijsko stanje, veličinu sile loma, figuru loma i slično.

Poglavlje 2 sadrži rezultate, njihovu analizu i zaključke o ponašanju armiranobetonskih zidnih nosača koji su proizači iz sopstvenih ogleda . Osim toga, ovo poglavlje ovuhvata i nove predloge autora za dimenzionisanje zidnih nosača prema graničnim stanjima, kao rezultat sprovedenih ogleda.

Varirajući niz parametara kao što su: mesto delovanja opterećenja, odnos visine prema rasponu, stepen oslonačkih pojačanja, procenat armature za savijanje i njen način "vodjenja" duž raspona, način pokrivanja" glavnih napona zatezanja količina i dužina armature za "vešanje" opterećenja kao i kvalitet materijala, ispitano je 38 zidnih nosača slobodno oslonjenih na dva oslonca. Od toga je bilo 27 nosača opterećenih po gornjoj (8 nearmiranih) i 11 opterećenih po donjoj ivici nosača. Opterećenje je bilo statičkog, kratkotrajnog karaktera a nanošeno je postupno u stepenima-fazama od 0 do loma nosača. Merena su naprezanja i maturi i betonu; registrovana su opterećenja kao i opterećenja u oblasti granične nasuvsti i nosača.Praćen je razvoj prslina snimana je završna tiguri i dr.

- 2 -

Na osnovu rezultata eksperimentalnih istraživanja proizilazi da, sa pojavom prslina i njihovim daljim razvojem,dolazi do značajnih preraspodela unutrašnjih sila u nosaču. Pri tome se krak z znatno povećava a zidni nosač se postepeno transformiše u lučni sa zategom. Stoga, sa stanovišta ogleda, bilo kakvo slabljenje glavne-donje armature prema osloncima (koje omogućava Teorija elastičnosti) nije opravdano, jer smanjuje graničnu nosivost. Pokazano je da je glavna armatura znatno manje napregnuta nego što se dobija po predlozima više autora,zasnovanih na Teoriji elastičnosti. Takodje je pokazano da se o uticaju stepena oslonačkih pojačanja mora voditi računa, naročito kod nosača veće visine (H > l, opterećenih po gornjoj ivici. Način konstruísanja zidnih nosača, položaj i presek armature takodje se pokazao kao Laktor koji može bitno da utiče na stanje prslina, vrstu i veličinu sile loma i uopšte, na ponašanje ovih nosača.

U poglavlju 3 autor analizira dosadašnja značajnija istraživanja u svetu o ponašanju betona u oblasti granične ravnoteže i, kao rezultat te analize, předlaže novi analitički izraz za uslov loma-plastičnosti betona za ravno stanje napona. Analizirajući radove niza autora, ukazuje se na nejedinstvenost u izvodjenju ogleda pojedinih istraživača, kao i na neslaganja izmedju stvarno, u ogledu realizovanog-najčešće prostornog i, za teorijsku analizu, pretpostavljenog ravnog stanja napona. U vezi sa tim dolazi se do zakljućka da najveći deo sprovedenih ogleda u svetu, namenjen odredjivanju graničnih vrednosti napona u betonu u uslovima ravnog stanja napona, ne može poslužiti kao osnova za analitičko formulisanje uslova loma. Izuzetak čine ogledi Kupfer-a, Nelissen-a i još nekih drugih malobrojnih istraživača, kod kojih je, u ispitivanom ugledu, gotovo i ostvaren pretpostavljeni raspored ravnog stanja napona, veštim eliminisanjem sila trenja na kontaknim površinama ugleda. Koristeći, pre svega, rezultate ogleda Kupfer-a, kao "reperne" granične vrednosti napona, autor predlaže da analitički izraz za uslov loma, u ravní 🔄 , Dø, u području dvoosoníh pritisaka, bude predstavljen jednačinom elipse, a u području, gde je bar jedan napon-napon zatezanja -jednačinom hiperbole. Koristeći predloženi uslov plastičnosti i pritom, primenjujući ekstremalne principe, analizirana je granična ravnoteža dvaju zidnih nosača. Na ovaj način odredjena sila loma je bila vrlo bliska sili loma dobijenoj putem ogleda. To ukazuje da predložena rešenja imaju svoju punu vrednost.

- 3 -

U 4.poglavlju analizira se ponašanje isprskalih armirano-betonskih elemenata u uslovima ravnog stanja napona. Pri tome se polazi od pretpostavki da su globalne deformacije arniranobetonskog elementa, koje nastaju od otvaranja prslina jednake srednjim deformacijama armature u pravcu njenog pružanja, a da su globalne deformacije u pravcu pružanja betonskih traka jednake srednjim deformacijama betona. Problem se svodi na generalisani Hoocke-ov zakon za anizctrcpni materijal. Pri tom koeficijenti Cij nisu konstantni, već se menjaju u zavisnosti od procesa razvoja prslina, odnosno od veličine sila N_{x} , N_{y} i N_{xy} . Prema tome, armirani beton se ponaša kao nelinearni anizotropni materijal, gde je ta nelinearnost fizičkog karaktera.

Poglavlje 5 obuhvata primenu metode konačnih elemenata pri rešavanju problema armiranog betona sa prslinama. Iako se, zbog korišćenja postojećeg programa, nisu mogli obuhvatiti svi fenomeni koji se javljaju u toku deformisanja armiranobetonskog elementa, prikazana rešenja daju relativno dobru saglasnost sa rezultatima ogleda. U poglavlju su izložene i neke mogućnosti tačnije aproksimacije ponašanja i proračuna armiranobetonskih konstrukcija i, u vezi sa tim, ukazano je i na probleme koji se tu mogu pojaviti. 1. ANALIZA REZULTATA ZNAČAJNIJIH EKSPERIMENTALNIH ISTRAŽIVANJA O PONAŠANJU ARMIRANOBETONSKIH ZIDNIH NOSAČA

Do danas je u svetu, koliko je u literaturi poznato, izvršeno eksperimentalno ispitivanje na nešto preko 200 armiranobetonskih zidnih nosača, što je u poredjenju sa linijskim nosačima, gde se taj broj penje i na nekoliko desetina hiljada, veoma skromna cifra. Ipak, rezultati do kojih se došlo, i pri tako malobrojnim ogledima, vrlo su dragoceni, posebno kada je reč o sagledavanju stvarnog ponašanja ovih nosača u procesu razvoja prslina u betonu,kao i stanju koje prethodi lomu nosača.

Pomenuta ispitivanja su se odnosila na delovanje kratkotrajnog, statički postupno nanetog opterećenja.

G r a f, B r e n n e r i B a y /38/ su bili prvi, koji su 1936. godine eksperimentalnim putem,ispitivali ponašanje jednog armiranobetonskog jednorasponog zidnog nosača sa obešenim opterećenjem (sl. 1.1). Cilj ispitivanja sastojao se, uglavnom, u proveri ispravnosti ondašnjih Bay-evih preporuka /10/ za dimenzionisanje i armiranje ovih nosača. Ono što se može zapaziti pri

sl.1.1 Armatura i izgled prslina zidnog nosača sa obešenim opterećenjem ispitivanja Graf-a , Brenner-a i Bay-a (38) ga ispitivanja odnosi se na sledeće: - Do pojave prvih

analizi rezultata ovo-

prslina prisutno je bilo kvazielastično ponašanje nosača.

- Prve prsline su se dosta dobro poklapale sa trajektorijama glavnih napona pritiska, odredjenih pomoću Matematičke teorije elastičnosti.

- U gornjoj polovini nosača, u kojoj nije postojala armatura za prihvatanje obešenog opterećenja, nisu se uopšte pojavile prsline; iz čega autori izvlače zaključak da, pri proračunu, ovaj deo i ne treba smatrati sastavnim delom zidnog nosača. Kasnija istraživanja autora /4/ i /112/ pokazala su da ovaj zaključak nema opravdanja onda kada su zidni nosači ojačani u oslonačkim presecima, na primer, pomoću stubova ili poprečnih zidova.

- 0 -

Autori rada /38/ u zaključku o sprovedenom ispitivarju, navode da je lom nosača nastupio usled prekoračenja granice razvlačenja čelika u vertikalnoj i kosoj armaturi. Mnogo kasnije, analizirajući sačuvanu dokumentaciju o ovome ispitivanju, Leonhardt /81/ je tvrdio da je lom ovoga nosača nastao usled dostizanja graničnih vrednosti napona pritiska u betonu na onim mestima gde se "etažirani" lukovi naglo spuštaju prema osloncima. Nažalost, u toku ispitivanja nisu vršena merenja napona u armaturi i betonu, koja bi bliže ukazala na stvarni uzrok loma nosača.

K l i n g r o t h /62/ je 1941. godine, nastavljajući realizaciju programa, koga su započeli Graf, Brenner i Bay, sproveo oglede na zidnim nosačima sa koncentrisanim i kvazi podeljenim opterećenjem, nanetim po gornjoj ivici. Lom svih ispitiva-

sl.12 Zidni nosači koje je ispitivao Klingroth E623

nih nosača nastupio je razaranjem oslonačkih zona, pri relativno malom opterećenju, usled dostizanja čvrstoće betona na pritisak (sl.1.2). Pri tome su prsline od savijanja, u polju, bile veoma fine, a kosi glavni naponi zatezanja nisu prelazili polovi-

nu jednoosne čvrstoće betona na zatezanje. Na osnovu toga Klingroth zaključuje da kosa armatura za prijem glavnih napona zatezanja, na čijoj upotrobi Bay /10-11/ mnogo insistira, uopšte nije potrebna u zidnim nosačima.

Da bi izbegao lokalna razaranja oslonačkih zona, S c hu t t /120/ je ispitivao jednorasponske nosače, koji su imali oslonačka ojačanja po celoj visini u vidu malih poprečnih platana, sl. 1.3, čime se, u znatnoj meri, približio dispoziciji nosaća, često primenjivanoj u inženjerskoj praksi. Pri tome, on je konstatovao da dimenzionisanje nosača i "vodjenje" armature po preporukama Bay-a /10/ daje veoma različite koeficijente sigurnosti protiv loma za nosače opterećene po gornjoj ivici i nosače kod kojih se opterećenje "veša" o donju ivicu. Dok je za prvu grupu nosača ovaj koeficijent iznosio 2 do 3, dotle je u drugoj grupi bio ispod 2. Pažljivom analizom dobijenih rezultata, takodje se može zaključiti da je ovaj koeficijent bio veći kodonih nosača koji su imali dva puta veću visinu od raspona, nego kod nosača visine jednake rasponu. To znači da oslonačka ojačanja, u vi-

7

sl. 1.3 Zidni nosač sa obešenim opterećenjem Schütt-ov program ispitivanja [120] a) armatura b) izgled nosača posle loma du poprečnih platana, utiču na stanje napona i deformacija,odnosno na stanje loma u ispitivanom zidnom nosaču. Nažalost, ni ovde nisu mere-<mark>na naprezanja u armaturi</mark> i betonu, pa stvarno stanje napona i deformacija ostaje nepoznato, kako u predprslinskom stanju, tako i u stanju obrazovanja i razvoja prslinasve do loma nosača. Inače, lom nosača, opterećenih po gornjoj ivici, nastupio je iznenada.pojavom gotovo vertikalne

prsline, locirane neposredno uz oslonačko platno, dok je lom nosača sa obešenim opterećenjem nastupio otvaranjem "zjapeće" pukotine na mesta završetka veoma kratke vertikalne armature.

S c h u t t - u pripada zasluga, ne samo zbog toga što je prvi ukazao na nedostatke do tada primenjivanih Bay-evih preporuka, već i zbog toga što je bio prvi koji je ukazao na sasvim različito ponašanje nosača, u zavisnosti da li opterećenje deluje po gornjoj ili donjoj ivici. Osim toga, on je, na bazi svojih ogleda, predložio obrasce za dimenzionisanje ovih nosača.

N y l a n d e r /101/ je prvi istraživao ponašanje armiranobetonskih zidnih nosača na dva polja. On je, u svojim istraživanjima, opterećenje loma doveo u vezu sa visinskim položajem "negativne" armature iznad srednjeg oslonca. Ispitivani nosači I grupe - sa armaturom, postavljenom neposredno uz gornju ivicu, imali su veću nosivost za 10-15% od nosača II grupe, kod kojih je armatura istog preseka bila postavljena mnogo niže - u vežište dijagrama sila zatezanja, odredjenog po Matematičkoj teoriji elastičnosti (sl. 1.4). Pri tome je, u predprslinskom stanju, održavajući sva tri oslonca na istoj visini, izmerena reakcija srednjeg oslonca, za obe grupe nosača, iznosila oko 54% od ukupno nanetog opterećenja, koliko se dobija i po Teoriji elastičnosti.

sl. 1.4 Nylander-ovi kontinualni zidni nosači [101]

Medjutim, pri daljem povećanju opterećenja, sa razvojem prslina, kod nosača I grupe, ovaj procenat je rastao, dok je kod II grupe blago opadao. U stanju neposredno pred lom, iznosio je 62% i 51%, respektivno. Dakle, intenzivnim razvojem prslina, nosači I grupe poprimili su oslonački ko ntinuitet linijskih nosača usled znatnog povećanja kraka unutrašnjih sila, dok su no-

sači II grupe skoro potpuno izgubili kontinuitet i tako prešli u sistem slobodno oslonjenih zidnih nosača.

Rezultati Nylander-ovih ogleda iz I grupe nosača našli su primenu u Francuskim propisima iz 1952. godine, a sa malim izmenama, sadržani su i u novim propisima /110/ sve do danas. Poznato je da se, prema ovim propisima, "negativna" armatura postavlja uz gornju ivicu nosača bez obzira na odnos visine prema rasponu nosača. Ovde treba reći da se to ne slaže sa preporukama Leonhardt-a /81, 83/, prema kojima se težište "negativne" armature poklapa sa rezultantom zatežućih sila, pretpostavljajući elastična svojstva materijala. Interesantno je da su Francuzi, na osnovu rezultata ogleda Nylander-a /101/, izvršili generalizaciju problema na sve kontinualne zidne nosače, mada su ova ispitivanja sadržavala samo po dva nosača iz svake grupe, visine jednake rasponu, a opterećenje koncentrisanim silama delovalo je po gornjoj ivici nosača u trećinama raspona, sl.1.4.

Program ispitivanja G o d y c k o g /35, 37/ je bio vrlo sličan onome koga je svojevremeno sproveo Schütt /120/, pa su, uglavnom, njegovim ispitivanjem, potvrdjeni oni zaključci do kojih je i sam Schütt došao. Jedino, za razliku od Schütt-a, Godycki je vršio oglede na kontinualnim nosačima sa dva polja, opterećenih jednakopodeljenim opterećenjem po gornjoj ivici. Pri tome je dobijeno da je nosač, armiran približno po trajektorija-

8

ma glavnih napona zatezanja, imao za oko 40% veće opterećenje loma nego nosač sa odgovarajućom ortogonalnom armaturom. Merenjem napona ustanovljeno je da je vertikalna armatura, postavljena u okolini oslonačkih zona, bila vrlo neefikasna; stalno je bila pritisnuta. Medjutim, lom oba nosača nastupio je na mestu spoja zidnog nosača i srednjeg oslonačkog stuba, koji se produžavao po celoj visini zida.

A l i k a 5 /7/, je istražujući ponašanje zidnih nosača pod delovanjem koncentrisanog opterećenja, unetog u nosač preko vertikalnog rebra, sl. 1.5, konstatovao da se prve prsline, kvazi vertikalne, pojavljuju neposredno oko ovoga rebra pri sili

P≠0,5 P_l (P - sila loma). Pri sili P≠3/4 P pojavile su se kose prsline koje su se, sa daljim povećanjem opterećenja, naglo širile. Lom svih ispitivanih nosača nastao je, ili usled naglog otvaranja kosih pukotina ili drob-

72

sl.1.5 Jedan od zidnih nosača koje je ispitivao Atikas [7] a) Nosač posle loma b) Pretpostavljeni raspored normalnih napona po visini preseka

ljenjem betona u trakama, razdvojenim kosim prslinama u blizini oslonačkih zona. U prvom slučaju bila je dostignuta granica tečenja u čeliku ortogonalno postavljene armature, dok je u drugom slučaju lom nastupio dostizanjem čvrstoće betona pri pritisku u betonskim trakama.

Alikas je predložio i obrasce za proračun ovih nosača po teoriji granične nosivosti. Pri tome, on pretpostavlja da je napon u čeliku horizontalne armature, u preseku maksimalnog momenta savijanja, dostigao granicu tečenja u donjoj polovini zategnutog preseka nosača, a u gornjoj polovini se linearno smanjuje sve do neutralne ose, sl. 1.5b, dok je ravnomerno rasporedjeni napon u betonu po visini x jednak čvrstoći betona na priti sak pri savijanju. On predlaže da se za prijem glavnih napona za tezanja, 60% osnovne armature za savijanje iz polja koso povije iznad oslonaca. Medjutim, pri tome on ne pretpostavlja mogućnost

dostizanja loma usled iscrpljenja čvrstoće betona u nagnutim betonskim trakama, mada je drobljenje betona, baš u tim trakama, bilo najčešći uzrok loma ovih nosača. To može dovesti do toga da stvarni koeficijent sigurnosti protiv loma bude manji od onoga koji se dobija računskim putem u preseku sa maksimalnim momentom savijanja. Osim toga, znatno reduciranje armature za savijanje duž nosača usled kosog povijanja ove armature iznad oslonaca može da izazove lom nosača i znatno pre dostizanja stanja granične nosivosti u srednjem preseku nosača. Naime, prema ispitivanjima Leonhardt-a i Walther-a /81-83/, granična nosivost zidnih nosača je veća ako se ukupna armatura za savijanje provede pravo iznad oslonaca, nego ako se jedan deo ove armature koso povije iznad oslonaca. Interesantno je spomenuti da je Alikas, u svim ispitivanim zidnim nosačima, armaturu za savijanje vodio pravo od jednog do drugog oslonca, a da je nakon toga predložio da se oví nosači izvode sa povijenom armaturom iznad oslonaca, o čijem ponašanju nema potvrdu u ogledu.

10 -

Ogledi, koje su sproveli Leonhardt i Walt h e r /81, 83/, spadaju u najznačajnija istraživanja ponašanja armiranobetonskih zidnih nosača pod delovanjem kratkotrajnog statičkog opterećenja, kako za stanje pre pojave prslina (faza I), tako i za stanje posle otvaranja prslina (faza II) - sve do iscrpljenja granične nosivosti. Ova ispitivanja se odlikuju široko primenjenom tehnikom merenja deformacija, odnosno napona u armaturi i betonu, ugiba i širine prslina, što je u znatnoj meri, nedostajalo u prethodno analiziranim ogledima. Oni su, na osnovu dobijenih rezultata, mahom svojih ogleda, dali i uputstva za konstruisanje i dimenzionisanje zidnih nosača, koja su, sa manjim izmenama i dopunama, prihvaćena od strane Evropskog komiteta za beton u vidu preporuka /16/. Ispitivanja su obuhvatila davet zidnih nosača sa jednim poljem, dva zidna nosača sa dva polja i dva specijalno konstruisana sistema zidnih nosača sa posrednim 👘 prenošenjem opterećenja.

Zidni nosači sa jednim poljem su bili kvadratnog oblika; pet ih je hilo opterećeno po gornjoj, a četiri po donjoj strani (sl. 1.6). Aproksimacija jednako podeljenog opterećenja izvršena je pomoću ćetiri koncentrisane sile. Varirani su oblik i površina preseka glavne (donje) armature.^{*)} Pri tome su autori došli do sledećih zaključaka:

 Kod dobrog ankerovanja i kontinualno sprovedene glavne (donje) armature,od jednog do drugog oslonca, nije potrebna armatura za prijem glavnih napona zatezanja.

 Glavna armatura je znatno manje napregnuta nego što bi se očekivalo po Matematičkoj teoriji elastičnosti.

3. Sila zatezanja u glavnoj armaturi, u naponskoj fazi II, je 'oro konstantna duž raspona nosača, što znači da je prisutan efekat lučnog dejstva nosača.

4. Glavni uzrok loma nosača, kod dovoljno jake glavne armature, je dostizanje granične vrednosti napona pritiska u nagnutim trakama luka (podupirala), koji se formira u isprskalom zidnom nosaču.

sl. 1.6 Zidni nosač posle razaranja betona u području levog ostonca. E81-833

Treba napomenuti da su Leonhardt i Walhter ispitivali ponašanje zidnih nosača koji nisu imali pojačanja u području oslonaca. Od devet nosača sa jednim poljem, samo jedan od njih je imao oslonačka pojačanja u donjoj trećini visine nosača i to u vidu kratkog zakošenog stubića. Ovakvi školski primeri nosača, koji su bili vrlo slični onima iz programa ispitivanja Klingroth-a /62/, vrlo retko se susreću u praksi, pa se zaključci, vezani za ponašanje ovih

nosača, ne mogu uopštavati i na nosače sa drugim uslovima oslanjanja. U praksi se ohično projektuju zidni nosači oslonjeni na stubove ili poprečne zidove po celoj vi ini ili delimično - do neke visine zidnog nosača. Pri takvoj dispoziciji nosača znatan deo spoljašnjeg opterećenja se "uliva" u oslonačka pojačanja još u gornjim delovima nosača /4/. Na taj način, donji delovi nosača su manje napregnuti u poredjenju sa nosačima neojačanih oslonačkih preseka. Stoga, u ovim nosačima, stanje loma nije karakterisano samo iscrpljenjem čvrstoće betona na pritisak /81/ već su uzroci loma i druge prirode /63, 109, 120/. Zato generalizacija rezultata ovih ispitivanja na sve nosače, učinjena od strane Leophardt-a

11 -

i Walther-a, ne može biti opravdana. Osim toga, njihova ispitivanja su obuhvatala samo one nosače čija je dužina L bila jednaka visini nosača H. Ipak, o ponašanju nosača čija je dužina različita od visine ($L \ge H$) može se rasudjivati tek posle sprovedenih ogleda i na takvim nosačima.

P a i v a i S i e s s /1 8/ su istraživali ponašanje nosača koji čine prelaz od linijskih ka zidnim (l/H=2-6), varirajući odnos raspona smicanja a " i visine H, poprečni presek uzengija i kvalitet betona, uz dosta jaku glavnu-donju armaturu, kako bi se izbegao lom usled "savijanja" nosača. Poprečni presek svih ispitivanih nosača je bio konstantan, a opterećenje je delovalo u trećinama raspona po gornjoj strani nosača, sl. 1.7a.

- sl.1.7 Ispitivanje Paive i Siess-a [108] a) Karta" prslina b) Napon 6ª duž glavne armature Fa
 - c) Dijagram $a/H P_L / P_{pr}$

Ogledi su pokazali da su uzengije bile praktično bez uticaja, kako na veličinu sile P_{pr}, pri kojoj se pojavljuje prva kosa prslina, tako i na veličinu sile 🖁 pri kojoj nastaje lom nosača. Prisustvo uzengija je delovalo samo "umirujuće" na deformacije nosača. Takodje se pokazalo da nosači, po otvaranju kosih prslina, prelaze u novi sistem - luk sa zategom, sl. 1.7b. Zato je,prema mišljenju ovih istraživača, veoma važno da glavna-donja armatura, konstantnog preseka duž celog raspona, bude veoma dobro ankerovana na krajevima nosača. Za razliku od linijskih nosača, ovde je dobijeno da se granična nosivost ovih nosača ne iscrpljuje pri opterećenju koje odgovara pojavi prvih kosih prslina već pri znatno većem opterećenju. Pokazalo se da je opterećenje loma funkcija odnosa a/H (sl.1.7c) i

kvaliteta betona. Inače, lom ispitivanih nosača nastupio je razaranjem betona u nagnutim trakama usled toga što su glavni naponi pritiska dostigli graničnu vrednost; dakle, došlo je do loma us~

- 12 -

led tzv. "dijagonalnog" pritiska.

Ramakrishnan iAnanthanaraya n a /109/ su vršili oglede na slobodno oslonjenim jednorasponskim zidnim nosačima odnosa 0,5 < H/l < 1,0 i to pod delovanjem koncentrisanog i jednakopodeljenog opterećenja, nanetog po gornjoj ivici nosača, sl. 1.8. Pri tome su došli do zaključka 🚛 je na najvećem broju nosača, granično stanje loma dostignuto usled prekoračenja granične vrednosti "dijagonalnog zatezanja 👘 usled dostignute granične vrednosti napona zatezanja. Lom nosača usled "dijagonalnog" pritiska nastupio je kod svega 3 od 26 ukupno ispitivanih nosača.

= 13 =

Na osnovu svojih ogleda, oni predlažu i obrazac za odredjivanje ukupne sile loma usled "dijagonalnog" zatezanja:

 $gde su: R = 2k c/3z \delta H$

k - koeficijent "cepanja"

c/3, - čvrstoća na zatezanje cilindra po izvodnici

S.H - dimenzije poprečnog preseka zidnog nosača

Pri tome, oni zanemaruju doprinos armature na veličinu sile loma. Medjutim, autori radova /108, 63, 66/ odredjuju ovu silu u funkciji ukupne armature (uključujući tu i glavnu-donju armaturu) i ugla pod kojim ona preseca dijagonalnu - kosu prslinu. Ogledi ovih autora su potvrdili da doprinos armature veličini sile loma može biti vrlo značajan.

K. F. K o n g je, u poslednjih nekoliko godina, zajedno sa svojim saradnicima, izvršio niz ogleda na armiranobetonskim zidnim nosačima na Univerzitetu u Nottingham-u /63-68/, istražujući uticaj različitih tipova armature (po količini i položaju), na stanje prslina, ugiba i loma nosača. Nosači su bili sa jedním poljem, opterećení sa dve koncentrisane sile u trećinama raspona, sl. 1.8. Rasponlje bio konstantanja visinalje bila promenljiva (1/3[≤H≤L). Glavna - donja armatura je bila odredjena iz uslova da ne nastane lom usled savijanja, već usled dostizanja graničnih vrednosti glavnih napona u "rasponu smicanja a".

Na osnovu ovih istraživanja može se zaključiti sledeće: 1. Koso postavljena armatura (sl.1.8e) je najefikasniji tip armature za sve odnose H/L , naročito ako se postavi upravno na pravac koji spaja oslonac sa mestom dejstva bliže sile P,odnosno upravno na pravac pojave dijagonalne - kose prsline.

Ova armatura, u odnosu na druge primenjene tipove armiranja, daje najmanje ugibe i prsline, a najveću silu loma. Kod nosača većeg odnosa H/l, ona može i da odloži pojavu dijagonalne - kose prsline, sl. 1.9e.

st.1.8 Zidni nosači iz programa ispitivanja K.F. Kong-a i grupe suradnika [63-67]

2. Efikasnost drugih tipova armiranja u velikoj meri je zavisna od odnosa dimenzija nosača l/H i odnosa raspona smicanja a i visine nosača H. Za male odnose l/H i a/H efikasna je bila samo horizontalna armatura, smeštena na malom rastojanju, uz donju ivicu nosača, sl.1.9d. Za 1,5≤l/H≤3 podjednako je bila efikasna horizontalna i vertikalna armatura, dok su, za l/H≥3, vertikalne uzengije bile najefikasnije, sl.1.9a. Leonhardt i Walther /81/ su, istražujući ponašanje nosača, odnosa

\|/H≈1, preporučili primenu horizontalne armature na malom rastojanju (neposredno iznad glavne - donje armature) u cilju "umirenja" prslina i to za sve nosače bez obzira na odnose \|/H. Medjutim, prikazani ogledi Kon, i saradnika pokazuju da je takva armatura efikasna samo kod vrlo visokih zidnih nosača.

3. Lom gotovo svih ispitivanih nosača nastao je onda kada se dijayonalna - kosa prslina, koja se prvo pojavila u srednjoj trećini visine, produžila prema mestu dejstva napadne i oslonačke sile. Prema mišljenju Kong-a, lom betona nad osloncima, koji se pojavio u nekoliko slučajeva bio je samo sekundarnog karaktera, jer je ovome prethodio lom usled "dijagonalnog" zatezanja. Samo nekoliko nosača dovedeno je u stanje loma

- 14 -

- 15 -

usled "dijagonalnog" pritiska.

sl.19 Zidni nosači posle toma. Punije linije označavaju linije toma. Ovakav način loma zidnih nosača dobili su Ramakrishman i Ananthanarayana. Medjutim, Leonhardt i Walther i Raive i Siess su, u svojim ogledima, konstatovali da se lom nosača dešavao isključi-

čenja granične vrednosti "dijagonalnog" pritiska u betonskim trakama. Najverovatnije da je različita širina oslonaca uticala na formiranje različitih tipova loma ovih nosača. Naime, može se realno stanje napona u nosaču, neposredno pred pojavu dijagonalnih - kosih prslina, da aproksimira sa jednim statički mogućim poljem napona, prikazanim na sl.1.10a, a po otvaranju ovih prslina - sa novim statički mogućim poljem napona-lukom sa zategom, prikazanim na sl.1.10b. Veličina sile loma, uz dovoljno jaku zategu, zavisiće, pre svega, od dimenzija poprečnog preseka tako formiranog luka, odnosno od dimenzija lokalno opterećene površine (oslonci), kao i od kvaliteta hetona. Ako su ove vrednosti male može doći do loma po betonu, neposredno pri prelasku iz prvog u drugi statički sistem. Na ovaj način došlo je do loma onih nosača koje su istraživali Kong i Ramakrishmana - Anantgabarayana. Medjutim, kada su dimenzije preseka luka (oslonaca) relativno velike, a kvalitet betona dobar, tada će opterećenje, pri kome nastaje lom nosača, biti znatno veće od onoga pri kome nastaju kose prsline. U ovu grupu mogu da se uvrste zidni nosači, koje su ispitivali Leonhardt-Walther i Paiva-Siess.

1.2 Zaključak

Prethodna analiza pokaznie da su rezultati, do kojih su došli pojedini istraživači, eksperimentalno ispitujući ponašanje armiranohetonskih zidnih nosača, posebno u fazi ohrazovanja i razvoja prslina, kao i u fazi koja neposredno prethodi lomu nosača, bili veoma korisni i vrlo značajni. Pre svega, oni ukazuju da se stanje napona i deformacija u ovim fazama, bitno razlikuje od stanje koje se dobija primenom Matematičke teorije elastičnosti i prema tome, da se dimenzionisanje i oblikovanje armature zidnih nosača treha sprovoditi i u skladu sa rezultatima ovih istraživanja. Osim toga, uočeno je da se primenom dobro prostudiranih konstruktivnih rešenja, posebno u rasporedu armature, može bitno uticati na razvoj prslina, izbegavanje lokalnih lomova, i što je najvažnije, na znatno povećanje nosivosti zidnih nosača /63-66, 81/. Ipak, i pored veoma dragocenih podataka, koji su dobijeni na sproveđenim ogledima, na neka pitanja nisu dobijeni

s'.110 Statički moguća polja napona.

jedinstveni odgovori. Tako, na primer, veoma su podeljena mišljenja o tome da li uopšte treba "statička" armatura za prijem glavnih napona zatezanja. Dok autori radova /62/, /81-83/ poriču njenu neophodnost, dotle autori /24/, /64-67/ zahtevaju njeno prisustvo. Takodje nema jedinstvenih stavova ni o načinu "vodjenja" glavne armature (armature za savijanje) duž nosača, kao ni o uzrocima loma nosača, zatim o ulozi pojedinih načina armiranja na stanje prslina i deformacija nosača (vidi radove /16/, /64/, /81/ /108/, /110/ itd). Nije istražen ni uticaj kvaliteta betona na veličine graničnih stanja, posebno stanja loma. Osim toga, nedovoljno je istražen i uticaj stepena oslonačkih pojačanja na stanje napona i deformacija u zidnim nosačima, čak i za elastičan, homogen i izotropan materijal, a pogotovu za elasto-plastični a~ nizotropni materijal, kakvim se armirani beton može smatrati u procesu razvoja prslina. Postavlja se pitanje da li je opravdano da se, za nosače visine veće od raspona l , zanemari uticaj dela nosača, koji se nalazi iznad visine jednake rasponu, na stanje

- 16-

napona i deformacija zidnog nosača. Podsećamo, da u predlozima za odredjivanje stanja napona, niz autora (/11/, /64/, /66/, /81/) kao i ustanove propisa i preporuka /16/, /11/ ne vođe računa o tome uticaju. Medjutim, u radovima /4/, /104/, /104/, /112/ pokazano je da taj uticaj može biti od velikog značaja na veličinu i raspored napona i deformacija kod nosača sa pojačanim oslonačkim presecima.

Nameće se opšti zaključak da nejedinstvenost u sprovodjenju ogleda, od jednog do drugog istraživača, kao i parcijalni pristup rešenju problema zidnih nosača u posleprslinskoj fazi stvara velike teškoće u generalizaciji eksperimentalnih rezultata i stvaranju jedne racionalne teorije za njihov proračun. Osim toga, kako je već naglašeno, mnoga pitanja vezana za ponašanje ovih nosača su ostala i dalje nerazjašnjena, a neke važne oblasti nisu ni pokrivene" eksperímentalnim podacima. Stoga se autor ovoga rada odlučio da izvede sopstvene oglede u želji da doprinese boljem sagledavanju ovih i nekih drugih pitanja od interesa za stvarno poznavanje ponasanja zidnih nosača, naročito u procesu razvoja prslina i u fazi koja prethodi neposrednom lomu nosača. Jer, poznavanje graničnih stanja, posebno stanja loma, omogućuje stvaranje racionalne teorije graničnih stanja, koje u odnosu na teoriju dopuštenih napona mnogo više uvažava stvarna ponašanja konstrukcije, a osim toga, omogućuje i znatne uštede u koštanju ovih konstrukcija.

= 17 =

2. SOPSTVENA EKSPERIMENTALNA ISTRAŽIVANJA PONAŠANJA ARMIRANOBETONSKIH ZIDNIH NOSAČA

2.1. Program ispitivanja

Na osnovu sprovedene analize rezultata dosadašnjih značajnijih eksperimentalnih istraživanja o ponašanju armiranobetonskih zidnih nosača, i, u vezi sa tim, datih zaključaka u poglavlju 1, autor rada se odlučio na izvodjenje sopstvenih ogleda.

Program ispitivanja obuhvata 30 armiranobetonskih zidnih nosača; od toga 19 sa opterećenjem po gornjoj, i 11 po donjoj ivici nosača. Osim toga, ispitano je i 8 nearmiranih betons ih zidnih nosača, opterećenih po gornjoj ivici nosača.

Varirani su sledeći parametri:

- odnos visine prema rasponu zidnog nosača
- stepen oslonačkih pojačanja
- procenat armature za savijanje (glavne armature)
- način "vodjenja" glavne armature duž raspona (u punom iznosu od jednog do drugog oslonca i prema dijagramu sila zatezanja, odredjenom po teoriji elastičnosti)
- način ankerovanja glavne armature
- površina preseka, položaj i vrsta armature za prijem sila zatezanja od glavnih napona zatezanja (kosa gvoždja, vertikalne, horizontalne ili kose uzengije ili njihova kombinacija)
- procent i dužina vertikalne armature za direktno prihvatanje obešenog opterećenja o donju ivicu zidnog nosača, i
- kvalitet materijala betona i čelika.

Pri promeni prethodnih parametara, odredjene veličine su bile konstantne. Tako, na primer, pri promeni odnosa visine prema rasponu nosača, glavna armatura je bila konstantna, dok je pri konstantnom odnosu visine prema rasponu, varirana površina glavne armature, njen položaj i način "vodjenja" duž raspona nosača. Pored toga, za kvadratne zidne nosače varirani su stepen oslonačkih pojačanja, armatura za osiguranje nosača od glavnih napona zatezanja itd. U narednim tačkama (2.1.1 - 2.1.4) ovim pitanjima je posvećeno mnogo više pažnje.

Ogledi su sprovedeni na zidnim nosačima, slobodno oslonjenim na dva oslonca. Izabrani su horizontalno pomerljivi oslonci radi dobijanja najnepovoljnijih uslova za stanje napona i deformacija zidnog nosača. Dimenzije zidnih nosača su odabrane tako da obezbedjuju nosač od izbočavanja pri svim fazama opterećenja, uključujući i opterećenje pri kome nastaje lom nosača.

2.1.1. Geometrijske karakteristike zidnih nosača

2.1.1.1. Dimenzije nosača

Svi nosači su bili jednorasponski, jednakog raspona 1 = 7 cm, jednake dužine L = 80 cm i jednake debljine 2 = 8 cm (sl.2.1 i 2.2). Visina II je bila promenljiva i iznosila je 48cm, 64cm, 80 cm i 120 cm, čime su dobijena četiri odnosa visine prema dužini zidnog nosača H/L = 0,6; 0,8; 1,0 i 1,50. Time su, programom ispitivanja, obuhvaćeni i nosači sa karakterističnim odnosima dimenzija H/L, naročito oni u kojih je odnos H/L \ddagger 1, čije je ponašanje, kako je zaključeno u poglavlju 1, još uvek nedovoljno istrazend. Sirina oslanjanja c iznosila je za sve nosače, c = L/10 = 8 cm.

Da bi se izbegli prerani lomovi nosača, prouzrokovani lokalnim razaranjem oslonačkih zona, tako karakterističnim u ispitivanjima Klingroth-a /62/, Leonthardt-a i Walther-a /81/ i dr, oslonački preseci su ojačanj ili stubovima ili poprečnim zidovima, konstantnog poprečnog preseka po celoj visini zidnog nosača. Time se, ispitivani zidni nosač po obliku, u znatnoj meri, približio zidnom nosaču, koji se najčešće pojavljuje u inženjerskoj praksi. Samo su dva ispitivana nosača (ZN B1 i B2) projektovana bez ovih pojulunja (b – b = 8 cm). Tri nosača, ZN T_1 , T_2 T3 su imali poprečne zidove dužine b = L = 80 cm. Ostali nosači su projektovani i izvedeni sa oslonačkim stubovima, preseka b/c = 18/8 (cm/cm). Na taj način, uticaj stepena oslonačkih pojačanja na promenu stanja napona i deformacija zidnog nosača, narocito na promenu "karte" prslina, figure loma, vrste loma, veličine sile loma i dr, po prvi put je,ovde, koliko je u literaturi poznato, eksperimentalno istraživan. Imajući u vidu rezultate Leoríjs ih istraživanja autora ovoga rada, saopštene u radu /4/, došlo se do zaključka da se, pri dužini poprečnog zida b>L, stanje napona i deformacija zidnog nosača neznatno menja u odnosu na stanje pri b - L. Stoga se u programu ispitivanja nisu našli i nosači u kojih je b>L.

= 19 =

Geometrijske karakteristike ispitivanih zidnih nosača date su na sl. 2.1 i 2.2 i u tablicama 2.1, 2.2 i 2.3.

Pri izboru apsolutnih dimenzija nosača, pošlo se od činjenice da se, sa usvojenim dimenzijama, uz pravilan izbor granulometrijske kompozicije (posebno maksimalnog zrna agregata zbog pojave efekta zida), profila armature i njenog efikasnog sidrenja, kao i uz pravilno odabranu tehniku merenja deformacija nosača, mogu dobiti isto tako vredni rezultati ispitivanja, kao što bi se dobili pri ispitivanju nosača znatno većih apsolutnih dimenzija. U literaturi, koliko je poznato, ne postoje radovi koji analiziraju uticaj veličine apsolutnih dimenzija zidnih nosača na "kartu" prslina, veličinu sile loma i sl. Medjutim, iz istraživanja više autora, anali-

ziranih u radu /30/, može se zaključiti da se, kod linijskih armiranobetonskih nosača, rezultati ispitivanja na nosačima manjih dimenzija, mogu generalisati na odgovarajuće nosače u prirodnoj veličini, samo ako visina ispitivanih nosača iznosi najmanje 30cm.

2.1.1.2. Armatura nosača

2.1.1.2.1. Armatura za savijanje - glavna armatura

Armatura za prijem sila zatezanja od savijanja - glavna armatura-zidnih nosača sastojala se iz 4, 6 ili 8 glatkih ši pki Ø6 ili Ø8, izuzev nosača B₂ i 2, koji su bili armirani sa po jednim specijalno obradjenim profilom Ø 22, iz kojeg je, mašinskim putem, uklonjen središni deo preseka veličine 12 mm x 12 mm radi postavljanja mernih traka na medjusobno bliskom rstojanju. Procenat armiranja se kretao u vrlo širokim granicama, od 0,118% do 0,62%. To je omogućilo da se, u zavisnosti od ovoga procerța

- 20 -

					GLAVNA ARMATURA			A		BET	ON							
	ZN	HL	H (cm)	b (cm)	PROFILI	POVRŠINA Fa (cm)	Are FE 100 (*/s)	ARMATURA ZA PRIJEM GLAVNIH NAPONA ZATEZA	ČVRSTOĆA KOCKE Bk (kp/cm)	ČVRSTOĆA PRIZME Bpr. (kp/cm)	ČVRSTOĆA PRI ZA- TEZA. CEPANJEM c (3z	JEDNOAKSUALNA ČVRSTOĆA PRI ZATEZANJU DIZ						
	1a	0,6	48	18	468	2,00	0,521		3/1	297	26	25						
	1ь	0,6	48	18	8 6	2,26	0, 590		341	201	20	20						
	I	0,8	64	18	448	2,00	0,391		25.0	206	26	27						
PANEL,	П	0,8	64	18	8¢6	2,26	0,441		550	290	20	- 1						
	В	1,0	80	8	448	2,00	0,313		369	260	260	260	260	260	260	207	27	20
T I I I I I I I I I I I I I I I I I I I	B	1,0	80	8	1@22	2,36	0,369	± + 4/7,5		307	21	20						
	1	1,0	60	18	4φ6	1,13	0,177		360	301	31	27						
8.1. 64 1.8 L = 80cm	2	1,0	80	18	1@22	2,36	0,369	± φ4/7,5	354	279	28	27						
E	5	1,0	80	18	408	2,00	0,313	kose uzengije 2U. p. 6	ngije 6 p./ 0	2/0	2/0	202	20	2.2				
Π.ζ	6	1,0	80	18	808	4,00	0,626	kose uzengije 2Uφ 6		292	20	23						
	7	1,0	80	18	4 \$ 8	2,00	0,313	postoji	255	202	25	24						
-[14	8	1,0	80	18	4φ8	2,00	0,313	kosa gvožđa 2φ8	267	67 217	27	21						
a – a	80	1,0	80	18	408	2,00	0,313				24	ΖΙ						
	9	1,0	80	18	6¢8	3,00	0,469		243	208	22	24						
	T	1,0	80	80	4 0 8	2,00	0,313		347	276	28	24						
	T ₂	1,0	80	80	4 φ θ	2,00	0,313		357	282	23	23						
	T ₃	1,0	80	80	408	2,00	0,313		363	290	28	25						
	A	1,5	120	18	4 0 8	2,00	0,208		368 30 350 29	302	24	21						
	A ₂	1,5	120	18	448	1,13	0,118			293	21 2	24						

P. P.Des

tablica 2.1. Podaci o geometriji, armaturi i merenim čvrstoćama betona za zidne nosače opterećene po gornjoj strani zida.

*) Svi zidni nosači, izuzev ZN 7, imali su horizontalnu i vertikalnu konstruktivnu armaturu ± φ 4/15.

s.z.z Geometrija zidnih nosača sa opterećenjem po donjoj strani. prati ponašanje ispitivanih zidnih nosača, kako u fazi pre pojave prslina tako i u svim fazama razvoja prslina, a posebno u fazi koja neposredno prethodi lomu nosača.

Glavna armatura je,duž čitavog raspona, bila konstantnog poprečnog preseka, izuzev ZN 8 i 8a gde je "vodjenje" ove armature,duž raspona,izvršeno prema liniji zatezućih sila, odredjenoj pomoću teorije elastičnosti, sl.2.4.

		GLA ARMA		GLAVNA ARMATURA			ANJE TIKA-	(EH (cm)	(44)		BETO	N	
	, Z N	H	H	PROF LI	POVRŠINA Fa (cm ⁵)	$\left \left\langle \mu z - \frac{F_{\infty}}{\Delta H} \right \left DD \right \left\langle T \right\rangle \right\rangle$	ARMATURA ZA VES. OPTEREĆENJA - VER LNE UZENGIJE F _O V	RAZMAK VERTIKALN UZENGIJA E	$\frac{z \cdot t_{aA}^{(1)}}{z} = 100$	čvrstoća kocke Bk (kp/cm ²)	ČVRSTOĆA PRIZME (Bpr (kp/cm)	CVRSTOCA PRI ZAT- EZANJU CILINDRA CEPANJEM c13z	JEDNOAKSIJAL, M
	D1	1:0	80	4 \ 6	1,13	0,177	6U48	9,6	1,302	348	272	27	25
	Dz	1,0	80	4φ6	1,13	0,177	8Uø 8	7,4	1,689	372	288	28	26
	D3	1,0	80	406	1,13	0,177	8U¢8	7,4	1,689	372	288	28	26
	$[0_{42},)$	1,0	80	446	1,1.3	0,177	6IJ 4 8	9,6	1302	348	272	27	25
The second se	Do	1,0	80	6φ6	1,70	0,265	16Uø8	3,9	3,205	336	263	26	23
8 ++ 64	K ₁	1,0	80	446	1,13	0,177	e uz	110		358	281	27	25
L = 80 cm _L	K_2	1,0	80	6φ6	1,70	0,265	Kos Uþ 8	110		358	281	27	25
	D ₆		64	406	1,13	0,221	8Uø8	7,4	1,689	347	286	27	24
	D ₇	0,6	48	6¢6	1,70	0,442	8Uø8	7,4	1,689	329	286	26	21
D - D	V_{I}	1,5	120	406	1,13	0,118	8U48	7,4	1,689	359	277	25	24
	V2	1,5	120	4 \$ 6	1,13	0,118	80¢8	7,4	1,689	343	287	26	23

tablica 2.2. Podaci o geometriji, armaturi i merenim mehaničkim karakteristikama betona za zidne nosače opterećene po donjoj strani zida.

51 - 51

52

1 1 1 5 7 1 5

st. 2.3 Armatura zidnih nosača: 1a , 1b , 11 , 1, B₁, B₂₄245.

st.2,4 Armatura zidnih nosača: 6,7,8,80,9,Ti,T2 i Ta.

a a said are a su		x	Marge.		4			
	ΖN	HL	H (cm)	ČVRSTOĆA KOCKE /3k (kp/cm)	ČVRSTOĆA PRIZME Øpr (kp/cm ²)	ČVRSTOĆA PRI ZATE- ZANJU CEPANJEM _C G _Z	JEDNOAKSIJALNA ČVR- STOĆA PRI ZATEZ BZ	IZMERENA SILA LOM
P/2 $P/2$	Ţ	0,6	48	338	283	27	25	14,7
	II				200	21		13,7
	III	- 0,8	6/	357	205	28	26	24,4
	IV		04		200			25,8
	V	1,0	0.0	274	205	27	26	30,8
	VI		1,0	00	571	200	21	20
	VII	1,0	0.0	349	298	28	27	21,2
	VIII		00				21	18,8

x12.51 =

Tablica 2.3. Podaci o geometriji, čvrstoćama betona i silama loma za nearmirane zidne nosače opierećene po gornjoj strani zida.

Medju istraživačima vlada podeljeno mišljenje o tome kakav ie stvarni raspored zatežućih sila u glavnoj armaturi duž raspona. Prema nekim istraživačima, čije gledište zastupaju Bay /10, 11/ i Schütt /120/, predlaže se "vodjenje" ove armature duž raspona prema liniji zatežućih sila Z=M/z ade je M-momenat savijanja, a z-krak unutrašnjih sila, ko-

nstantan duž čitavog raspona. Ovo gledište je prihvaćeno i u francuskim propisima /110/, Medjutim, prema predlogu Leonhardt-Walther-a /81/, linija zatežućih sila nije afina liniji momenata savijanja, kako u predprslinskom (krak z se prema osloncima znatno smanjuje), tako i u stanju intenzivnog razvoja prslina, u kome se zidni nosač transformiše u lučni nosač sa zategom. Stoga oni predlažu da se ukupna glavna armatura vodi pravo od jednog do drugog oslonca, što je sadržano i u preporukama CEB-FIP /16/. Ogledi autora ovog rada, pored ostalog, imaju za cilj da utvrde stvarni raspored zatežućih sila duž čitavog raspona, naročito u

sl.2.5 Armatura zidnih nosača AriAz isprskalom nosaču, i time doprinesu

razrešavanju dileme oko ova dva napred izneta suprotna stava.

Sidrenje glavne armature izvršeno je pomoću horizontalnih kuka. Uobičajene kuke (u vertikalnoj ravni) nisu pogodne za zidne nosače, jer mogu da cepaju beton. To su pokazala i preliminarna ispitivanja autora ovoga rada na dva probna nosača. Sidrenje armature u zidnim nosačima B_2 i 2 izvršeno je pomoću zavarenih krstova, prema radu /72/.

2.1.1.2.2. Armatura za osiguranje zidnih nosača od glavnih napona zatezanja

Osim konstruktivne armature + $\emptyset 4/15$, sastavljene od sistema dvosečnih horizontalnih i vertikalnih uzengija, na jednom broju nosača postavljena je i posebna armatura za prijem sila zatezanja koje potiču od glavnih napona zatezanja. Za ZN 8 i 8a upotrebljena je kosa armatura, dobijena povijanjem dva profila $\emptyset 8$ iz gornjeg reda glavne armature, dok je za ZN 8 i 2 mreža postojeće ortogonalne armature u oslonačkim oblastima progušćena na $+\emptyset 4/7$,5 cm. Kose uzengije $\emptyset 6$ primenjene su kod zidnih nosaća ZN5, , D_4 i D_5 . Za ZN T_3 , u krajnjim četvrtima raspona, upotrebljen je sistem horizontalnih uzengija po čitavoj visini nosača na rastojanju od 4 odnosno 5 cm, sl.2.4. ZN 7 ima samo glavnu armaturu i armaturu u donjoj trećini oslonačkih stubova.

U vezi sa pitanjem efikasnosti armature za osiguranje zidnih nosača od glavnih napona zatezanja postoje različita mišljenja. Dok jedni autori ističu njenu neophodnost /6, 10, 11/, dotle je drugi smatraju suvišnom /81, 83/. Stoga se autor ovoga rada odlučio da ovu armaturu varira po više parametara (količina, položaj i vrsta), kako bi se, eksperimentalnim putem, utvrdilo da lj i u kojoj meri primenjeni načini armiranja utiču na stanje napona i deformacija, a posebno na granično stanje loma zidnih nosača.

2.1.1.2.3. <u>Armatura za neposredno prihvatanje</u> obešenog opterećenja

Za neposredno prihvatanje vertikalnog opterećenja, koje deluje po donjoj ivici nosača, predvidjene su dvosečne vertikalne uzengije UØN, (sl.2.6 i 2.7), čiji je broj, od nosača do nosača, bio promenljiv. Kod ZN D₁ i upotrebljeno je 6UØ8 na razmaku e = 9,6 cm, dok je kod nosača D₂ i bilo 8UØ8 (e=7,4 cm) Takodje i ZN D₅ (U/L = 0,8), D₂ (U/L=0,6), kao i ZN V₁ i V₂, u

sl.2.6 Armatura zidnih nosača, opterećenih po donjoj ivici.

1,5, armirani su sa 80Ø8, samo što se kod V_2 ova armatura produžavala od donje ivice nosača do visine jednake duzini nosača, dok se kod ostalih nosača prostirala sve gornje ivice, izuzev ZN D₆, gde je nekoliko krajnjih uzengija nesto ranije završeno. ZN armiran je sa 160Ø8 (e = 3,9cm).

roduzavanje uzengija preko čitave visine kod nosača V₁ imalo je za cilj da se eksperimentalno ispita da li, i za koliko se može povećati granična nosivost zidnog nosača odnosa mon na kvadratni zidni nosač (N=L). Osim toga, htelo da se uporede ponašanja visokih nosača (H>L) pri zličitim dužinama uzengija koje neposredno prihvataju obešeno mosače. I na kraju, trebalo je utvrditi da li i u Li, deo zidnog nosača, koji se nalazi iznad visine H'=L, sađejstvuje u radu nosača.

Imajuci u vidu usvojeni broj (rastojanje) uzengija, procenti armiranja iznose:1,302%; 1,689%; 2,451% i 3,205%. Ovako izbor procenta armiranja omogućuje da se, u ispitivanoj se-, lom pojed nosača postigne na jedan od sledećih načina:

*)

de 2tav

100 (°/•)

- dostizanjem granice tečenja u uzengijama (pri malim procentima armiranja)
- dostizanjem čvrstoće betona na pritisak (pri većim procentima armiranja)
- dostizanjem granice tečenja u glavnoj (donjoj) armaturi, i
- kombinacijama prethodnih slučajeva.

Nosači i K, armirani su sistemom ortogonalno postavljenih uzengija Ø8, nagnutih prema horizontali pod uglom od 45°, odnosno 135. Ustvari, ove uzengije čine mrežu armature čija su kvadratna okca imala stranicu od 11 cm.

Armatura kratkih elemenata, preko kojih se unosi obešeno opterećenje u zidni nosač, prikazana je na sl. 2.8. Ona je tako dimenzionisana da se, pri opterećenju koje izaziva lom ispitivanih zidnih nosača, napreže znatno ispod granice velikih izduženja.

- 28

st.2.8. Armatura zidnog nosača za prijem opterećenja po donjoj strani. 2.1.2. Materijali

2.1.2.1. Čelik

100

Dijagrami $\mathfrak{G}_{\mathfrak{a}} + \mathfrak{E}_{\mathfrak{a}}$ i karakteristične mehaničke osobine čelika upetrebljenih glatkih profila, date su na sl.2.9. U tablici su date srednje vrednosti granica \mathfrak{G}_{vi} , \mathfrak{G}_z i \mathscr{S}_{10} , kao rezultat ispitivanja na po 12 uzoraka. Pri tom su se pojedinačne vrednosti razlikovale od ovih za najviše 1 do 2%.

2.1.2.2. Beton

Agregat "Moravac" sastojao se iz četiri frakcije zrna: od 0 do

Ċ,

sl. 2.9. Dijagrami 6a-Ea upotrebljenih betonskih čelika
2 mm ..., 35% od 2 do 4 mm ... 10%, od 4 do 8 mm ..., 20% i od 8 do 15 mm ..., 35%.

Cement PC 15z 350 (Novi Popovac) imao je, posle 28 dana, otpornost na savijanje 59,2 kp/cm², a na pritisak 390 kp/cm². Upotrebileno je 350 kp cementa na m³ gotovog betona. Vodocementni faktor iznosio je 0,50, izuzev kod nosača ZN 7, 8, 8a i 9 gde je bio 0,55. Zapreminska težina betona iznosila je oko 2380kp/m³.

Zidni nosači su betonirani u vertikalnom položaju u a.uvu-oplati, napravljenom od specijalno impregniranih i presoa.u. drvenih tabli Bosanka" iz Blažuja. Beton je spravljan u me alici zapremine 125 litara, a ugradjivan je pomoću pervibratora sa iglom prečnika 25 mm.

Betoniranje i negovanje zidnih nosača i pratećih (kon" kao i njihovo ispitivanje izvršeno je u radnim rijama Instituta za ispitivanje materijala Gradjevinskog eogradu. Nosači i prateća tela su posle betoniranja tajali 24 časa u kalupima pri temperaturi (20+3)^OC, a zatim su vadjeni iz kalupa i pokrivani mokrim jutanim tkaninama i neprekileni do starosti 28 dana. Pod potpuno istim režimom negovana su prateća tela i zidni nosači.

s1.2.10. Podužne i poprečne dilatacije Eb u funkciji napona 6b

Iz svake serije betoniranja izdvajana su sledeća prateća tela: 3 kocke ivice 20 cm, 6 kocki ivica 10 cm, po 6 prizmi dimenzija 12 cm x 12 cm x 36 cm i 7,07 cm x 7,07 cm x 21 cm, 3 cilindra prečnika i visine 10 cm, i najzad, 3 cilindra prečnika 15 i visine 30 cm. Istovremeno, kada su ispitivani zidni no-

30 =

sači ispitivana su i prateća tela. Rezultati ispitivanja čvrstoća pri pritisku kocke $/3_k$, prizme $/3_{pt}$, kao i čvrstoća pri zatezanju cepanjem (cilindri Ø10/10) i pri jednoaksijalnom zatezanju (cilindri Ø15/30) dati su u tablicama 2.1, 2.2 i 2.3.

Srednje vrednosti rezultata ispitivanja čvrstoće na pritisak kocki i prizmi betona "a" u trenutku ispitivanja zidnih nosača iznosile su $\beta_{\rm k}$ = 354 kp/cm², odnosno $\beta_{\rm pr}$ = 289 kp/cm². Pri tome je srednje kvadratno odstupanje iznosilo X_s = 11kp/cm², a koeficijent varijacije C_v = 3%, što se, prema STANTOL VALKER-u i PARKES-u /96/ smatra kao veoma dobro kontrolisani laboratorijski ogled.

Kontrola kvaliteta ugradjenog betona, u samim zidnim nosačima, sprovedena je ispitivanjem ultrazvučnim impulsom. Ona je pokazala dobra slaganja sa rezultatima dobijenim na probnim telima.

Na sl.2.10 prikazana je zavisnost podužnih i poprečdilatacija $\mathcal{E}_{\rm b}$ u funkciji napona $\mathcal{G}_{\rm b}$ u betonu. Ona je odredjena na betonskim prizmama, dimenzija 12 cm x 12 cm x 36 cm.

Slika 2.11 prikazuje srednje vrednosti Poisson-ovog Ficijenta i modula deformacije E betona u funkciji odnosa

G_b / /3_{pr} U MB 250 bili su izveđeni ZN 7, 8, 8a i 9. Svi ostali nosači izveđeni su u MB 350.

sl.2.11. Zavisnost Poisson-ovog koeficijenta \sqrt{i} i modula deformacije E_b od odnosa G_b / β_{pr} za betone <u>a i b</u>.

- 31 -

2.1.3. Uredjaji za izvodjenje ogleda

Eksperimentalno ispitivanje ponašanja zidnih nosača je Inprevideno na specijalno - u tu svrhu - konstruisanim uredjajima.

Na sl. 2.12 prikazana je konstrukcija korišćenog uredjaja za apliciranje opterećenja po gornjoj ivici zidnog nosača (5). Uredjaj se sastoji iz dve vertikalne čelične zatege (1) pro-

sl.2.12 Uredjaj za apliciranje opterećenja po gornjoj strani zidnog nosača.

fila - 180 mm x 40 mm sa sistematizovanim otvorima prečnika 60mm i iz dva horizontalna čelična nosača (2) (2[300,2000) koji su

sl.2.12+13 Pogled na uredjaje za apliciranje opterećenja.

ojačani zavarenim podvezicama. Fiksiranje nosača (2) u željeni visinski položaj sprovedeno je pomoću čeličnih "trnova" Ø60mm Aproksimacija jednakopodeljenog opterećenja postignuta je upotrebom većeg broja hidrauličkih presa (3),napajanih istovremeno iz jedne pumpe, a postavljenih jedna uz drugu na gornju stranu zidnog nosača, na dužini L_a = 64 cm.

Na sl. 2.13 data je dispozicija uredjaja za apliciranje opterećenja po donjoj ivici zidnog nosača. Uredjaj se sastoji iz sistema vertikalnih čeličnih zatega (1) prečnika 36 mm i sistema horizontalnih čeličnih nosača (2) i (3). Zatege su provučene kroz otvore u konzolnim ispustima (7) zidnog nosača (6) i fiksirane zavrtnjevima. Princip rada je sledeći: pri stvaranju pritiska u hidrauličkim presama (5), unosi se sila u zatege (1), čime se, preko konzolnih ispusta (7), zidni nosač (6) opterećuje po donjoj ivici. Aproksimacija jednakopodeljenog opterećenja izvršena je pomoću ćetiri koncentrisane sile koje se, ustvari, na konzolne ispuste, prenose kao raspodeljeno opterećenje preko čeličnih pločica-podmetača dimenzija 120 mm x 120 mm x 30 mm.

sl.2.13 Uredjaj za apliciranje opterećenja po donjoj strani zidnog nosača.

2.1.4. Opterećenje

Opterećenje je statičkog karaktera, a nanošeno je u stepenima-fazama ou 1/8 do 1/10 opterećenja loma, što je odgo-

- 34 -

varalo prirastu sile od 5 do 10 Mp. Pri većim opterećenjima, naročito onim koja izazivaju izrazitija plastična ponašanja nosača, apliciranje opterećenja vršeno je u stepenima manjeg intenziteta, kako bi se omogućilo što vernije registrovanje pojava koje neposredno prethode samom lomu nosača. Vreme delovanja svake faze opterećenja iznosilo je od 45 do 60 minuta, koliko je bilo potrebno da se izvrši očitavanje instrumenata koji su bili postavljeni na zidnom nosaču za praćenje njegovog ponašanja. Prvo, takozvano "nulto" stanje vršeno je pri sili od 2 Mp da bi se izbegli "mrtvi" hodovi na instrumentima, a zatím je opterećenje povećavano stepenasto sve do loma nosača. Kod jednog broja nosača, sa pojavom prvih prslina, vršeno je rasterećenje radi registrovanja povratnih i nepovratnih deformacija u betonu i armaturi. Posle toga ponovo je nanošeno opterećenje prema već pomenutom prirastu sile u lazama - sve do loma nosača. Veličína apliciranog opterećenja po gornjoj,odnosno donjoj ivici zidnog nosača, očitanog na manometru, kontrolisana je merenjem deformacija,odnosno sila u zategama (1) uredjaja, pomoću mernih traka, postavljenih na ove zatege. Slaganja rezultata su bila veoma dobra.

× 15 ÷

Posebna pažnja je posvećena kontroli centričnog nanošenja opterećenja pomoću uvodjenja više poduđarnih deformetarskih mesta na prednjoj i zadnjoj strani zidnog nosača, koja, u slučaju nezbedjene centričnosti, daju iste ili skoro iste deformacije nosača.

2.1.5. Merene veličine i merna tehnika

Programom ispitivanja su obuhvaćena sledeća merenja: 1. Merenja dilatacija čelika u armaturi za savijanje (glavna armatura), u armaturi za prijem glavnih napona zatezanja i u armaturi o koju se "veša" opterećenje, aplicirano po donjoj strani zidnog nosača. Merna mesta su, po pravilu, bila ravnomerno rasporedjena po čitavoj dužini armature kako bi se mogla dovo'jno tačno utvrditi naprezanja armature po čitavoj dužini. IV. I. Osim ovih merenja, na nekim nosačima su merene i dilatacije u konstruktivnoj armaturi i u armaturi oslonačkih stubova i poprečnih zidova, radi utvrdjivanja uticaja stepena oslonačkih pojačanja na stanje napona i deformacija u zidnom nosaču pri različitim fazama opterećenja.

2. Merenje dilatacija betona u srednjem preseku svih

nosača po čitavoj visini, u horizontalnom i vertikalnom pravcu. Kod većeg broja nosača, mrežom mernih mesta bila je "pokrivena" čitava površina nosača. U područjima očekivanih ekstremnih vrednosti glavnih napona postavljene su "rozete", koje su omogućile da se u jednoj tački izmere dilatacije u tri ili četiri različita pravca, iz kojih se tada, kao što je poznato, lako odredjuju glavne dilatacije, odnosno glavni naponi u betonu.

Na nosačima, kod kojih se očekivalo da se lom može dogoditi dostizanjem graničnih vrednosti glavnih napona pritiska, postavljene su baze mernih mesta u pravcu tih napona, odnosno u pravcu, paralelnom očekivanoj prslini. Ako se pri tome, prognoze o položaju i pravcu prsline ne bi ostvarile, postavljane su nove merne baze neposredno po pojavi prsline (sl. 2.36). Osim toga, kod nekih nosača merene su i dilatacije betona oslonačkih stubova i poprečnih zidova da bi se utvrdilo koji se deo spoljašnjeg opterećenja i na kojoj se visini nosača "uliva" u ova oslonačka pojačanja.

3. Merenje ugiba na nivou donje ivice nosača u četvr(jinama raspona pomoću ugibomera tačnosti 1/100 mm.

4. Registrovanje pojave prslina, njihov razvoj sa porastom opterećenja kao i merenje širine ovih prslina duž čitavog raspona na donjoj ivici, u donjoj četvrtini i na polovini visine nosača, kao i u još nekim karakterističnim tačkama nosača (sl.2.28) Takodje, kod nekih nosača, opterećenih po donjoj ivici, merene su širine prslina po celoj visini nosača i to za preseke u polovini i četvrtinama raspona kao i u preseku neposredno uz oslonac (sl.2.51). Merenje otvora prslina (prskotina i pukotina) sprovedeno je pomoću mernog mikroskopa, tačnosti 0,025 mm.

5. Registrovanje veličine spoljašnjeg opterećenja, pri pojavi prslina od savijanja, od poprečnih sila,kao i prslina koje nastaju usled direktnog prihvatanja opterećenja po donjoj ivici, itd. Takodje je, pri svakoj fazi opterećenja snimana "karta" prslina (prskotina, pukotina), a pri lomu i površ loma. Registrovanje opterećenja koje nosač dovodi u potpuno stanje loma predstavlja završni čin eksperimentalnog ispitivanja.

Dilatacije betona i čelika su merene deformetrima tipa "Labiskon" i "Pfendel" baza 100 mm i mernim trakama (K_t=2,10). Na nekim nosačima upotrebljen je i "Labiskon" baze 250 mm. Podatak ugibomera sata na "L. iskonu" iznosio je 1/1000 mm, a na "Pfendelu" 1/200 mm pa je podatak instrumenta $\xi = 4$. 10⁻⁶ za bazu 250mm

a)

sl.2.14 a) Zidni nosač 2 sa mernom tehnikom neposredno pred lom. b) Armatura zidnog nosača V2 sa zaštićenim reperima deformetarskih baza i $\mathcal{E} = 10^{-2}$ za bazu 100 mm. Za merodavnu vrednost uzimana je srednja vrednost iz najmanje tri čitanja.

Merne trake su, uglavnom, bile japanske proizvodnje sa bazom od 30 do 60 mm za beton i 5, 10 i 15 mm za čelik. Na šipke Ø8 postavljane su trake baze 10 i baze 15 mm, na šipke Ø6 trake baze10 mm i na šipke Ø4 trake baze 5 mm. Kod nekih nosača, na šipke Ø8 su postavljane trake jugoslovenske proizvodnje (Gliha, reb) baze 15 mm. Na unutrašnje zidove šipki Ø22 glavne armature (nosači 1 i 2), kod kojih je uklonjen središni deo preseka veličine 12 mm x 12 mm, postavljene su, skoro jedna do druge, trake baze 15 mm radi vrlo preciznog odredjivanja dilatacija (napona) duž šipki. Pri višim stupnjevima opterećenja, čitanja na instrumentima su ponovljena 2 do 3 puta u vremenskom intervalu od 15 do 20 minuta da bi se utvrdilo da li je došlo do izraženijih plastičnih deformacija.

Trake su hile zaštićene epoxy smolama. Reperi deformetarskih baza fiksirani su za šipke armature pomoću epoxy smole, a pre betoniranja nosača, zaštićeni su gumenim "kapicama" (sl. 2.14).

12

2.1.6. Dopušteno opterećenje

Za usvojene geometrijske karakteristike i kvalitet materijala, sračunata su dopuštena-eksploataciona opterećenja koja deluju po gornjoj, odnosno donjoj ivici zidnih nosača. Proračun je sproveden prema aktuelnim predlozima više autora /11, 35, 81, 120/, kao i prema francuskím propisima /110/ i internacionalnim preporukama CEB-FIP /16/. Rezultati proračuna su dati u tablici 2.4, odnosno 2.5. Treba istaći da je proračun ovih nosača zasnovan, uglavnom, na rezultatima Teorije elastičnosti, tj. na naponsko-deformacijskom stanju pre pojave prslina u betonu. Izuzetno, pri tom, autori radova /35, 120/ se oslanjaju i na rezultate sopstvenih ogleda, sprovedenih na armiranobetonskim zidnim nosačima. S toga se, uporedjenjem rezultata, datih u tablici 2.4, odnosno 2.5, nailazi na znatne razlike u veličini dopuštenog opterećenja za jedan te isti nosač. Ovim razlikama doprinelo je i nedovoljno i neujednačeno vodjenje računa pojedinih predloga o uticaju stepena oslonačkih pojačanja na stanje napona i deformacija u zidnim nosačima.

Pri proračunu su korišćene sledeće vrednosti dopuštenih

	čA L	Ē	DOPUŠTENO - RADNO OPTEREĆENJE MP								
Q V	H			DNOSU VNU ARM	NA USV IATURU	OJENU	U ODNO SU NA "SMICANJE"				
NOSA	VISINE DUŽINI	H	100	[120]	[1]	SK1 [110]	P De J	[11]	[]20]	[37]	[j6]
02NAKA ZIDNOG	0DNOS PREMA	VISINA	o D	Schutt	AUTOR	FRANCU	CEB ~ FI	Βay	Schutt	Gođycki	CEB~FIF
la	0,6	48	1	14,93	12,40	14,04	12,42	1	16,20	13,59	10.75
110	0,6	48	1	15,10	15,65	15,00	14,02	1	16,20	13,68	10,75
: I	0,8	64	1	20,42	16,09	16,98	14,79	1	19,30	14,81	41.24
11	0,8	64	1	28,62	21,60	1 <mark>9,2</mark> 2	22,16	1	19,30	16,95	14,34
81	1,0	80	20,45	25,46	20,45	18,24	16,12	1	1	1	
B ₂	1,0	80	17,62	22,92	17,62	15,86	13,88	1	1	1	
1	1,0	80	11,43	12,30	11,13	10,32	9,29	1	21,91	17,39	92
2	1,0	80	17,62	22,92	17,08	15,86	13,88	1	20,31	18,45	17,
5	1,0	80	20,28	25,91	19,74	18,24	16,48	23,44	21, 26	23,47	
6	1,0	80	40,56	52,06	39,49	36,50	32,95	11,07	21,26	31,09	
7	1,0	80	20,28	25,91	19,74	18,24	16,48	1	14,70	10,67	11,52
8	1,0	80	20,28	25,91	19,74	18,24	16,48	25,84	15,80	17,39	
8a	1,0	80	20,28	25,91	19,74	18,24	16,48	20,98	15,80	17,39	1,52
9	1,0	80	30,41	39,05	29,62	27,36	<mark>24,</mark> 70	1	15,14	22,72	-
Ti	1,0	80	20,28	25,91	22,04	18, 24	16,48	1	20,09	17,39	
T ₂	1,0	80	20,28	25,91	22,04	18,24	16,48	/	20,53	17,39	
T3	1,0	80	20, 28	25,91	22,04	18,24	16,48	1	21,11	30,83	7, 92
Aı	1,5	120	20,28	32,03	25,27	18,24	16,48	1	26,93	21,44	
A2	1,5	120	11,45	18,09	14,32	10,32	9,29	1	26,12	17,99	

÷.

Tablica2.4. Dopušteno-radno opterećenje po gornjoj ivici ispitivanih zidnih nosača prema predlozima više autora, francuskim propisima i CEB-FIP preporukama.

39 =

napona u čeliku $G_{a} = 1400 \text{ kp/cm}^{2} \text{ ... za profile Ø4 i Ø22, i}$ $G_{a} = 1900 \text{ kp/cm}^{2} \text{ ... za profile Ø6 i Ø8.}$ U tablicama 2.1, 2.2 i 2.3 date su mehaničke karakte-

ristike betona.

			DOPUSTENO-RADNO OPTERECENJE MP								
		{ cm }	U ODNO: GLAVNU	SU NA U ARMAT	JSVOJEN URU	10	U ODNOSU NA "SMICANJE"			ARMA-	
OZNAKA NOSAČA	ODNOS VISI	VISINA NOSAČA H	Bay [11]	Schutt [2]	FRANCUSKI PROPISI [10]	CEB FIF [14]	Schutt [20]	CEB FIP[រសៀ	FRANCUSKI PROPISI [10]	U ODNOSU NA TURU ZA "VE	
Di	1,0	80	11,45	14,30	10,34	9,30				11,45	
Dz	1,0	80	11,45	14,30	10,34	9,30		-	17,40	15,26	
D٥	1,0	80	11,45	14,30	10,34	9,30		17,92		15,26	
D4	1,0	80	11,45	14,30	10,34	9,30	5,10			15,11	
De	1,0	80	17,08	21,17	15,50	13,96				30,52	
Ki	1,0	80	11,45	14,30	10,34	9,30				11,13	
K2	1,0	80	17,18	21,71	15,50	13,96				11,13	
Ds	0,8	64	1	11,53	9,61	8,61	13,51	14,34	15,24	15,26	
D۶	0,6	40	1	12,65	11,97	10,89	11,70	10,68	1	15,26	
Vi	1,5	120	11,45	17, 68	10,34	9,30	15,10	17, 92	17,40	15,26	
V2	1,5	120	11,45	17, 68	10,34	9,30	15,10	17,92	17,40	15,26	

Tablica 2.5. Dopušteno - radno opterećenje po donjoj Ivici ispitivanih zidnih nosača prema više aktuelnih predloga.

> Nije uzet u obzir doprinos kosih uzengija kod nosača D₅

14

- 40 -

2.2.1. <u>Nastajanje prslina, njihov razvoj, naprezanje</u> <u>armature i betona, opterećenje koje izaziva</u> <u>lom nosača i vrste loma</u>

Na sl. 2.15-2.25 i 2.42-2.48 prikazane su fotografije armiranobetonskih zidnih nosača posle završenog ispitivanja. Na njima se jasno vidi "karta" prslina, prskotina i pukotina, počev od pojave prve prsline, pa sve do potpunog iscrpljenja granične nosivosti-loma nosača. Radi lakšeg praćenja njihove pojave i razvoja, prsline su označene slovima A, B, C, D, ..., već prema redosljedu svoga nastanka. Osim toga, uz svaku prslinu (prskotinu i pukotinu) ispisane su veličine spoljašnjeg opterećenja P u Mp, koje označavaju dokle je prslina dospela pri toj fazi opterećenja. Pukotina za koju se pretpostavljalo da je bila uzrok potpunom iscrpljenju granične nosivosti nosaća označena je slovom "L". Na fotografijama je data i širina nekih karakterističnih prslina - pukotina u betonu pod opterećenjem koje je izazvalo lom nosača. Inače, zidní nosač je opterećeivan sve dotle dok se moglo postići povećanje spoljašnjeg opterećenja. Ako je, pri tom, lom nosača nastupio po betonu, dolazilo je do naglog pada pritiska u presama, a dostignuto opterećenje je predstavljalo opterećenje loma P. . Medjutim, ako je lom nosača nastupio savijanjem po armaturi, dostignuta sila se mogla održavati samo uz stalno dopumpavanje ulja u presama, a sam lom je praćen veoma izraženim plastičnim deformacijama nosača. Ustvari, neki nosači su bili toliko deformisani da im je glavna armatura ušla u oblast ojačanja elika. Stoga će, u toku dalje analize dobijenih rezultata, biti bliže definisano opterećenje loma, s obzirom na izraženi stepen destrukcije ovih nosača. Naime, kod zidnih nosača, kao što su: la, 1b, I i 1, lom definisan na prethodni način, dogodio se pri deformacijama glavne armature 🙋 25 🐭 . To znači da je upotrebljeni čelik dospeo u oblast ojačanja i, prema tome, lom nosača se dogodio pri naponu u armaturi 🗞 > Gyi, gde je Gyigranica velikih izduženja - tečenja čelika.

Kada napon u glavnoj armaturi dostigne granicu tečenja mogućno je i dalje povećanje spoljašnjeg opterećenja, naravno, ako pri tom, u medjuvremenu ne nastane lom nosača po betonu.

- 42-

sl.2.15 Zidni nosači 1a i . 1b nakon loma. Jer, pošto napon u armaturi $\mathfrak{G}_{\mathfrak{a}}$ prvo dostigne granicu tečenja

δ_{vi} u preseku sa prslinom, javlja se vrlo intenzivan razvoj
deformacija baš u tom preseku. Kao rezultat takvog razvoja deformacija intenzivira se dalji razvoj prslina - povećava se njiširina i dužina, a sa time i krak unutrašnjih sila. To omogućuje dalje povećanje spoljašnjeg opterećenja. Iz tih razloga,
u takvim slučajevima, mora se, na osnovu limitirajućih deformacija, utvrditi opredeljeno - kritično opterećenje. Ono se javlja
pre uostizanja opterećenja koje izaziva potpuni lom nosača.

2.2.1.1. Zidni nosači opterećeni po gornjoj ivici

Posmatrajući "kartu" prslina ispitivanih nosača sl. 2.15 – 2.25), može se konstatovati da prsline, u dobroj meri, slede trajektorije glavnih napona pritiska, odredjene po Teoriji elastičnosti. Pri tome se, kod nosača opterećenih po gornjoj ivici, najpre javljaju prsline od savijanja, u srednjoj spona, koje polaze od donje ivice nosača. Izuzetak su bili jako armirani ZN6 i ZN9 gde su se prve psline pojavile neposredno iznad glavne armature, a pri daljem povećanju opterećenja, produživale su se i prema donjoj ivici nosača, sl.2.20 i 2.22. Ove prsline su bile vrlo fine, a pružale su se skoro vertikalno. irina im, obično, po otvaranju, nije prelazila 0,025mm Pri povećanju opterećenja one su se produžavale po visini nosaća, ali su se javljale i nove-po celom rasponu.

Preline u krajnjim trećinama raspona nosača, po pravilu su bile nagnute prema horizontalni pod uglom $\checkmark \geq 60^{\circ}$, bez obzira na odnos visine prema rasponu ispitivanog nosača. Nagnute preline koje nastaju usled glavnih napona zatezanja (u krajnjim trećinama ruspona), a ne polaze od donje ivice nosača, pojavile su se, u najvećem broju slučajeva, pri vrlo visokom stepenu opterećenja. Tako se, kod ZN2, ZN5 i ZN9, (sl. 2.18, 2.19b, 2.22b), opterećenje, pri kome su se pojavile ove preline, skoro poklapalo su opterećenjem potpunog iscrpljenja granične nosivosti. Nedjutim, kod ZN1, ZN7, ZNA1 i ZNA2 (sl. 2.19, 2.21a i 2.25) nisu se opšte pojavile. Kod ZN6, ZNT1, ZNT2 i ZNT3 pojava ovih prelina usledila je izmedju 60 i 80% vrednosti maksimalno dostignutog opterećenja P_L, dok je kod nižih nosača (ZN1a i ZN1b), njihova pojava registrovana pri nižem stepenu opterećenja , sl. 2.15.

Iz priloženih fotografija ispitanih nosača (sl. 2.15 -

= 43 =

sl.2.16 Zidni nosači I i II nakon Ioma.

sl.2.17 Lokalni lom zidnih nosača B1 i B2 u oblasti oslonačkih zona

- 45-

sl. 2.18 Lom zidnog nosača 2 usled izvlačenja glavne armature.

2.25), kao i iz dijagrama (sl. 2.26) koji daje vrednost merene maksimalne širine prslina u funkciji ukupno nanetog spoljašnjeg opterećenja P, može se uočiti da se, kod nižih nosača (ZN1a, ZNIb, ZNI), kao i kod kvadratnih nosača, slabije armiranih (ZNI, ZN5, ZN7) javljaju izrazito velike širine prslina, dok se kođ jako armiranih (ZN6 i ZN9) i visokih nosača (ZNA, i ZNA2) zadržavaju vrlo fine prsline skoro sve do loma nosača. Pri tome se takodje može zapaziti da se kod slabije armiranih nosača i nosača armiranih sa dehelim profilima (Ø22, ZN2) obično javlja jedna veoma naglašena prslina, koja, pri povećanju opterećenja, prelazi u pukotinu. Ova pukotina se vrlo intenzivno razvija i neposredno pred lom nosača prodire naviše sve do na 3 - 4 cm ispod gornje ivice nosača. Kod nosača sa poprečnim oslonačkim zidovima (ZNT , ZNT , i ZNT ,), kao i kod nosača znatne visine (ZNA j i ZNA2), prve prsline su se pojavile pri opterećenju koje je u proseku za oko 50% veće od opterećenja pri kome su se one pojavile kod većine kvadratnih zidnih nosača. Ovi rezultati su u skladu -sa teorijskim razmatranjima, koje je autor ovoga rada sproveo u radu /4/, po kojima je stanje napona u zidnim nosačima, pa prema tome, i veličina napona zatezanja u bitnoj zavisnosti od ste~ pena oslonačkih pojačanja i odnosa H/L. Takodje je, u toku ispitivanja, konstatovano kašnjenje pojave prvih prslina i kod jako armiranih nosača (ZN6 i ZN9) u odnosu na nosače istog kvaliteta 🔰 geometrije, ali slabije armirane (ZN1, ZN7, ZN8). Koliko je u literaturi poznato, kod linijskih nosača, procenat armiranja podužnom armaturom je skoro bez uticaja na veličinu opterećenja pri kome se javljaju prve prsline.

Opterećenje, pri pojavi prvih prslina armiranobetonskih zidnih nosača (izuzev jako armiranih) je bilo veoma blisko opterećenju loma usled savijanja odgovarajućih betonskih-nearmiranih nosača, pošto je kod ovih nosača pojava prve prsline označavala ujedno i lom nosača, v. tah. 2.3 i 2.6.

Zidni nosači ZN8 i ZN8a (sl.2.21b, 2.22a), koji su, za razliku od drugih nosača, imali reduciranu glavnu armaturu duž raspona (polovina ove armature bila je povijena iznad oslonaca radi prijema glavnih napona zatezanja, (v.sl. 2.4), ponašali su se drugačije nego ostali nosači. Kod njih su se primarne prsline formirale po pravcima, koji prolaze približno kroz donje ugaone delove (tj. preseke gde je smanjena glavna armatura), i tačke na gornjoj ivici, locirane oko sredine raspona nosača. To je omogu-

46 =

sl. 2.19 Zidni nosači 1 i 5 – lom usled savijanja po glavnoj armaturi.

sl.2.20 Pogled na zadnju i prednju stranu ZN 6 nakon dostignute sile loma P_=83,6 Mp

ćilo stvaranje kosih pritiskujućih sila neposredno iznad ovih prslina koje su ubrzo, sa povećanjem spoljašnjeg opterećenja, prerasle u prskotine. Reducirana glavna armatura i konstruktivne horizontalne šipke Ø4 nisu bile dovoljne da prime horizontalne zatežuće sile. Zato je došlo do loma jednog od oslonačkih stubova, neposredno iznad trake glavne zategnute armature. Pri tome su oslonački stubovi bili napregnuti na savijanje sa normalnom silom, što je utvrdjeno merenjem deformacija na ovim stubovima. Treba zapaziti da su prsline od savijanja, obrazovane na nosačima izmedju nagnutih primarnih prslina - prskotina, ostale vrlo fine u toku čitavog trajanja ogleda.

Na zidnom nosaču T_1 (sl. 2.23), još pre ispitivanja, primečena je jedna prslina koja se pružala u pravcu dijagonale zida, počev od donjeg levog ugla pa sve do dve trećine visine zida. U toku trajanja ogleda konstatovano je samo neznatno otvaranje ove prsline. Pokazalo se da ona nije uticala na graničnu nosivost nosača, jer je na ovom nosaču registrovana čak i veva sila loma, nego na njegovom "bliznjaku" – nosača T_2 , koji nije imao nikakvih prslina pre ispitivanja.

Iz odabranih dijagrama, prikazanih na sl. 2.27 i 2.28, jasno se uocava da se najveća suma širina prslina (Σα_p) duž raspona dobije na nivou donje ivice nosača. Izuzetak čini jako armirani nosač ZN6 gde je Σa_p najmanja baš na ovoj ivici, a najveća na polovini visine nosača. Maksimalne širine prslina max Qp, na najvećem broju nosača odnosa H/L≥0,8,izmerene su na nivou donje četvrtine visine nosača (y=H/4). Samo kod slabije armiranih nosača (ZNI, ZN5), i nosača čiji je odnos H/L=0,6 (ZN1a ZN1b) izmerene su nešto veće širine prslina na donjoj ivici, nego na 🤌 visini y = H/4. Čak, pri visokim stepenima opterećenja i kod nosača ZNla i ZN1b najveće širine prslina su bile na visini y≠H/4. Pokazalo se da gušca horizontalna armatura, postavljena iznad glavne armature (npr. ZN II) deluje "umirujuće" na deformacije nosača i time u znatnoj meri smanjuje širine prslina, naročito u području nosaća oko visine y=11/4, gde bi se, da je ova armatura izostavljena, javile maksimalne širine prslina - pukotina. Leonhardt i Walther /81/ su preporučili primenu horizontalne armature na malom rastojanju neposredno iznad glavne armature za sve zidne nosače bez obzira na veličinu odnosa H/L, iako su svoje oglede sproveli na nosačima čiji je odnos H/L≈ 1. Na osnovu rezultata

sl.2.21 Lom zidnog nosača 7 (usled savijanja) i 8 (usled dijagonalnog zatezanja).

sl.2.22 Zidni nosači 8a i 9 nakon loma.

ogleda koje je autor ovoga rada dobio, može se konstatovati da je pomenuta horizontalna armatura vrlo efikasna samo kod visokih nosača ($H \ge L$). Takodje, pokazano je da se, kod nižih nosača (ZN 1a i ZN 1b) najpovoljniji rezultati, u pogledu širine prslina, postižu ako se armatura za savijanje koncentriše uz donju ivicu nosača.

Iz izmerenih dilatacija, odnosno napona može se konstatovati da se efikasnost vertikalne armature (uzengija) smanjuje sa povećanjem odnosa H/L. Kod viših nosača pravac kosih prslina zatvara vrlo oštar ugao sa ovom armaturom pa je stoga njena efikasnost mnogo manja, nego kod nižih nosača, gde ovaj ugao može da dostigne vrednost i od 30 do 40⁰.

U tablici 2.6 date su vrednosti spoljašnjeg opterećenja P (Mp), nanetog po gornjoj ivici nosača, koje odgovaraju izmerenim maksimalnim širinama prslina od 0,1 mm, 0,2 mm i 0,3 mm. Zavisno od uslova sredine i eksploatacije konstrukcije ova opterećenja bi se, posmatrano sa gledišta dopuštenih širina prslina, mogla smatrati dopuštenim-radnim - eksploatacionim opterećenjima. Pri tome treba imati u vidu da su ovi ogledi sprovedeni pod delovanjem kratkotrajnog opterećenja. Stoga se i njihova primena mora ograničiti na ova opterećenja.

Kedič je, istražujući ponašanje armiranobetonskih zidnih nosaća sa prslinama /61/, utvrdio da se širine prslina od savijanja pod dejstvom dugotrajnog opterećenja - u trajanju od jedne godine - mogu da povećaju 2,5 puta u odnosu na kratkotrajna opterećenja. Primera radi, prsline širine od 0,15 - 0,17 mm, registrovane u trenutku nanošenja opterećenja, dostigle su širinu 0,40-0,45 mm nakon godinu dana. Ali pojavile su se i nove prsline širine do 0,1 mm. Povećanje širine prslina, kao i stvaranje novih prslina u znatnoj meri je posledica razaranja prianjanja izmedju betona i armature u toku vremena.

* * *

Ispitivani zidni nosači su bili dovedeni u stanje loma na jedan od sledećih načina:

- lom usled savijanja po glavnoj armaturi
- lom oslonačkih zona
- lom "presecanjem" betona strig
- lom dijagonalnim zatezanjem
- lom usled prekoračenja graničnih vrednosti glavnih 'napona pritiska u betonu 🔅

= 52-

sl.2.23 izgled zidnih nosača T₁ i T₂ nakon loma po betonu na spoju zida sa poprečnim platnom.

sl. 2.25 Raspored prslina na zidnim nosačima A₁ i A₂ nakon loma "presecanjem" betona.

- lom usled otkazivanja ankerovanja glavne armature, i
- kombinovano, kada je lomu nosača prethodilo više uzroka. Ovo je bio i najčešći slučaj loma nosača i to predstavlja posebnu teškoću pri definisanju primarnih i sekundarnih uzroka loma.

Valja napomenuti da nijedan od ispitivanih zidnih nosača nije doveden u stanje loma prekoračenjem graničnih vrednosti normalnih napona δ_{bx} u pritisnutom delu preseka. Ovo područje nosača, kao što je poznato, nalazi se u stanju dvoosnih pritisaka, pa shodno poglavlju 3, granične vrednosti napona pritiska, zavisno od odnosa glavnih napona, mogu znatno da prekorače čvrstoću betonske prizme β_{pl} . Rezultati eksperimentalnih istraživanja koje je autor ovog rada sproveo na zidnim nosačima (v.sl.2.29) pokazuju da su normalni naponi δ_{bx} bili znatno manji od čvrstoće prizme β_{pl} , i pri opterećenjima koja su bila bliska opterećenju loma nosača.

a) Lom savijanjem usled dostizanja i prekoračenja granice tečenja glavne armature. Ovoj vrsti loma prethodile su vrlo velike prsline - pukotine u betonu i znatne deformacije glavne armature. Jer, pošto napon u armaturi dostigne granicu tečenja javlja se vrlo intenzivni razvoj dilatacija $\mathcal{E}_{\mathbf{n}}$, a prema tome i prslina. Prsline se sve više penju po visini nosača, čime se smanjuje pritismuta zona preseka, ali se povećava krak unutrašnjih sila. Stoga se, i u stanju tečenja armature, može i dalje da povećava spoljašnje opterećenje sve dotle dok se povećava krak unutrašnjih sila. Ogledi pokazuju da deformacije glavne armature mogu toliko da porastu da čelik dodje i u zonu očvršćavanja. Tada, i pri konstantnom kraku unutrašnjih sila, dolazi do povećanja spoljašnjeg opterećenja, jer se povećava napon u armaturi. Visina pritisnutog dela preseka X je veoma smanjena - iznosi svega 3-5% visine nosača (v.sl.2.30), a dilatacije glavne armature dostižu vrednost i preko 30%. Tek pri tako smanjenoj visini X normalni naponi u hetonu 🖏 prekoračuju čvrstoću prizme /3_{or} , što dovodi do izražene plastifikacije dvoosno pritisnutog betona i do velikih rotacija preseka, gotovo oko same gornje ivice preseka. To predstavlja i trenutak potpunog iscrpljenja granične nosivosti ispitivanog zidnog nosača. Na ovaj način dogodio se lom kvadratnih zidnih nosača : ZN1, ZN5, ZN7, ZNT3 (v.sl.2.19, 2.21a i 2.24).

^{*)} Lom zidnog nosača ZN2 (sl.2.18) nastupio je pri max= 4%). u, preseku sa prslinom usled izvlačenja glavne armature © 22 zbog loše izvedenog ankerovanja pomoću zavarenih krstova.

= 56 =

1

1

ŝ

- 58 -

3

DZNAKA ZIDNOG NOSAČA	DNOS VISINE H PREMA DUŽINI NOSAČA L	PPTERECENJE PRI OJAVI PRVE PRSLINE Fpr (Mp)		REĆENJE MAKSIMAI NI PRSLII VELIČINA		PTEREČENE PRI LOMU NOSAČA P ₁ (Mp)	P Ppr	P ^{**1} Ppr	Pdop Ppr
10	06	11.6	17.0	210	227	16.0	1.02	107	100
	0,0	11,0	17,0	21,0	22,1	40,8	4,03	1,07	1,28
	0,6	13,2	17,0	20,0	28,5	50,7	3,84	1,06	1,14
I	0,8	27,3	27,9	28,5	30,0	66,3	2,43	<mark>0,5</mark> 4	0,75
II	0,8	29/4	33,0	37,2	40,2	63,0	2,14	0,76	0,97
Bı	1,0	27,6	39,8	*	*	40,8	1,48	<mark>0</mark> ,58	0,78
B ₂	1,0	22,0	32,0	42,8	*	44,1	2,00	0,63	1,04
1	1,0	27,5	33,1	37,1	38,5	60,5	2,20	0,34	0,53
2	1,0	26,5	34,0	40,5	44,0	61,5	2,32	0,52	0,86
5	1,0	35,0	39,9	43,0	47,5	67,0	1,91	0,47	0,74
6	1,0	43,3	55,0	62D	69,5	83,6	1,93	0,76	1,20
7	1,0	28,0	32,0	33,5	37,0	50,0	1,79	<mark>0</mark> ,59	0,93
8	1,0	23,8	34,0	37,0	38,5	63,5	2,67	0,69	1,09
8a	10	32,3	33,9	34,8	36,6	58,7	1,82	0,51	0,80
9	1,0	39,7	44,8	50,0	54 <u>0</u>	55,6	1,40	0,62	0,98
Ťi	1,0	33,2	33,9	36,5	37,5	59,7	1,80	0,50	0,78
T ₂	1,0	32,0	33,4	35,8	36,9	57,5	1,80	0,52	0,81
T3	1,0	44,2	47,0	51,9	57,4	88,4	2,61	0,37	0,59
A	1,5	45,1	50,9	58,1	69,3	133,0	2,95	0,37	0,71
A ₂	15	63,6	70,0	77,0	81,5	116,7	1,83	0,15	0,28

Tablica 2.6. Vrednost opterećenja P apliciranog po gornjoj ivici nosača pri pojavi prve prsline, karakterističnim širinama prslina i potpunom iscrpljenju granične nosi – vosti – lomu nosača.

- Nije dostignuta naznačena širina prslina
- **) Prema preporukama CEB-FIP [16]
- ***) Prema predlogu Schutt-a [120]

OZNAKA ZIDNOG NOSAČA	ODNOS VISINE H PREMA DUŽINI NOSAČA	OPTEREĆENJE PIMPI PRI MAKSIMALNOJ DILATACIJI GLAVNE ARMATURE <u>Gvi</u> 1000 % 10%/00		OPTERECENJE PIMpi Pri LOMU NOSAČA	max	max Qp(mm) PRI PKOJA IZAZIVA max Ea= 10 %	KRITIČNO OPTEREĆENJE P _{kr (Mp})	DOPUŠTENO OPTEREĆENJE PRI (= 1.8 ; Pdop = Pm /
1a	0,6	25,2	32,0	46,8	0,67	2,25	32,0	17,8
1b	0,6	29,3	41,2	50,7	0,30	3,00	41,2	229
1	0,8	40,1	48,0	66,3	0,72	1,10	48,0	26,7
II	0,8	49,5	ж	63,0	0,42	*	63,0	35,0
Bı	10			40,8	*	*	40,8	22,7
B ₂	1,0	- 8î		44,1	*	*	44,1	24,5
1	1,0	36,5	44,5	60,5	0,20	15,0	44,5	24,7
2	10	42,0	2601	61,5	Q.22		61,5	34,2
5	1,0	48,0	58,0	67,0	040	1,25	58,0	32,2
6	10	*	*	83,6	*	*	83,6	46,4
7	10	38,2	46,2	50,0	0,25	1,45	47,2	26,2
8	10	44,9	61,5	63,5	0,43	1,70	61,5	34,2
8a	10	42,1	560	58,7	0,38	1,55	56,0	31,1
9	1,0		- X	55,6	3. E	*	55,6	30,9
T ₁	1,0	38,5	*	597	Q39	*	59,7	33,2
T2	1,0 /	40,3	*	57,5	0,35	*	57,5	31,9
T ₃	1,0	59,5	77,0	88,4	0,34	2,67	77,0	42,8
Ai	1,5	108,0	*	133,0	0,80	*	133,0	73,9
A ₂	1,5	96,0		116,7	0,73	*	116,7	64,8

Tablica 2.7. Kritično i dopušteno opterećenje ispitivanih zidnih nosača.

 Nije dostignuta naznačena dilatacija armature; lom se ne dešava savijanjem. 10

- 61 -

Medjutim, iako su bili veoma deformisani i isprskani, (prsline su ' prodirale 3-4 cm ispod gornje ivice nosača), zidni nosači ZNIa, ZNIb i ZNI (v.sl.2.15 i 2.16) su doživeli lom po betonu, iznenada, uz jak prasak - odvajanjem zida od oslonačkog stuba po celoj visini nosača. Pri tome je došlo do vertikalnog pomeranja tačaka zida na dole za oko 5-8 mm u odnosu na tačke oslonačkog stuba.

Kritična deformacija pri kojoj se upotrebljivost ove grupe nosača gubi znatno je manja od one koja je postignuta neposredno pred potpunim iscrpljenjem granične nosivosti. Već je naglašeno da se, dostizanjem granice velikih izduženja, uz konstantan napon u armaturi, može i dalje povećavati spoljašnje opterećenje usled povećanje kraka unutrašnjih sila. Medjutim, kako iz dijagrama sa sl. 2.32, 2.33 i 2.34 proizilazi, prirast opterećenja je relativno manji, nego pri nižim fazama opterećenja, ali ipak značajan. Tako, od početka tečenja čelika, kada 🧞 iznosi 1,6% (Ø8) odnosno 1,78% (Ø6), do stanja pri kome ove deformacije dostižu bar u jednom preseku vrednost od 10%,, opterećenje se, zavisno od geometrijskih karakteristika nosača, povećalo od 18-41%. Ali, pri porastu ovih deformacija od 8 na 12%, povećanje opterećenja iznosi u proseku 3%, a najveće pojedinačno do 5%. Stoga se granica $\mathcal{E}_{a}=10\%$, može smatrati kritičnom deformacijom pri kojoj je nosivost i upotrebljivost zidnog nosača iscrpena. I zaista, kako se iz tablice 2.7 vidi, u ovoj fazi opterećenja, javljaju se čak i pukotine u nosaču širine do 3 mm.

Ogledi autora pokazuju da je, počev od ove granice pa sve do početka očvršćavanja čelika, bilo mogućno povećati spoljašnje opterećenje za svega 2-5% što se, s obzirom na povećanu mogućnost rasturanja rezultata u ovoj oblasti, može zanemariti. Iz tih razloga opravdano je da se postavi uslovni kriterijum prema kome se kritičnim-graničnim opterećenjem smatra ono opterećenje koje je dostignuto kada deformacija glavne armature, bar u jednom preseku, dostigne vrednost od 10‰. U tablici 2.7 date su vrednosti toga opterećenja, zatim opterećenja na početku tečenja armature, kao i opterećenja pri potpunom lomu nosaća. U tome smislu veoma je ilustrativan i grafički prikaz karakterističnih faza opterećenja na sl.2.35, kao što su:dopuštena opterećenja, opterećenja pri pojavi prve prsline, pri širini prslina od 0,1 mm,0,2 mm i 0,3 mm, kao i opterećenja na početku tečenja glavne armature, kritična opterećenja ($c_{i} = 10/o$) i opterećenja

lomu nosača. Iz ove tablice i sa slike 2.35 se vidi da je opterećenje loma veće za 6-46% od kritičnog. To je proizašlo iz dva osnovna razloga. Prvo, naponi pritiska u betonu 6_{bx} ni u jednom od izvedenih ogljida nisu postali kritični sve dok glavna armatura nije dublje zašla u zonu očvršćavanja čelika. Drugo, u zoni očvršćavanja kori-

pri potpunom

sl.2.29 Normalni naponi 66x u betonu , srednjeg preseka zidnih nosača : 1a, 6,7,8, T3 i A1 u funkciji spoljašnjeg opterećenja P.

šćenog čelika bilo je mogućno, po parametru armature, povećati opterećenje nosaća za skoro 50% u odnosu na prethodno definisano kritično opterećenje.

Treba takodje naglasiti da prisustvo horizontalne (konstruktivne) armature, rasporedjene na oba lica zida, osim što deluje, umirujuće[°] na prsline, utiče i na veličinu opterećenja Joma nosača. Tako, na primer, kod nosača ZN5 koji ima ovu armaturu $(\pm \phi^4/15)$ došlo je do loma pri opterećenju koje za oko 35% veće od opterećenja loma ZN7. (Nosač ZN7 nije imao ni horizontalne ni vertikalne konstruktivne armature), Ovo je sasvim logično, jer se, nastajanjem prslina i njihovim razvojem ova armatura sve više i više uključuje u rad nosača i time doprinosi povećanju opterećenja loma, naročito kod viših nosača ($H/L \ge 0,8$). Medjutim, ver+ tikalna armatura se pokazala malo efikasnom kod gotovo svih ispitivanih nosača, jer je prsline "presecaju" pod relativno malim uglom, izuzev nižih nosača ZN1a i ZN1h, gde je taj efekat bio - 63 -

značajniji.

b) Lom oslonačkih zona - lokalni lom usled visokog napona pritiska u betonu karakterističan je bio za nosače ZNB, i ZNB, čiji oslonački preseci nisu bili pojačani ni stubovima ni poprečnim zidovima, sl.2.17 Oslonački pritisak pri opterećenju koje je izazvale lokalni lom nosača iznosio je 1,04/3m, odnosno 1,12/3 , respektivno za

2NB₁ i 2NB₂. Naponi u glavnoj armaturi nisu dostigli granicu velikih izduženja, a prsline od savijanja bile su vrlo fine tokom čitavog trajanja ogleda. Širina im nije prelazila 0,2 mm. Kose prsline usled dejstva glavnih napona zatezanja nisu se uopšte pojavile.

Ovakav način loma bio je vrlo čest u ogledima koje su svojevremeno izvršili Leonhardt i Walther /12/ a jedini u ogledima Klinggroth-a /62/, v. poglavlje 1.

Lom jednog od oslonačkih stubova, neposredno iznad samog oslonca nastupio je i kod zidnih nosača ZN6 i ZN9 pri pritisku od oko β_{ot} . Da bi ogled mogao biti nastavljen stubovi su na donjoj trećini visine "obučeni" u čelične papuče, a intimna veza stub -papuča postignuta je pomoću epoxy maltera. Medjutim, pri ponovnom lomu koji je nastupio po betonu, odvajanjem zida od stubova,opterećenje je samo neznatno povećano u odnosu na opte-

-67

- 64 -

hodnog loma, pošto su se već ranije bile pojavile kose vlaknaste prsline u blizini oslonačkih stubova, c) Lom "presecanjem" betona na me-

rećenje pret-

"presecanjem" betona na mestu spoja zida sa oslonačkim pojačanjem - stubom ili poprečnim platnom - nastupio je kod nosača ZN II (H/L=0,8), zatim kod kvadratnih nosača ZN6, ZN9

sl. 2. 31. Promena odnosa z/h u funkciji veličine sile P. ©otvaranje prve prsline; ____ početak tečenja čelika; ____Ea_{max} = 10 % ; ____ lom nosača.

 $2NT_1$ i $2NT_2$ (v.sl.2.20, 2.22b i 2.23), i na kraju, kod visokih zidnih nosača $2NA_1$ i 2NA (v.sl.2.25). Lomu kvadratnih nosača prethodila je pojava finih vlaknastih prslina, nagnutih prema horizontali pod uglom $\swarrow 60^{\circ}(2N6 \ i \ ZN9)$ i $(2NT_1 \ i \ ZNT_2)$, a kod nosača $2NA_1$ i $2NA_2$ nije došlo do obrazovanja takvih prslina. Lom svih nosača se dogodio iznenada, uz jak prasak, po betonu na celoj visini nosača, najčešće u ravni spoja zida i oslonačkog stuba - platna. Sama površ loma nije bila potpuno ravna, već je bila nazubljena. Treba konstatovati da su prsline od savijanja, koje su se znatno ranije pojavile, ostale vrlo fine tokom čitavog trajanja ogleda. Neposredno pred lom nosača naponi u glavnoj armaturi nosača 2N6 i 2N9, ni u jednom preseku sa prslinom, nisu dostigli granicu velikih izduženja (max $6_n = 0.955$), dok su, kod ostalih

sl.2.32. Uticaj odnosa H/L na veličinu maksimalne dilatacije 🖾 👘

nosača ove grupe, naponi \mathfrak{G}_0 ipak dostigli ovu granicu. Medjutim, maksimalne dilatacije $\hat{\mathsf{C}}_0$ koje, duž armature, nisu nigde prelazile vrednost od 4%, izmerene su u presecima blizu oslonaca – na lokaciji nagnutih prslina, dok u području maksimalnih momenata savijanja nisu bile veće od 2,5%, izuzev nosača ZNII, gde su dostigle vrednost i do 4%. Dakle, ovde su bila vrlo značajna naprezanja usled delovanja glavnih napona u betonu, posebno napona zatezanja. Pojava nagnutih prslina u blizini oslonačkih pojačanja ukazuje da su, na tim mestima, bile iscrpene granične vrednosti napona zatezanja u betonu. Izmerene vrednosti glavnih napona pritiska i zatezanja na zidnim nosačima ZN6 i ZNT₂₁ neposredno pre nastajanja nagnutih prslina, prikazane su na sl. 2.36. Teorijska razmatranja koja je autor sproveo u radu /4/, kao i rezultati

65 -

sl.2.33. Max. dilatacije &a glavne armature kvadratnih zidnih nosača u zavisnosti od procenta ove armature.

koji su dobijeni primenom ekstremalnih principa pri rešavanju odredjenih zadataka granične ravnoteže (v. pogl. 3) i primenom metode konačnih elemenata na neisprskalim i isprskalim zidnim nosačima (v. pogl. 5) pokazuju sasvim zadovoljavajuća slaganja sa vrednostima koje su dobijene merenjem na ispitivanim zidnim nosačima. To znači da su učinjene pretpostavke i "ulazni" podaci pri ovim teorijskim razmatranjima bili zadovoljavajući.

d) Lom usled dijagonalnog zatezanja nastupio je kod nosača ZN8 i ZN8a neposredno posle stvaranja jedne nagnute pukotine približno na pravcu koji prolazi kroz donji oslonački ugao i mesto oko sredine gornjeg dela nosača (sl. 2.21 i 2.22). Stvaranju ove pukotine doprinelo je naglo reduciranje glavne (donje) armature usled njenog povijanja pod velikim uglom u blizini oslonaca, sl. 2.4. Pukotina koja je izazvala lom nosača pojavila se baš na onoj strani na kojoj su šipke gornjeg reda ove armature bile povijene pod uglom od 45° i 60° prema horizontali. Na drugoj strani nosača, gde je jedna šipka bila povijena pod 30°, a druga pod 22,5°, kosa prslina je ostala fina tokom čitavog trajanja ogleda. Takodje i prsline u polju, koje su se pojavile znatno ranije - neyde pri opterećenju jednakom polovini opterećenja loma - ostale

= 66 =

3

sl. 2.34. Max dilatacije Ea glavne armature zidnih nosača : 1b, II, 2, T₁ i A₂.

su veoma fine i pri lomu nosača. Dakle, šipke armature povijene pod manjim uglom bile su efikasnije od onih koje su bile povijene pod većim uglom. To je i logično, jer se kosa prslina - pukotina u području ove armature obrazovala gotovo upravno na pravce manje povijenih sipki armature. Ovim ogledima nisu potvrdjene pretpostavke Bag-a /10/ i Schütt-a /120/, prema kojima su koso povijene šipke za prijem glavnih napona zatezanja najefikasnije ako se polože pod uglom prema horizontali od 45⁰ do 60⁰. Naprotiv, ogledi daju prednost znatno blažem povijanju armature, koja, u najvećoj meri, treba da prati trajektorije glavnih napona zatezanja.

e) Lom usled dostizanja graničnih vrednosti glavnih napona pritiska – lom smicanjem u betonu nije bio posebno karakterističan za ispitivanu seriju nosača. Osim nosača kod kojih je

- 67 -

sl. 2.35. Grafički[?] prikaz karakterističnih faza opterećenja zidnih nosača.

- 68 -

lom nastao u području oslonaca usled dostizanja graničnih vrednosti napona pritiska u betonu (lokalni lom), bili su, i u jako armiranim nosačima ZN6 i ZN9, prisutni znaci koji ukazuju da su, u odredjenim područjima ovih nosača, glavni naponi pritiska dostigli granične vreduosti, v.sl. 2.20, 2.22 i 2.36-37.

f) <u>Simultani lom</u>. Napred iznete uzroke loma znatnog broja ispitivanih nosača treba shvatiti kao primarne, ali ne i jedine. Tako, na primer, kod nosača ZN1a, ZN1b i ZNI koji su pretrpeli znatne deformacije od savijanja $\sum_{a} > 30\%$.) pojavile su se i vrlo izražene kose pukotine, koje su polazile od donjih - oslonačkih uglova prema sredini gornje ivice nosača. Prema uslovnom kriterijumu po deformacijama (max $\sum_{a} = 10\%$) pretpostavljeno je da je lom nastupio usled savijanja po glavnoj donjoj armaturi. Medjutim, izražene kose pukotine i tečenje armature duž čitavog raspona ukazuju da je granična nosivost dostignuta i u dijagonalnim ravnima. Ipak, posmatrajući zavisnost $\sum_{a} - P$ (sl. 2.32-2.34), kao i zavisnost f-P, (sl. 2.38), gde je f-ugib u sredini raspona nosača, jasno se uočava da su, pre svega, izražene deformacije ovih nosača nastale kao posledica intenzivnog tečenja glavne armature u srednjoj trećini raspona nosača (sl. 2.39a,b). Maksimalno izmereno opterećenje neposredno pred potpuni lom ovih nosača, koji je nastao "presecanjem" betona po celoj visini nosača na spoju zida sa oslonačkim stubom, ne može se smatrati za uslovnu - opredeljenu nosivost, pošto je glavna (donja) armatura već prošla kroz celu fazu tečenja i duboko zašla u fazu očvršćavanja čelika. Stoga se nosivost ovih nosača odredjuje na bazi limitirajućih deformacija glavne armature, koje, kao što je već ranije obrazloženo, ne bi trebalo da predju vrednost od 10%,.

Na osnovu dijagrama, prikazanih na sl. 2.32 - 2.34 i sl. 2.39 i 2.40, može se zaključiti da, od ukupno 19 eksperimentalno ispitaníh nosača opterećenih po gornjoj strani, samo kod četiri nosača (ZNB₁, ZNB₂, ZN_p i ZN₉) nije nastupilo tečenje glavne armature. Pri tome je kod umereno armiranih, ali oslonački neojačanih zidnih nosača ZNB, i ZNB, nastupilo gnječenje oslonačkih zona (lokalni lom), dok je kod jako armiranih i stubovima ojačanih oslonačkih preseka nosača ZN6 i ZN9 lom nastupio "presecanjem" betona po celoj visini nosača u preseku neposredno uz oslonački stub. Sudeći prema izgledu figure loma i rezultatima izmerenih dilatacija, odnosno napona, može se pretpostaviti da su i naponi pritiska u betonu, u neposrednoj blizini oslonačkih stubova, dostigli granične vrednosti (v.sl. 2.20 i 2.22). Od 15 preostalih nosača kod kojih je nastupilo tečenje glavne armature, samo na dva nosača (ZNA, i ZNT) maksimalno izmerena dilatacija armature iznosila je nešto manje od 3%, na četiri nosača (ZNII, ZN2, ZNT, i ZNA_) dostigla je oko 4%., dok se u ostalih devet nosača kretala od 12 do 30%. Iako je, kod prvih šest navedenih nosača, skoro duž čitavog raspona, nastupílo tečenje glavne armature, spoljašnje opterećenje je osetno raslo sve dok nije došlo do iznenadnog loma po betonu odvajanjem zida od oslonskog stuba, odnosno platna,kada je pritisak u presama naglo opao. Izuzetak čini ZN2 gde je do loma došlo usled iznenadnog izvlačenja nedovoljno usidrene glavne armature. Ako se podje od činjenice da se limitirajuća deformacija glavne armature, do koje se još osetno može da povećava spoljašnje opterećenje kreće negde oko 10%, onda se za prethodnih šest nosača, strogo uzevší, može reći da nisu dovedeni u stanje granične nosivosti i usled savijanja, s obzirom da krak unutrašnjih sila nije dostigao graničnu vrednost (v.sl. 2.37). Sem toga i hori-

sl. 2.38. Dijagram ugib—opterećenje _

- 71 ----

zontalna konstruktivna armatura, koja je bila postavljena na oba lica zida po celoj visini nosača (+ φ 4/15), sa razvojem prslina, sve više i više se uključivala u prijem sila zatezanja. Na taj način, ona je usporavala tečenje glavne armature i time uticala na povećanje granične nosivosti nosača.

<u>Iz rasporeda izmerenih dilatacija</u> Ča, <u>odnosno napona</u> Ša duž glavne i koso postavljene armature (sl. 2.39 i 2.40) može se konstatovati sledeće:

- Do pojave prvíh prslina, raspored napona duž glavne armature, po obliku, sličan je dijagramu momenata savijanja. Medjutim, po otvaranju, a posebno u procesu intenzivnijeg razvoja prslina, naponi O_a , duž čitavog raspona nosača, postaju sve ravnomerniji, što znači da se zidni nosači transformišu u lučne nosače sa zategom. U presecima koji sadrže izražene prsline - pukotine pojavljuju se deformacijski "špicevi", što ukazuje da je u tim presecima, pa i u neposrednoj okolini, razorena athezija armature sa betonom, tj. da se tu armatura deformiše kao "slobodan" metal.

- Izmereni naponi u glavnoj armaturi bili su stalno manji nego naponí koji se odredjuju na klasičan način, tj. prema Teoriji elastičnosti (na primer, prema Bay-u /11/, CEB-FIP /16/, francuskim propisima /110/ i dr.), kako za stanje pre pojave prslina tako i za stanje sa prslinama. Prema ovim teorijskim postavkama, kao što je poznato, ukupne sile zatezanja prima armatura, a krak unutrašnjih sila ne zavisi od veličine spoljašnjeg opterećenja, odnosno od deformacije nosača. Medjutim, u stvarnosti do pojave prslina, najveći deo zatežućih sila prima beton, a u prslinskom stanju, zavisno od razvoja prslina, kraj unutrašnjih sila može postati znatno veći od kraka ovih sila u stanju pre pojave prslina (v.sl. 2.31). Otuda proizilazi da su izmereni naponi znatno manji od onih koje daje Teorija elastičnosti. Korektnijim uvažavanjem stvarnog ponašanja armiranog betona, naročito u stanju prslina (v.pogl. 4 i 5), mogu se i teorijskim putem dobiti rezultati, relativno bliski onim koje daju ogledi.

- Povijanje glavne armature radi prijema glavnih (kosih) sila zatezanja najefikasije je ako se sprovodi tako da se šipke polažu u pravcu trajektorija glavnih napona zatezanja. S obzirom na to, povijanje sipki treba izvoditi pod blažim uglom, po pravilu, ne većim od 30°. Svako povijanje šipki pod uglom $\swarrow > 45°$ ne doprinosi povećanju granične nosivosti ovih nosača. Naprotiv, ono - 73 -

sl.2.40. Raspored merenih dilatacija E_o i napona G_o u glavnoj i kosoj armaturi zidnih nosača : ZN1, ZNA2, ZN5, ZN6, ZN8. {E⁽ⁱ⁾,..., početak tečenja armature. P^{.....}data u Mp.}

često može biti uzrok preranom lomu usled tečenja glavne armature na mestu njenog diskontinualnog smanjenja-povijanjem sipki. Takodje i koso postavljene uzengije (v.sl. 2.39b,c) treba polagati pod uglom \checkmark ne većim od 10 prema horizontali, jer je tada njihovo prisustvo najefikasije. Pri povećanju ugla smanjuje se naprezanje u uzengijama, čime njihova efikasnost opada (sl. 2.40a,b). Pri $>60^{\circ}$, uzengije su većim delom, pritisnute zbog izraženog lučnog dejstva zidnog nosača.

– Naprezanja glavne armature bitno zavise od odnosa visine H prema dužini (rasponu) L nosača. Što je taj odnos veći naprezanja su manja i obrnuto (sl. 2.32, 2.39a,b i 2.40a). Ogledi autora su pokazali da nosači,odnosa H/L = 1,5.imaju oko dva puta veću graničnu nosivost od odgovarajućih kvadratnih nosača (H/L=1). Pri tome su deformacije glavne armature prvih nosača bile dva i više puta manje od odgovarajućih deformacija drugih nosača (v.grafički prikaz na sl. 2.35).

- Uticaj stepena oslonačkih pojačanja na naponsko deformacijsko stanje zidnih nosača je takodje vrlo značajan. Ogledi autora pokazuju da se naprezanje glavne armature smanjuje ako se stepen oslonačkih pojačanja povećava i obratno. Tako, na primer, zidni nosači T,, T, i koji se oslanjaju po celoj visini na transverzalna platna, imaju od 1,3 do 1,5 puta manje deformacije glavne armature nego odgovarajući nosači sa oslonačkim stubovima (v.sl. 2.32 - 2.34). Sem toga, uočeno je da od stepena oslonačkih pojačanja zavisi i kakva će vrsta loma nastupiti. Tako, na primer, kod neojačanih-homogenih zidnih nosača 🕘 i B., nastupilo je lokalno razaranje oslonačkih zona pri relativno malom opterećenju (tab. 2.6) i naponima u glavnoj armaturi koji su jedva u jednom preseku dostigli granicu tečenja. Nasuprot tome, odgovarajući nosači sa oslonačkim stubovima, na primer, ZN5 i ZN7 dovedeni su u stanje granične nosivosti usled veoma izraženih deformacija glavne armature, dakle, usled savijanja. Medjutim, zidni nosači T, i T₂₁koji ju lasti in glavna armaturu kao i prethodni nosači, dovedeni su u stanje loma iznenada – odvajanjem zida od poprečnog platna po celoj visini nosača, tj. usled loma "presecanjem" betona. Pri tome maksimalne dilatacije glavne armature, kako je već napomenuto, nisu prelazile vrednost od 3%, odnosno 4%. Izuzetak je bio ZNT, (sl. 2.4), koji se razlikovao od ZNT, i ZNT, samo po tome što je imao relativno kratke horizontalne uzengije u krajnjim četvrtinama raspona po celoj visini nosača. I baš prisustvo tih uzengija

- 75 -

uticalo je da se cvde ne ponovi lom nosača T₁ i "presecanjem" betona, već da se granična nosivost nosača iscrpe usled savijanja uzraženim tečenjem glavne armature. Iz dijagrama, prikazanog

sl. 2.41. Raspored merenih dilatacija ε_o horizontalne armature i napona smicanja [4] u preseku 1-1 zidnog nosača ZNT₃.

na sl. 2.41a, jasno se vidi da se najveće deformacije, odnosno naponi ovih uzengija javljaju u gornjoj polovini visine nosača. Iz toga proizilazi da se i armatura za prijem sila zatezanja treba da rasporedi shodno tome dijagramu, tj. da se grupisanje armature izvrši oko "deformacijskog" vrha, koji se nalazi negde na visini 2/3 II. Do ovakvog zaključka autor je došao i teorijskim putem, analizírajući uticaj oslonačkih pojačanja na stanje napona u zidnim no. šima-u radu /4/. Prema rezultatima toga rada, stanje napona i deformacija je veoma zavisno od stepena oslonačkih pojačanja. U uočenom preseku 1-1, visínski položaj "naponskog" vrha se bítno menja u funkciji stepena oslonačkog pojačanja. Ako se, za ocenu toga uticaja, poslužimo analizom napona smicanja (koji, u ovome preseku, imaju dominantan uticaj na veličinu glavnih napona), može se zaključiti da se, kod oslonački neojačanih nosača, najveća vrednost javlja u donjem delu nosača, negde na 1/6 H (kriva A na sl. 2.41b), dok se u slučaju oslanjanja zidnog nosača na poprečne zidove, čija je dužina jednaka rasponu zidnog nosača

(ZNT₃), "ekstremum" pomera znatno naviše (kriva B) i gotovo se poklapa sa "deformacijskim" vrhom sa sl. 2.41a. Uticaj oslonaćkih pojačanja takodje se može jasno uočiti sa sl. 2.36-37. Dok se, kod oslonački manje ojačanog nosača ZN6, najveće vrednosti glavnih napona nalaze u donjoj polovini, dotle se kod oslonački jako ojačanog nosača ZNT₃₁te vrednosti nalaze u gornjoj polovini visine nosača. Stoga se, u zavisnosti od stepena oslonačkih pojačanja, mora voditi računa o količini, mestu i položaju armature za prijem sila zatezanja koje potiču od glavnih napona zatezanja. Dakle, postavljanje ove armature samo u donjim oslonačkim zonama, kako je to uobičajeno u praksi, najčešće ne odgovara stvarnim potrebama. Kod homogenih ili slabo pojačanih zidnih nosača, gde bi takav raspored armature i odgovarao, za dopuštenu nosivost su najčešće merodavni glavni naponi pritiska, pa se i tada može postaviti pitanje opravdanosti postavljanja ove armature.

2.2.1.2. Zidni nosači opterećeni po donjoj ivici

Zidni nosači sa "obešenim" opterećenjem pokazuju drugačiju sliku i prslina i loma nego nosači opterećeni po gornjoj ivici. U njih se, pojavom lučnih prslina, koje prate trajektorije glavnih napona pritiska, obrazuju, jedan preko drugog, etažni lučni nosači. Kao po pravilu, prvo se obrazuju donji plići, a zatim, sa porastom opterećenja, i gornji dublji luci, v.sl. 2.42 - 2.48. Dok prsline od savijanja, koje se počinju javljati skoro istovremeno kada i lučne, ostaju relatívno fine (pri lomu nosača ne prelaze širinu od 2 do 3 mm), dotle se lučne prsline intenzivnije Śire, tako da u stanju loma njihova širina može prevazići dvostruku pa i višestruku širinu prslina od savijanja, v.sl. 2.49 -2.51. Obično, sa pojavom "zjapeće" lučne pukotine, koja se od sredine nosača prema osloncima strmo spušta sve do donje ivice nosača, zidni nosač razdvaja na (najmanje) dva dela: gornji, sa etažiranim lucima i donji, napregnut pretežno na savijanje. Pri tom je, zbog intenzívnog tečenja armature za "vešanje", donji deo zida prosto "izvučen" iz zidnog nosača. Kod jače armiranih nosača, u području oslonaca, gde etažirani luci prelaze u relativno uske trake, naponi pritiska u betonu mogu dostići granične vrednosti (ZND i ZND, i ZND, na sl. 2.45, 2.46, 2.47 i 2.63). Luci su, preko uzengija za "vešanje" opterećeni i na savijanje, što ima za posledicu pojavu kvazi vertikalnih prslina, naročito pri višim

2 77 🚍

sl.2.42 Zidni nosač D₁ nakon loma po armaturi i betonu.

sl.2.43 Izgled zidnog nosača D₂ nakon Ioma izazvanog intenzivnim tečenjem vertikalne armature.

sl.2.44 Izgled zidnog nosača D₃ nakon Ioma usled tečenja vertikalne i glavne – donje armature.

stepeníma opterećenja.

Interesantno je primetiti da je sračunato dopušteno opterećenje u odnosu na primenjenu armaturu za "vešanje" bilo najčešće za oko 50% veće nego u odnosu na glavnu-donju armaturu (v.tablicu 2.5). Medjutim, merenja koja su sprovedena u toku ovih ispitivanja pokazala su da su u nosačima sa prslinama, pri višim fazama opterećenja, deformacije armature za "vešanje" znatno veće od deformacija glavne - donje armature. Ustanovljeno je da to potiče otuda što je krak unutrašnjih sila u isprskanim nosačima znatno veći od kraka tih sila u nosačima za stanja pre pojave prslina, za koja je, prema danas aktuelnim predlozima [11,16, 110], sprovedeno dimenzionisanje ispitivanih nosača, odnosno prema kojima je odredjeno dopušteno-eksploataciono opterećenje.

Iz fotografija (sl.2.42-2.48), dijagrama $P-a_p$ i $P-\mathcal{E}_a$ (sl.2.49-2.54), tablice 2.8, kao i grafičkog prikaza sa sl.2.55 može se konstatovati sledeće:

- Pojava prvih registrovanih kvazi vertikalnih i lučnih prslina u jednom zidnom nosaču nastala je pri skoro istom spoljašnjem opterećenju, koje se,po pravilu, kretalo od 11,5 do 16,7Mp. Ove prsline su nastajale pri naponima zatezanja koji su u dobroj meri odgovarali jednoosnoj čvrstoći betona na zatezanje (v.tablicu 2.2). Ovo je u saglasnosti sa rezultatima ogleda Kupfera |71| prema kojima su granične vrednosti napona zatezanja pri ravnom stanju zatežućih napona gotovo jednake jednoosnoj čvrstoći betona na zatezanje.

Jedino kod nosača ZND₁ prve prsline su se pojavile pri povećanom opterećenju (P=20,0 Mp, odnosno 26,9 Mp), što je najverovatnije, posledica veoma jake donje zategnute zone zidnog nosača. Naime, za razliku od ostalih zidnih nosača, ovaj nosač je imao neprekinute kratke elemente od oslonca do oslonca (sl.2.2). Stoga je on, pre pojave prslina, mogao da primi veću silu zatezanja usled savijanja nego ostali nosači.

- Pojava prvíh prslina je praktično nezavisna od procenta armiranja,kako glavne-donje armature tako i armature za "vešanje" opterećenja. Tako, na primer, prve prsline u jače armiranom zidnom nosacu D₆ pojavile su se skoro pri istom opterećenju kao i u nosacima ZND₂, ZND₃ i ZND₄, koji su imali 100% manje armature za "vešanje" i 33% manje glavne (donje) armature nego u nosaču D₅. Ovo je

sl. 2.45 Lom zidnog nosača D₄ nastupio je po armaturi, a zidnog nosača D₅ i po betonu (izrazito) i po armaturi.

- 82-

sl. 2.46 Lom jako armiranog zidnog nosača D₆ po betonu usled dostizanja graničnih vrednosti napona pritiska.

sl.2.47 Lom zidnih nosača K₁ i K₂ usled slabe armature za direktno prihvatanje "obešenog" opterećenja.

sl.2.48 Lom zidnog nosača D_7 nastupio je po betonu, a zidnih nosača V_1 i V_2 po armaturi.

i potvrda ispravnosti učinjene pretpostavke u poglavlju 4,prema kojoj se, pri uobičajenim procentima armiranja, uticaj armature na nastajanje prvih prslina može da zanemari.

sl. 2.49 Maksimalne širine prslina ap u zavisnosti od opterećenja P .

- Stanje napona i deformacija u nosačima sa prsišnama veoma je zavisno od procenta armiranja. Tako, u jače armiranom nosaču D_6 , pri višim stepenima opterećenja, bile su širine prslina i dilatacije vertikalne armature (armature za "vešanje" opterećenja) od 4 do 8 puta manje nego u odgovarajućim nosačima D_2 , i D, I dok je potpuni lom nosača D_6 nastupio po betonu dostizanjem graničnih vrednosti napona pritiska, dotle su nosači D_2 , D_3 i D_4 dovedeni u stanje loma po armaturi. - Raspored dilatacija a , odnosno napona 6 duž glavnedonje armature, po otvaranju prslina, nije afin dijagramu momenata savijanja, već sa razvojem prslina postaje sve ravnomerniji, što ukazuje da se i ovi nosači, kao i oni sa opterećenjem po gornjoj ivici postepeno transformišu u lukove sa zategom.

sl.2.50 Maksimalne širine prslina a_p usled savijanja u zavisnosti od opterećenja P.

- Do pojave prvih prslina ugib praktično ne zavisi od koeficijenta armiranja (naravno pri istom odnosno H/L) bez obzira da li opterećenje deluje po gornjoj ili donjoj strani zidnog nosača. Medjutim, razvojem prslina, uticaj ovoga koeficijenta postaje vrlo značajan (sl.2.52). Tako, na primer, jako armirani zidni nosać D₆,pri višim stepenima opterećenja, imao je 10-ak puta manje ugibe nego odgovarajući nosači D₂ i D₃, koji su bili armirani sa 50% manjom glavnom i 100% manjom armaturom za prihvatanje "obešenog" opterećenja od nosača D Iz uporedjenja dijagrama na sl. 2.38 i 2.52 jasno se vidi da nosači sa "obešenim" opterećenjem zbog velikog izduženja vertikalne armature-uzengija imaju znatno veće ugibe (donje ivice nosače) nego nosači, opterećeni po gornjoj ivici.

26

- Uticaj odnosa H/L na ponašanje ispitivanih zidnih nosača bio je takodje značajan. Dok su, pri konstantnoj površini glavne i vertikalne armature, niži nosači (D, 1) dovedeni u stanje loma i po betonu i po armaturi, dotle su D_2 D_3 i D_4 i najviši nosači V_1 i V_2 dovedeni u stanje loma samo po armaturi. Doduše, kod nosača D_5 i D, neposredno pred sam lom, najveće izmerene deformacije C_a nisu prelazile 6%. u glavnoj (donjoj) i 4%.(D), odnosno 7%. (D₅) u vertikalnoj armaturi, tako da se sudeći prema dijagramima $P - C_a$ (sl.2.53b i 2.54b), mogla još da povećava granična nosivost ovih nosača. Medjutim, kod nosača D_2 D_3, D_4, V_1 V_2 registrovane su maksimalne dilatacije $\hat{C}_a=9-12\%$ u glavnoj i 12-16%. u vertikalnoj armaturi, pa se u području tečenja čelika gotovo i nije više moglo da poveća spoljašnje opterećenje.

sl.2.52. Dijagram ugib-opterećenje.

I ovde se, kao i kod zidnih nosača opterećenih po gornjoj ivici, može da povećava spoljašnje opterećenje do $\mathcal{E}_a=10\%$. Pri $\mathcal{E}_a>10\%$, povećanje spoljašnjeg opterećenja, u odnosu na ono $\mathcal{E}_a=10\%$, neznatno je i može se zanemariti. Stoga se i kod zidnih nosača sa obešenim" opterećenjem, kod kojih su nastupile izražene deformacije armature, može usvojiti za uslovnu-opredeljenu nosivost ono spoljašnje opterećenje pri kojem dilatacije armature iznose oko 10‰.

Posto je kod prethodnih pet nosača došlo do loma po armaturi, to se nije moglo dobiti povećanje granične nosivosti povećavajući visinu nosača sa H=L (nosači D_2 , D_3 i D_4) na H=1,5 L (nosači V_{1i} V)). Granična nosivost ovih nosača nije povećana čak ni u odnosu na graničnu nosača D_5 , u koga je H=0,8L (tablica 2.8). Jasno je, da je, pri porastu odnosa H/L, i pri povećanju površine armature, naročito vertikalne, mogućno povećavati i graničnu nosivost nosača sve dotle dok do loma ne dodje po betonu. Na primer, kod jako armiranog nosača D_6 (H=L), kod koga je došlo do loma po betonu povećanje granične nosivosti u odnosu na graničnu nosivost nosača D_{2,D_3,D_4} , $V_1 = V_2$ iznosilo je oko 20%.

Da

50,0-

40,0

Maksimalne dilatacije & armature za "vešanje" u funkciji spoljašnjeg opterećenja P . sl.2.54.

25.0
× .
-
100
ж)
-
0
1.004
27.1
- M
- D -
++
11
~
1.000
- 12
100
24
- 1 -0.0
0
100
- CE - L
.0
C .
100
1.64
00
100
EL
- 22-1
200
0
- 25
- 21
44
101
- 24
242
12
100
100
2
100

Karakteristične vrednosti dilatacija E_{α} i širina prslina a_p za zidne nosače opterećene po donjoj ivici .

2 8

Tablica

МАКЗІМАLИА SIRINA Р <i>RSL</i> INA тах Ф _р (тт) РRI <u>L</u> OMU NOSACA			6,0	5,2	11,5	12,0	0,75	18,0	13,0	2,0	3,1	13,1	15,2
КВІТІ́ČNO ОРТЕВЕ́СЕNJE І ^{К,} (Мр) (РВІ Во _{ФФ} ≭10*/)			46,0	37,0	36,0	41,0	49,5	21,0	20,4	35,0	32,5	395	36,0
PRI LOMU NOSACA			55,4	42,0	38,9	ť 6,0	5'67	0'07	36,2	42,0	32,5	44,2	37,1
P (Mp) P 0,3mm			35,5	31,5	31,0	32,0	38,5	17,5	16,5	29,5	15,2	270	32,7
OPTEREĆENJE PRI max d VELIČINE		0.2mm	34,0	29,0	29,0	27,5	32,5	15,0	13,4	24,2	13,1	19.0	27,3
		0]mm	322	19.5	20,5	20,8	23,0	13,2	12,9	18,9	12,5	16,1	19,2
MAKSIMALNE ŠRINE PRSLINA mox Qp (mm) PRI DILATACI JI Eq(%.)	armatura za "vešànje"	ιŋ	1.52	1,25	00	2,35	*	0,42	0,50	0,75	*	1,22	06'0
		60	0,11	0,20	0,31	0,25	*	0,25	0,35	0,50	1,10	0,35	0,22
	glavne armature	G	1,90	*	3,70	3,40	*	*	*	Ŧ	*	5.2	2,8
		82	0,10	0.17	070	0,22	0,25	0,50	0,55	0,20	0,75	070	0,15
opterećenje P(Mp) Pri max Ea(*/**)	ormatura za "vešanje"	ĝ	46.0	37.0	36,0	41,0	*	24,0	23,4	35,0	*	39,5	36,0
		<mark>Eo</mark> .10=1,60	33,0	280	30,0	290	æ	16,0	17,3	26,5	25,0	28,0	28,5
	glavne armotur e	10.0	47,0		38,5	44,0	*	*	*	×	*	43,0	365
		ếv 1.78 Eo	32,0	26,5	325	28,0	345	22,5	21,7	23,5	20,5	29,0	24,5
OPTERECENJE PRI POJAVI PRVE PRSLINE Prodi Rvazi		kvazi verti- kolne	26,9	11,6	15,0	16,7	14,8	12,4	13,2	14,1	12,2	14,2	14,1
		kvazi horizon- talne - - tučne	20,0	11,5	16,0	15,6	14,8	12,4	11,8	12,7	12,2	14,1	15,7
DINOS VISINE H SURON		đ	1,0	10	Q	đ	01	0,	0,8	0,6	15	15	
NN			Ō	0	ő	Q	ů	K,	K2	D,	0	>	V2

92

Grafički prikaz karakterističnih stanja zidnih nosača sa "obešenim" opterećenjem. 2.55. sl.

sl.2.57. Raspored merenih dilatacija & glavne armature duž raspona zidnih nosaca D6, D7, V1 i V2 (E^{lp} pocetak tečenja armature)

95 =

- U prihvatanju "obešenog" opterećenja zidni nosači učestvuju čitavom svojom visinom. Ali, to pretpostavlja da se znatan deo armature za direktno prihvatanje "obešenog" opterećenja produži do gornje ivice nosača kako bi se posle nastanka lučnih prslina i gornji delovi nosača, preko ove armature, uključili u rad. U protivnom, gornji delovi nosača, u koje ne dopire armatura za "vešanje" opterećenja, isključuju se iz rada posle pojave kvazi horizontalnih-lučnih prslina. To se jasno vidi na zidnom nosaču V₂, (sl.2.48), gde je ova armatura bila produžena samo do visine H=L (sl.2.7). Na mestu njenog završetka obrazovala se horizontalna prslina-pukotina, čime je, ako se zanemari doprinos tri vertikalne konstruktivne uzengije (ϕ 4), gornja trećina nosača bila isključena iz daljeg učešća u prenošenju "obešenog" opterećenja (sl.2.61).

Kod zidnog nosača V_1 , koji se razlikovao od zidnog nosača V_2 samo po tome što je imao armaturu za "vešanje" opterećenja po čitavoj visini (sl.2.7), obrazovale su se lučne prsline i u gornjoj trećini nosača. Iz rasporeda merenih deformacija \mathcal{E}_{α} po visini nosača u karakterističnim presecima (sl.2.60 i 2.61) jasno se uočava da se naprezanja vertikalne armature postepeno smanjuju idući od mesta direktnog prihvatanja opterećenja (donje ivice) ka gornjoj ivici nosača. To dopusta da se u gornjim delovima nosača, u cilju uštede, može vršiti smanjenje površine ove armature, naročito u krajnjim četvrtinama raspona.

5

Valja imati u vidu da su ispitivani zidni nosači imali oslonačka pojačanja u vidu stubova (sl.2.43-2.48)i da im, stoga, stanje napona i deformacija, i pri istom odnosu H/L, zavisi od stepena oslonačkih pojačanja (4). Medjutim, kao što je poznato, kod oslonačkih neojačanih zidnih nosača, odnosa H/L≥1,gornji deo nosača (iznad visine H'= L) praktično je slobodan od naprezanja i, kao takav, predstavlja "mrtvi" teret na zidnom nosaču visine H=L.

Gušća horizontalna armatura, rasporedjena iznad glavne, na visini od 1/4 do 1/2 visine nosača, pokazala se vrlo povoljnom. Ona prima deo horizontalne sile iz "zatege" gornjih etažiranih lukova i na taj način "rasterećuje" glavnu-donju armaturu. Za razliku od zidnih nosača opterećenih po gornjoj strani, gde se ova armatura pokazala vrlo efikasnom samo kod viših nosača (H/L> 0,8), ovde se ona pokazala efikasnom za sve ispitivane nosače,bez obzira da li je nosač odnosa H/L=0,6 ili 1,5. Ovo govori u prilog da zategnutu horizontalnu traku ne treba grupisati uz donju ivicu nosača već je treba rasporediti na većoj visini, bar na 0,2 H pri H < L ili 0,2 L pri H > L.

sl.2.60 Dilatacije vertikalne armature zidnog nosača V_1 .

~--

3

q

0

.

- U prenošenju spoljašnjeg opterećenja, naročito po otvaranju prve donje lučne prsline, učestvuje i deo nosača ispod ove prsline (sl.2.42), koji je pretežno napregnut na savijanje. Iz sl. 2.54 se vidi da ukupno naneto spoljašnje opterećenje na nosač može znatno da premaši računsku silu loma $R_{ro} = G_n \sum f_{ou}$ koju mogu da prihvate vertikalne uzengije. Tu razliku opterećenja, uglavnom, prihvata donji deo nosača napregnut na savijanje . To povećanje, kod zidnog nosača D_1 , koji u donjoj zoni ima veoma jaku kontinualnu betonsku traku - gredu, iznosi i preko 100% $P_{1, rač}$. Inače, kod svih drugih nosača, koji su imali oslabljenu zategnutu betonsku traku (sl.2.2) ovo povećanje iznosilo je najviše do 0,4 $P_{1, rač}$. Medjutim, kod jako armiranog nosača D_6 merena sila loma je bila čak i manja od sile $P_{1, rač}$, jer je lom ovoga nosača nastupio po betonu nešto pre dostizanja granice tečenja vertikalne armature.

- Kose uzengije su se pokazale veoma efikasne ako se polažu pod uglom ∞(≥45°, tj. približno u pravcu trajektorija glavnih napona zatezanja (slika 2.58).

- Mereni naponi u betonu se dobro slažu sa rezultatima Teorije elastičnosti sve dok se ne pojave prve prsline [4]. Primena metode konačnih elemenata pri cdredjivanju stanja napona u zidnim nosačima sa prslinama dala je takodje rezultate koji se relativno dobro slažu sa rezultatima merenja na ispitivanim zidnim nosačima, (v.pogl. 5, sl.5.5). Bez obzira na to treba istaći da, pri odredjivanju stanja napona 🖏 iz poznatih (merenih) dilatacija 👘 , može doći do odredjenih netačnosti. Pre svega, veoma mali fond eksperimentalnih podataka ne dopušta da se u oblasti nelinearnog ponašanja betona u uslovima ravnog stanja napona ustanovi tačnija veza izmedju napona i deformacija. Kupfer /71/ je jedan od vrlo retkih istraživača koji je, istražujući ponašanje betona u uslovima ravnog stanja napona, merio dilatacije 🖾 i ε_{by} na betonskim ugledima pri raznim kombinacijama zadatih napona G_{bx}iG_{by} a pod postupno nanetim opterećenjima-sve do loma ugleda. Iz dijagrama koje je konstruisao, koristeći eksperimentalne podatke, mogu se očitati odnosi modula deformacija E_{bx}/E_{bo} i E_{by}/E_{bo} i Poasonovih koeficijenata v_x/v_o i v_y/v_o za odredjene (izmerene) vrednosti dilatacija Ebx i E , yde su Ebo i Vo početni modul elastičnosti i Poasonov koeficijent pri jednoosnom stanju napona. Na taj se

101

-
način, uvažavajući anizotropna svojstva betona, pri poznatimeksperimentom odredjenim-vrednostima E_{bo} i) mogu odrediti naponi u bilo kojoj tački tela, po obrascima:

$$G_{bx} = \frac{E_{bx}}{1 - y_x y_y} \left(\varepsilon_{bx} + y_x \xi_{by} \right) \qquad i \qquad G_{by} = \frac{E_{by}}{1 - y_x y_y} \left(\varepsilon_{by} + y_y \xi_y \right)$$

Pri tome treba istaći da E_{bx}, E_{bx}, \dots nisu konstantne vrednosti, posebno pri višim stepenima opterećenja, već da se menjaju sa promenom dilatacija L, i \mathcal{E}_{bx} , odnosno sa promenom spoljasnjeg opterećenja.

10

2.2.2 PRIMENA REZULTATA OGLEDA PRI DIMENZIONISANJU ZIDNIH NOSAČA

2.2.2.1. Granična stanja zidnih nosača usled dejstva momenata savijanja.

Na csnovu rezultata ogleda utvrdjeno je sledeće:

- krak unutrašnjíh sila z se, sa pojavom i daljim razvojem prslina, stalno povećava (v.sl.2.30 i 2.64).

- normalni naponi pritiska 65,, nastali usled savijanja nosača, nisu bili uzrok iscrpljenju granične nosivosti (v.sl,2.29),

Koristeći rezultate rada autora, saopstene u članku /4/, može se, u fazi pre pojave prslina (krive A,B i C na sl. 2.64), stvarna promena kraka unutrašnjih sila u funkciji statičke visine h i odnosa visine H i raspona l vrlo uspešno aproksimirati pomoću jednačina:

$$\frac{z}{h} = -0,109 \left(\frac{H}{H}\right) + 0,088\frac{H}{L} - 0.651$$
(2.1)

$$\frac{z}{h} = -0,131 \left(\frac{H}{H}\right) + 0,069\frac{H}{R} - 0,662$$
(2.2)

$$\frac{z}{b} = -0.033 \left(\frac{H}{1}\right)^2 + 0.026 - -0.664$$
(2.3)

gde Se jedn.(2.1) odnosi na homogene (neojačane) zidne nosače (kriva A), jednačina (2.2) na zidne nosače sa oslonačkim stubovima relativne "krutosti" $K = \frac{b_{12}}{L_{0}\delta} = 1/3,55$ (kriva B) i jedn.(2.3) na zidne nosače sa poprečnim oslonačkim platnima pri K = 5/4 (kriva C).

Dobra aproksimacija eksperimentalno dobijenih podataka u fazi finih prslina (a_p < 0,1mm) - kriva D, sl.2.64,postiže se ako se krak z lital u obliku:

$$\frac{z}{h} = \frac{3}{4} \frac{1}{\sqrt{H/l}}$$
 (2.4)

pri tome su se mereni naponi \mathfrak{G}_0 u glavnoj armaturi, u preseku sa prslinom, najčešće kretali u granicama dopuštenih napona. Stoga se prethodni obrazac može koristiti za odredjivanje potrebne armature F_a ($F_{\perp} = M/z \, \mathfrak{G}_0$) iz zadatog dopuštenog spoljašnjeg momenta M ili, za odredjivanje dopuštenog momenta M iz zadate-poznate armature F

Promena kraka unutrašnjih sila **z** u funkciji odnosa H/t, pri maksimalnoj širini prslina (od savijanja) max $a_p = 0,1$ mm,odnosno 0,3mm(prave E,F), može se, za istraživane odnose 2/3 W 1,67 tj. za $0.6 \leq H/l \leq 1.5$ pri 1 = 0.9L, aproksimirati jednačinom prave, $\frac{Z}{L} = 0.97 - 0.36 H/l$ (2.5)

odnosno

Takodje i na početku tečenja glavne armature ($E_a^{(P)}=6_{V}/E_a$) može se promena kraka z izraziti jednačinom prave

$$\frac{Z}{h} = 0.93 - 0.04 \,\text{H/L}$$
 (2.7)

Medjutim, pri daljem povećanju dilatacija, odnos z/h sve više postaje nezavisan od odnosa H/l. Tako na primer, pri $\mathcal{E}_{a} = 10\%$ dobija se $\mathbf{Z} = 0,96h$ (prava H) a pri veoma izraženom tečenju armature ($\mathcal{E}_{a} > 20\%$)

posle pojave prvih prslina usled savijanja; o pri max Qp=0,1mm;
 △ pri max Qp=0,3mm; ▲ na početku tečenja glavne armature;
 Eamar 10%,...; V potpuni lom nosača; +...ogledi Schutt-...

6

Iako su prethodne jednačine dobijene uglavnom, na osnovu ogleda na zidnim nosačima sa oslonačkim stubovima, ipak, njih je moguće koristiti pri odredjenim uslovima i na zidne nosače sa drugim stepenima oslonačkih pojačanja. Naime, sa promenom ovoga stepena, a zavisno od odnosa H/L i "stanja" nosača menja se i krak unutrašnjih sila z. Medjutim, dok su njegove promene u stanju preČnastanka prslina nešto značajnije (pri većim odnosima H/L) dotle su, u nosačima sa prslinama, a naročito u stanju tečenja armature, one mnogo manje izražene, pa se u praksi mogu zanemariti, Pošto prikazani rezultati ogleda ne obuhvataju nosače odnosa H/L > 2, to se, za sada, ne može sa sigurnošću da proceni kolíko se povećava granične nosivost zidnih nosača pri H > 2 , u odnosu na nosače sa H=21 . Stoga se preporučuje da se, u nedostatku eksperimentalnih podataka, deo nosača koji se nalazi iznad visine H'=21 smatra"mrtvim" teretom, tj. da ne učestvuje u radu nosača. Ovo se, naravno ne odnosí na homogene zidne nosače, jer kod njih, kao što je poznato, deo nosača već iznad visine H'= L predstavlja"mrtvi" teret, pa bez obzira na njegovu stvarnu visinu, u proračun se može uvesti samo visina H'-L. Valja zapaziti da u ogledima izvedena oslonačka podebljanja u vidu stubova, (u odnosu na dimenzije zida Ix S) predstavljaju takva podebljanja ispod kojih se obično i ne projektuju i ne izvode zidni nosači u inženjerskoj praksi. Stoga, primena prethodnih jednačina i na dimenzionisanje zidnih nosača sa većim stepenom oslonačkog pojačanja leži na strani sigurnosti,

Ogledima je utvrdjeno da kod zidnih nosača sa "obešenim" opterećenjem u fazama posle pojave prslina, naprezanja glavne armature postaju veća a krak unutrašnjih sila z (rezultujuća strela etažiranih lukova) manji nego kod odgovarajućih zidnih nosača opterećenih po gornjoj ivici. To potiče, najverovatnije otuda što je donji deo nosača (odvojen lučnom prslinom) dodatno napregnut na savijanje usled smanjene svoje krutosti i izduženja armature za "vešanje" opterećenja. Takodje, sa formiranjem etažiranih lukova i daljim porastom opterećenja, sporije se "seli" sila pritiska u gornje delove nosača nego što je to bio slučaj kod nosača opterećenih po gornjoj ivici. Povećanje naprezanja u armaturi, odnosno smanjenje kraka z kod ovih nosača u odnosu na one opterećene po gornjoj ivici može da iznosi oko 10-20%. Ono je jače izraženo pri viším stepenima opterećenja, kod viših nosača i pri slabijoj armaturi za "vešanje" opterećenja.

Pri jačoj armaturi za "vešanje" (🖉 > 2,5 🖘)

razlike postaju beznačajne. Iako su ogledi autora pokazali da zidni nosači čija je visina H veća od raspona l, sudeluju celom svojom visinom u prenošenju "obešenog" opterećenja (ako se armatura za "vešanje" produži po celoj visini) i time povećaju graničnu nosivost u odnosu na one u kojih je H= l,ipak, za sada, u nedostatku brojnijih ogleda, predlaže se da se, u inženjerskoj praksi, uticaj dela nosača iznad visine H'= L,na stanje napona i deformacija zidnih nosaća, zanemari bez obzira na velićinu stepena oslonačkih pojačanja. Treba istaći da je kod ovih nosača uticaj stepena oslonačkih pojačanja znatno manje izražen nego kod nosača opterećen po gornjoj ivici, jer se znatan deo "obešenog" opterećenja kod viših nosača prenosi na oslonačke preseke još u donjem delu nosača.

Pošto normalni naponi pritiska u betonu 🛛 🖧 pri savijanju nosača nlukom slučaju nisu bili kritični, bez obzira na odnos H/L, na stepen oslonačkih pojačanja, kao i na procenat zategnute armature, može se smatrati da lom zidnih nosača usled savijanja nastaje uvek po armaturi-tečenjem čelika. Jer, da podsetimo, pri dilatacijama a 10% napon 66x se nalazi u granicama (1/3 do 1/2/4.2) Ako se zna da je u sprovedením ogledima čvrstoća prizme /3priznosila oko 290, odnosno 200 kp/cm², onda se može zaključiti da ce pri niskim markama betona,biti zadovoljen ovaj uslov. Tek kada č<mark>e-</mark> lik dospe u zonu"ujačanja" napon Gbx teži čvrstoći prizme /Spr 🐁 Ni pri jačim procentima armiranja kada armatura ne teče nisu kritični naponi G_{bx} . Ogledi autora pokazuju da se tada lom ne može postići savijanjem pošto se javljaju druga slabija mesta koja prouzrokuju lom nosača. Naime, u tim slučajevima nosač dostiže graničnu nosivost po kosim ravnima-smicanjem, jer u podupirujućim trakama, odvojenim prslínama-napon pritiska dostiže graničnu ćvrstoću.

Kod zidnih nosača opterećenih po gornjoj ivici napon G_{bx} može dostići čvrstoću (1,15-1,30) β_{br} s obzirom da u ovoj oblasti vlada dvoosno stanje pritiska (v.sl.3.6 u poglavlju 3). Stoga je razumljivo što se, i pri veoma izraženim deformacijama glavne armature, vrlo retko dostiže ova granična čvrstoća betona. Medjutim, kod "obešenog" opterećenja, zbog neopterećene gornje ivice, granične vrednosti napona pritiska G_{bx} ne mogu biti veće od A_{pr} . Ipak, ogledi autora su i ovde pokazali da ovi naponi nisu bili oni koji su prvi postali kritični. Tako, na primer, kod slabo armiranih preseka prvo teče armatura, a onda, tek pri C_{ax} 10%, ovi naponi mogu

106 -

da dostignu graničnu vrednost, dok kod jako armiranih preseka lom nosača se dešava u okolini oslonaca gde se više etažiranih lukova sustiče u uske nagnute trake, koje su od "obešenog" opterećenja još i ekscentrično napregnute.

sl. 2.65 Statički nepoznate Xi,Yi i Ti (i = 1,2...) u zidnim nosačima sa prslinama .

nì.

Tačniji proračun stanja napona i deformacija zidnih nosača sa prslinama predstavlja veoma složen zadatak. O problemima koji se pri tome mogu pojaviti detaljno je pisano poglavljima 4 i 5 ovog rada pa se na tome ovde nećemo zadržavati. Na slici 2.65 prikazana je jedna mogućnost rešenja problema primenom unutrašnje statički neodredjene rešetke sa nepoznatim silama u štapovima armature X_i i Y_i (i = 1,2...n) i nepoznatim silama trenja u površi prslina 🐂 (i = 1,2...n). U poglavlju 5 problem stanja napona i deformacija u armirano-betonskim zidnim nosačima, za razna stanja prslina, rešavan je primenom metode konačnih elemenata. Takvi postupci rešenja problema, pre svega, imaju istraživački karakter. Medjutim, treba težiti da se zadaci u inženjerskoj praksi rešavaju na jednostavniji,ali za praksu ipak dovoljno tačan način. Na osnovu rezultata ogleda i sprovedene analize može se, pri proračunu zidnih nosača na savijanje, krak unutrašnjih sila z, zavisno od graničnih stanja, sračunavati po obrascima (2.1-2.7). Ako se usvoji da maksimalno krítično opterećenje nastaje pri $\mathcal{E}_{a}=10$ ‰, onda se može uzeti

da je z≈0,95h, Kod nosača sa "obešenim" opterećenjem treba,kako je ranije konstatovano da se, za sva"stanja" posle pojave prslina, vrednost kraka z, sračunata po prethodnim obrascima umanji u proseku za 15%.

Na ovaj način, problem granične nosivosti zidnih nosača na savijanje svodi se, u suštini, na problem granične nosivosti linijskih nosača, samo što se, zbog velike zakrivljenosti preseka, ne koristi Bernoulijeva hipoteza, već se, iz ogleda odredjenom veličinom kraka unutrašnjih sila z, unapred osigurava da do loma preseka dolazi samo po armaturi, sl.2.66a. Ako se iz x = 0 dobije da je sila zatezanja $Z_a = \frac{1}{2} \times \frac{1}{2}$ pr (sl.2.66),što je svojstveno jako armiranim presecima,onda je to znak da su već pre toga glavni napon pritiska-u kosim podupirujućim trakama, prslinama odvojenim, a armaturom spojeni- dostigli granične vrednosti

Dobra aproksimacija rezultata ogleda naprezanja horizontalne armature P po visini zategnutog preseka postiže se ako se ovo naprezanje rasporedi shodno dijagramu prikazanom na slici 2.66b.

sl.2.66. Raspored napona po visini preseka u stanju granične nosivosti .

2.2.2.2. Granična stanja zidnih nosača usled dejstva transverzalnih sila.

Pojave koje se manifestuju pri ispitivanju zidnih nosača kod kojih je do loma došlo razdvajanjem zida cd oslonačkog stuba (platna) veoma su slična pojavama koje prate uglede na kojima se je , na klasičan način,odredjivala čvrstoća betona na smicanje. Prema Morsch-ovim ispitivanjima (sl.2.67) ugled se pod opterećenjem savija i zbog toga u njemu nastaju normalni naponi koji intenzivnije rastu kada se pojavi prslina "1". No, ta prslina ne prouzrokuje lom ugleda pa opterećenje i dalje raste sve dok se ne pojavi pukotina "2" koja prouzrokuje lom ugleda. I kod zidnih nosača, kao što je opisano u tački 2.2.1.1, veoma rano se javljaju prsline usled savijanja, ali lom nosača, slično Morsch-ovim ispitivanjima, nastaje mnogo kasnije i pri znatno većem opterećenju-u ravni spoja zida sa oslonačkim stubom,odnosno platnom. Merenja su takodje pokazala da, u ovim ravnima,osim smičućih postoje i normalni naponi.

Treba naglasiti da su naponi smicanja veoma neravnomerno rasporedjeni po visini preseka i da u znatnoj meri zavise od stepena oslonačkih pojačanja (sl.2.41 Iz izmerene transverzalne sile pri lomu Qt može se dobiti prosečna vrednost napona smicanja pri lomu po obrascu: gde su H-visina i -debljina zidnog nosača. Ima indikacija da je raspored ovog napona po visini pre seka u"stanju"koje prethodi lomu

(2.8)

relativno ravnomeran zbog plastifikacije preseka. Ako se u koordinatnom sistemu β_s/β_{Pr} , H/δ nanesu ogledom dobijene vrednosti više autora (sl.2.68), dolazi se do zaključka da, pri porastu odnosa H/δ opada čvrstoća betona na smicanje β_s . To je i logično, jer je kod viših nosača, savijanje manje izraženo, a time su manji i normalni naponi pritiska. Već pri $H/\delta \ge 25$, uticaj normalnih napona na veličinu napona smicanja je beznačajan pa se β_s približava čistom smicanju.

Dobra aproksimacija ogledom dobijenih podataka za napon smicanja 💪 i silu 🖉 postiže se primenom jednačine

odnosno;

$$Q_1 = 0.6 /3 \text{ pr} \sqrt[3]{H/d}$$
 (2.9)

Prema rezultatima ogleda Graf-a, prosečna čvrstoća betona na smicanje β_5 , definisana na Morsch-ov nacin zavisi i od procenta armiranja betonskog preseka. Tako, pri ispitivanju nearmiranih ugleda odnosa H/δ = 1, dobijeno je $\beta_5=0,22\beta_K$, odnosno $\beta=0.28\beta_{\rm Pr}$, a pri srednje armiranim presecima, sa odnosom strana H/δ =1,5... =0.42 β_K , odnosno $\beta_5=0.53\beta_{\rm Pr}$ (pri $\beta_{\rm Pr}=0.8\beta_K$). I ispitivanja autora ovog rada su pokazala da na veličinu graničnog opterećenja, osim kvaliteta betona utiče i veličina procenta armiranja "smičućeg" preseka. Primera radi, zidni nosač ZN6, sa M = 0.85% odnosno ZNT3, sa = 0.90%, imao je silu Q = 41.8Mp, odnosno = 44.2Mp (najmanje), dok su njima, po geometriji i kvalitetu betona istovetni nosači ZNT₁ i sa M = 0.51%, imali sile Q = 28.9Mp i Q = 28.8Mp.

sl.2.68. Granične vrednosti odnosa napona /3₅//3_{p1} u funkciji odnosa H/& (/3₅≠Q1/H &) .

Prosečne vrednosti napona smicanja i sile Q_A , odredjene obrascima (2.8),odnosno (2.9), u dobroj meri odgovaraju procentu armiranja $\mathcal{M} = 0, 5$ %. Predpostavi li se da će taj procenat biti i minimalni u inženjerskoj praksi, jer u stvari, odgovara konstruktivnom armiranju zidnog nosača, to se iz izraza (2.9) dobija i praktično najniža vrednost granične sile smicanja . U nedostatku dovoljnog broja eksperimentalnih podataka, može se, i pri višim procentima armiranja koristiti obrazac (2.9). U tom slučaju dobijene vrednosti za silu Q nalaze se na strani sigurnosti.

Kao što je poznato , prema Morsch-ovoj interpretaciji, čvrstoća materijala u ravnima smicanja može se predočiti u obliku niza bes[konačno malih"zubaca". U svakom zupcu može se napon smicanja zameniti naponima pritiska $G_{\rm P}$ i naponima zatezanja $G_{\rm Z}$,gde su G_{p} i G_{z} granične vrednosti glavnih napona u betonu (u uslovima ravnog stanja napona), v.jedn.3.9,poglavlje 3 ovog rada. Pri tome su $G_{p} < \Delta_{p}$ i $G_{z} < \beta_{z}$, gde su β_{pr} i β_{z} jednoosne čvrstoće betona pri pritísku i zatezanje.

Uzajamna pomeranja dvaju-nagnutim prslinama-odvojenih delova zidnih nosača biće sprečena ako beton prima silu pritiska D_b , a armatura silu zatezanja Z_a (sl.2.69). Iz ogleda koje je autor ovoga rada sproveo (v.sl.2.15-2.25) i na osnovu njegovih teorijskih razmatranja /4/,može se zaključiti da nagib ovih prslina zavisi od odnosa dimenzija H/L i od stepena oslonačkog pojačanja, a da praktično, za uobičajene procente armiranja, ne zavisi od procenta i položaja armature. Detaljnim pregledom zdinih nosača, ojačanih stustubovima, ustanovljeno je da se, na delu nosača, u neposrednoj blizini spoja zida sa stubom, nagib prsline, u odnosu na horizontalu - zavisno od odnosa H/L-okvirno kretao u sledećim relacijama: $\alpha = 50-55^\circ$ za H/L=0,6 ; $\alpha = 55-65^\circ$ za H/L=0,8; $\alpha = 60-70^\circ$ za H/L=1 i $\alpha = 65-75^\circ$ za H/L=1,5.

sl.2.69 "Mehanizam" loma zidnog nosača na spoju zid-stub :

Potrebna površina armature za prijem sila zatezanja usled glavnih napona zatezanja, shodno slici 2.69, može se izraziti u obliku:

 $F_{0b} = \frac{Q}{\sin (\varphi + \cos \varphi t_{Q})} = \frac{Q}{G_{Q}} \cdot \frac{1}{5}$ gde je koeficijent =(sm f+cos f), za uobićajene nagibe ove armature ($\varphi = 0, \varphi = 30^{\circ}$ i $\varphi = 45^{\circ}$) grafički predstavljen na sl.2.70 u funkciji donje granice merenog ugla pri raznim odnosima H/L. Za zidne nosače odnosa H/L=0,5; 2,0 i 3,0, koje autor ovog rada nije eksperimentalno istraživao, korišćeni su podaci iz ogleda Schutt-a /120/ i Godyckog /35/ Za primenu u praksi pogodnije je da se koeficijent izrazi u funkciji odnosa H/L (sl.2.71).

Tada se veoma dobra aproksimacija eksperimentalno dobijenih podataka postiže ako se ovaj koeficijent izrazi u obliku = 112 =

odnosno

 $\xi = \frac{1}{2\sqrt{H/L}}$

$$3 = \frac{0.43}{(H/L)} + 0.14$$
(2.12)

gde jedn. (2.11) odgovara armaturi položenoj pod uglom $\Upsilon = 30-45^{\circ}$, a jednačina (2.11) - horizontalnoj armaturi ($\Upsilon = 0$). Iz dijagrama sa slike 2.71 jasno se uočava da koeficijent , tj. armatura Fas (vidi jedn.2.10) bitno zavisi od odnosa dimenzija nosača H/L,naročito pri nižim vrednostima toga odnosa. Što je taj odnos veći manji je koeficijent , tj. treba manje armature F . Takodje se vidi da je, pri H/L \leq 1,5, efikasnije ovu armaturu polagati pod uglom $\Upsilon = 30-45^{\circ}$ a pri H/L 1,5 postaje efikasnija horizontalna armatura. Za nosače odnosa H/L > 3, u nedostatku eksperimentalnih podataka, predlaže se da se za i usvoje one vrednosti koje odgovaraju zidnim nosačima dimenzija H/L=3.

Na osnovu sprovedenih ogleda može se smatrati da do Q=1/3Q{ (gde je o odredjeno jednačinom 2.9) nije potrebna posebna armatura za osiguranje zidnih nosača od glavnih napona zatezanja. Tada je i samo prisustvo konstruktivne armature dovoljno za obezbedjenje nosača od ovih napona. Medjutim, bez obzira na količinu armature F_{as} , koja se dobija prema prethodnim obrascima, preporučuje se da dopuštena transverzalna sila Q niukom slučaju ne prekorači vrednost od 2/3xQ₁. Ako se to ipak desi tada treba povećati ili kvalitet betona ili debljinu nosača ili oboje. Inače, kao što je poznato, može se ova armatura odrediti prema teoriji granične nosivosti po obrascu:

(2.13)

gde je Ĝ_{vi} - granica velikih izduženja čelika. Tada se pri utvrdjenom koeficijentu sigurnosti protiv loma (npr. =1,8) lako dobija transverzalna sila g=g₁/g .

Iz ogleda koje je autor sproveo na zidnim nosačima "obešenim opterećenjem a takodje i iz ogleda Schutt-a /120/ i Godyckog /35/ može se pretpostaviti da je, kod nosača odnosa H/L>1 doprinos graničnoj nosivosti dela nosača iznad visine H'= L ipak ograničen i da može biti od većeg značaja samo pri većim procentima armiranja armaturom za prihvatanje "obešenog" opterećenja. Za sada, u nedostatku brojnih ogleda predlaže se da se kod ovih nosača zanemari doprinos graničnoj nosivosti dela nosača iznad visine H'= L. U tom slučaju, potrebna armatura F_{as} za zidne nosače, odnosa strana H/L>1, jednaka je armaturi kvadratnih zidnih nosača (H=L).

(2.11)

Zavisnost koeficijenta (od sl. 2.70 veličine ugla 🗸 .

st. 2.71 Zavisnost koeficijenta 3 od odnosa dimenzija zidnog nosaca H/L .

(2.14)

P=K B= SH

U poglavlju 1 ovoga rada već je rečeno da su Ramakrischn<mark>an</mark> i Ananthanarayana /109/, prilikom ispitivanja armiranobetonskih lijskih i zidnih nosača, uočili da je lom ovih nosača koji je prouz-<mark>rokovan</mark> "dijag<mark>on</mark>alnim" <mark>z</mark>atezanjem sličan lomu cilindričnih uzoraka opterećenih po izvodnici. Stoga se može, koristeći tu sličnost,predvideti i opterećenje koje izaziva"dijagonalnu" prslinu-pukotinu kod ovih nosača. Na slici 2.72 prikazano je jedno statički moguće polje sila. Sila pritiska 🖡 u ravni cepanja AB, pri kojoj dolazi do obrazovanja "dijagonalne" prsline pukotine,iznosi

qde su:

K- koeficijent"cepanja" koji zavisi od veličine i oblika

uzorka, kao i od vrste opterećenja. elos – čvrstoća betona pri zatezanju cepanjem cilindra. 🔊 H-debljina i visina uzorka (nosača) Hein-površina ravni cepanja ٥. Iz uslova ravnoteže; $dS_1 \cos \alpha - dS_2 \cos \beta = 0$ $dS_1 \sin \alpha + dS_2 \sin \beta = 0$ $d \propto - 0$

US, - dP cos(0-0)

- 114 -

dobija se sila P u obliku,

$$P_{c} = q \int \frac{\cos \beta \cos(\delta - \alpha)}{\sin(\alpha + \beta)}$$
(2.15)

ili, izraženo u funkciji dimenzija nosača,

$$P_{c} = \frac{9}{6\pi} \left(l \cos \delta + \sin \delta \right)$$
 (2.16)

Iz uslova ekstremuma ∂_{c}/σ = Oproizilazi da se najveća veličina sile P_{c} dobija pri nagibu" dijagonalne" prsline odredjene izrazom:

$$t_g \delta' = 3H/t$$
 (2.17)

Dobra slaganja ogledom dobijenih nagiba "dijagonalne" prsline (v.sl.2.15 - 2.25) sa vrednostima koje daje obrazac (2.17), ukazuju da se,na ovaj vrlo jednostavan način,mogu dobiti zadovoljavajuća rešenja.

sl.2.72 Uprošćeni model zidnog nosača za odredjivanje "dijagonatne" prstine.

Izjednačujući desne strane jednačina (2.14) i (2.16) i, pri tome, koristeći uslov (2.17) dolazi se do obrasca za odredjivanje ukupne spoljašnje sile $P=q \[l]$, pri kojoj se očekuje obrazovanje dveju simetričnih dijagonalnih prslina-pukotina AB i A'B', sl.2.72,

 $P = 2 K_{c} \beta_{z} \delta_{c} H \qquad (2.18)$ Na sličan način se može doći do istog obrasca ako deluju koncentrisane sile. Samo se tada"dijagonalna prslina obicno obrazuje na pravcu koji prolazi kroz oslonac i njemu najbližu tačku u kojoj deluje koncentrisana sila.

Kao što je poznato, u ogledima na cilindričnim uzorcima,dobija se

K=1,57 a u ogledima na kockama – cepanjem po dijagonali K=1,36 . Sa slike 2.73 , na kojoj je dat grafički prikaz zavisnosti izmedju izmerenog opterećenja $P_{\rm m}$ (pri kome se obrazuje "dijagonalna" prslina) i proizvoda β_z r/, može se zaključiti da se rezultati ogleda (na zidnim nosačima) grupišu u području jedne relativno uske tra-

9

ke, a da se zavisnosti izmedju njih mogu smatrati linearnom. Ogledom dobijene vrednosti koeficijenta K za zídne nosače kreću se od 1,20 - 1,60. Akc se za razumnu donju granicu, bez obzira na vrstu opterećenja usvoji vrednost K=1,25 tada se može očekivati obrazovanje dijagonalne prsline-pukotine pri sili

 $P = 2, 5 \cdot \beta_z \cdot S \cdot H$ (2.19)

Ogledi su pokazali da se obrazovanjem dijagonalne "prsline najčešće ne iscrpljuje granična nosivost zidnih nosača. Zavisno od preseka armature, koja preseca ovu prslinu, naročito donje-glavne armature i ugla pod kojim armatura preseca ovu prslinu, može se granično (kritično) opterećenje i značajno da poveća (prema ogledima autora i do 30-40%) u odnosu na ono pri kojem se obrazovala dijagonalna " prslina. Ako je glavna i horizontalna armatura slaba ,

SU:

"cepanja" K .

onda je taj doprinos mnogo manji. Na primer, kod zidnih nosača ZN8 i ZN8a, na onoj strani gde je armatura znatno reducirana usled njenog povijanja pod velikim uglom, do loma nosača je došlo neposredno po obrazovanju "dijagonalne" pukotine. Otuda je veoma važno da se glavna armatura u punom iznosu "provede" od jednog do drugog oslonca i tu dobro akeruje.

2.2.3 · ZAKLJUČCI

Na osnovu rezultata eksperimentalnih istraživanja o ponašanju zidnih nosača i njihove analize može se zaključiti sledeće:

 Do pojave prvih prslina, može se sa stanovišta inženjerske prakse, smatrati da se zidni nosači elastično ponašaju.

2. Po otvaranju prslina dolazi do preraspodele unutrašnjih sila pri čemu se krak znatno povećava u odnosu na stanje pre pojave prslina. Stoga su izmereni naponi u glavnoj armaturi bili znatno manji od napona dobijenih prema teoriji elastičnosti, tj, prema naponskoj fazi I.

3. Sila zatezanja u glavnoj-donjoj armaturi u nosaču sa prslinama nije afina linija M/z,već je skoro konstantna duž čitavog raspona nosača, naročito po obrazovanju kose-dijagonalne prsline. To, znači da se, sa razvojem prslina, zidni nosači transformišu u luk sa zategom. Stoga je veoma važno da se glavna - donja armatura u punom iznosu "vodi" pravo od oslonca do oslonca i tu-za pun iznos sile zatezanja, dobro usidri. Inače, slabljenje ove armature, idući prema osloncima, njenim povijanjem, pod većim uglom-radi prijema glavnih zatezanja, smanjuju graničnu nosivost zidnih nosača.

4. U cilju smanjenja širina prslina i, uopšte, radi "umirenja" deformacija zidanih nosača, ne treba glavnu – donju armaturu koncentrisati neposredno uz ivice nosača, već je rasporediti na odredjenoj visini približno na oko H/5, \circ pri H l, ili l/5, pri H>li gde su H visina a l raspon zidnog nosača. Takodje, iz istih razloga, i horizontalnu armaturu, koja se, i inače, iz konstruktivnih razloga daje po "obrazima" zidova po celoj visini nosača, poželjno je progustiti"za 25-50 % u donjem delu nosača (na visini oko H/3 pri H<liii

l/3, pri H>L. Ogledi autora su pokazali da je potreba za ovakvim rasporedom armature više izražena kod zidnih nosača srednje visine (0,75 \leq H / $1\leq$ 1,0),nego kod nižih i viših.

5. Vertikalna armatura (uzengije) zidnih nosača, opterećenih po gornjoj ivici, pokazala se malo efikasnom (naročito pri porastu odnosa H/l), s obzirom da preseca kose-dijagonalne prsline pod oštrim uglom ($\propto < 30^{\circ}$). Sa stanovišta rezultata ovih ogleda, ona ima najčešće karakter konstruktivne armature. Njeno dejstvo dolazi do većeg izražaja samo kod vrlo niskih zidnih nosača, najčešće onih koji su opterećeni koncentrisanom silom, jer tada dijagonalna prslina sa ovom armaturom, zatvara ugao i do 45° .

Na osnovu ovih ogleda, može se reći da su francuski propisi /110/ precenili ulogu armature, predlažući da njen presek bude dva do tri puta veći od preseka horizontalne armature.

6. Pokazalo se da je armatura za prijem glavnih napona zatezanja, kod nosača opterećenih po gornjoj ivici efikasnija ako se postavlja pod uglom $\propto < 45^{\circ}$, nego pod uglom $\propto = 45-60^{\circ}$, kako su predlagali Bay /11/ i Schütt /120/. 7. Uticaj stepena oslonačkih pojačanja na stanje napona i deformacija, tj. na ponašanje zidanih nosača, može biti vrlo značajan. Stoga se o tome mora voditi računa pri proračunu ovih nosača. Od veličine toga stepena zavisi naprezanje u armaturi i betonu, razvoj prslina, vrsta i veličina sile loma i dr. Taj uticaj je mnogo više izražen kod nosača opterećenih po gornjoj , nego po donjoj ivici, a povećava se pri porastu visine nosača H u odnosu na raspon į.

8. Razlike u ponašanju, a naročito u graničnoj nosivosti izmedju zidnih nosača, čija je visina veća od raspona i kvadratnih (H=ĺ) zavise, pre svega, od stepena oslonačkih pojačanja i mesta delovanja spoljašnjeg opterećenja. One se povećavaju pri porastu stepena oslonačkih pojačanja, a, pri istom stepenu, znatno su veće kada opterećenje deluje po gornjoj, nego po donjoj ivici nosača.

Pri delovanju opterećenja po donjoj ivici, te razlike se najčešće mogu zanemariti, izuzev u onim slučajevima kada se relativno jaka armatura za direktno prihvatanje "obešenog" opterećenja produži, u potrebnom iznosu, u gornje delcve nosača koji se nalaze iznad visine H' = \overline{l} . Inače, kod neojačanih zidnih nosača, odnosa H / \overline{l} >1, bez obzira na mesto delovanja opterećenja, deo nosača iznad visine H' = \overline{l} treba smatrati samo "mrtvim" teretom.

9. Kod dovoljno jake glavne – donje armature (i jake armature za "vešanje" kod nosača sa "obešenim" opterećenjem) glavna opasnost po lom nosača predstavlja dostizanje graničnih vrednosti napona pritiska u nagnutim – podupirućimlućnim betonskim trakama.

Medjutim, normalni naponi pritiska $\mathcal{O}_{\mathbf{x}}$ u sredini raspona nisu kritični ni za najniže marke betona. 10. Proračuni zidnih nosača_,na klasičan način,prema Teoriji elastičnosti, po pravilu , daje neekonomična rešenja. Ogledi pokazuju da su koeficijenti sigurnosti protiv loma dosta visoki , naročito kod nosača opterećenih po gornjoj ivici.

Da bi se što bolje aproksimiralo stvarno ponašanje zidnih nosača , kako u fazi pre pojave prslina , tako i u fazi obrazovanja i daljeg razvoja prslina-zaključno sa lomom , autor ovoga rada predlaže nove obrasce koji mogu korisno poslužiti u praksi pri dimenzionisanju nosača za različita granična stanja (v.t.2.2.2) . Ovi obrasci su dobijeni na osnovu eksperimentalno statističkih podataka .

10

3. GRANIČNE VREDNOSTI NAPONA U BETONU ZA RAVNO STANJE NAPONA

3.1. Analiza značajnijih istraživanja u svetu o ponašanju betona u oblasti granične ravnoteže

Prva saznanja o čvrstoći materijala datiraju još iz vremena Galileja, iz prve polovine 17. veka. Poznato je da se on još tada bavio odredjivanjem opterećenja koje savijeni nosač dovodi u stanje loma. Kasnije, u 18. i 19. veku, postavljene su i prve hipoteze za odredjivanje opterećenja loma, dok je praktično istraživanje ponašanja materijala počelo početkom ovoga veka, prvo na metalima, a zatim, naglim razvojem gradjevinarstva, na kamenu i betonu. U ovoj drugoj grupi materijala, koja se karakteriše različitim čvrstoćama pri pritisku i zatezanju, prve značajne radove dali su: Föppl (1900), Considere (1902), Karman (1911), Böcker (1915), Brandtzaeg (1928), Roš i Eichinger (1928), zatim Mörsch (1930), Leon (1934), Caquot (1935), Brice (1935) i dr. Mohr je još 1900. godine, umesto Coulomb-ove linearne veze izmedju 6n i Cnu ravni klizanja, postavio opšti izraz (obvojnicu), koju putem ogleda treba odrediti posebno za svaki materijal. I posle II svetskog rata, a posebno u poslednjih 15-ak godina, intenzivno se radi, kako na eksperimentalnom istraživanju ponašanja betona u oblasti graničnih stanja, tako i na formulisanju analitičkih veza za opisivanje tih stanja. U ovome periodu značajni su radovi Feinberg-a /25/ na postavljanju teorijske osnove metode za proračunavanje konstrukcija u uslovima granične ravnoteže, Gvozdjeva /39/ na daljoj razradi ove metode i na analizi ponašanja konstrukcija u uslovima prostornog stanja napona, zatim radovi Filomenko-Borodič /27/, u kojima se daje široka generalizacija Mohr-ove teorije; pri tom se granično stanje izražava pomoću funkcije f(61,62,63)=0 . Takodje su od interesa i radovi L'Hermite-a /84/, Berg-a /14a/, Genijev-a /28, 29/ Lukše /87/. Veoma značajan doprinos u ovoj oblasti dao je M. Ivković /50/. On je prvi uočio nedostatak granične površine u obliku rotacionog paraboloida u naponskoj oblasti gde je bar jedan od glavnih napona-napon zatezanja, predložene u radu /29/.Osim predloga za uslov loma, on je dao i vezu izmedju tenzora napona

i tenzora brzine deformacije. U suštini, on je pokrenuo pitanje definisanja reološkog modela za stanje napona i deformacija neposredno pred nastajanje loma betona.

10

Brojna eksperimentalna istraživanja pokazuju da granične vrednosti napona u betonu (u odnosu na čvrstoću prizme Bpr) u znatnoj meri zavise od vida naponskog stanja, veličine i znaka tih napona. Ogledi takodje pokazuju da granične vrednosti napona zavise i od karaktera opterećenja (statičko, dinamičko ili promenljivo), vremena trajanja (kratkotrajno ili dugotrajno), vlažnosti, temperature i dr. Uzimanje u obzir svih ovih faktora, posebno kada se beton nalazi u uslovima složenih naponskih stanja, predstavlja težak zadatak, u prvom redu, zbog nedovoljnog fonda eksperimentalnih podataka. Ipak, kada je reč o ponašanju običnogteškog betona u oblasti granične ravnoteže, a pod delovanjem kratkotrajnog statičkog opterećenja, može se reći da, i pri složenim naponskim stanjima, postoji dosta eksperimentalnih podataka. Medjutim, ti podaci su vrlo protivrečni, tako da je nemoguće, bez svestrano sprovedene analize, donositi zaključke o "čvrstoćama" betona pri složenim naponskim stanjima. Može se reći da se došlo u paradoksalnu situaciju, u kojoj povećanje broja eksperimentalnih podataka unosi sve veću zabunu. Rezultati koje saopštavaju pojedini istraživači medjusobno se razlikuju i do 100%. Tako, na primer, za ravno stanje napona, koje se u ovom radu i razmatra, dobijene su, pri delovanju jednakih glavnih napona pritiska, granične vrednosti $G_1 = G_2 = (1, 15 + 2, 20) \beta_{pr}$, gde je β_{pr} jednoaksijalna čvrstoća betona pri pritisku odnosno čvrstoća prizme. Pri tom se rezultati H. Kupfer-a, H. Hilsdorf-a i H. Rüsch-a /70/ nalaze na donjoj granici, dok Rosenthal i Glücklich /113/, na bazi svojih eksperimenata, smatraju realnu gornju granicu od 2,2 /Spr. Rezultati drugih istražívača nalaze se, za sada, unutar ovih granica. Tako Weigler i Bocker /136/, enijev i Kisjuk /28/, Glomb /33/ i dr. konstatuju, opet, na osnovu svojih ogleda, da granične vrednosti napona za $G_1 = G_2$ mogu da premaše čvrstoću prizme za 25 do 50%. Značajne razlike u rezultatima ogleda, od jednog do drugog istraživača, javljaju se i u naponskoj oblasti u kojoj, pored napona pritiska, deluju i naponi zatezanja, kao i u oblasti gde deluju samo naponi zatezanja; doduše, te razlike su znatno manje nego u području napona pritisaka.

Sigurno je da odnosi graničnih napona i čvrstoće priz-

= 122 =

me Gil/Bpr(i= 1,2) mogu da zavise od kvaliteta betona (kada se javlja napon zatezanja-to je evidentno), tačnosti merenja, brzine nanošenja i dužine trajanja opterećenja, oblika, dimenzija i broja ugleda, vlažnosti, temperature i dr. faktora. Medjutim, uslovi i režim pod kojima su, eksperimentom, odredjivane granične vrednosti napona za pojedina naponska područja bili su dosta slični onima pod kojima je odredjivana čvrstoća prizme /Spr. kao "reperna" čvrstoća u odnosu na koju se izražavaju granične vrednosti napona 61 i 62 u bilo kojoj tački naponskog područja. rakodje, i svi analizirani ogledi su izvedeni pod dejstvom kratkotrajnog statičkog opterećenja. Stoga navedeni faktori ne mogu bitno uticati na odnose 61 / 3pr, idući od jednog do drugog istraživača. Da bi se problem još više komplikovao, mnogi autori, formulišući analitičke veze za uslov loma-plastičnosti betona, tražili su potvrdu valjanosti svoje "granične krive" u onim eksperimentalnim podacima koji su najviše odgovarali njihovoj analitičkoj vezi i koji su u tome trenutku bili i najaktuelniji. Tako, danas imamo i više predloga za uslov loma betona za ravno stanje napona, koji se, opet, medjusobno veoma mnogo razlikuju, isto kao i eksperimentalno dobijeni podaci.

Detaljnijom analizom eksperimentalno dobijenih rezultata, sa kojima se u dostupnoj literaturi raspolagalo, može se doći do zaključka da osnovni razlog, za znatna medjusobna odstupanja u rezultatima, idući od jednog do drugog istraživača, treba tražiti u neodgovarajućoj interpretaciji eksperimentalno dobijenih podataka. Naime, granični uslovi po konturi, odnosno naponsko stanje koje je realizovano na ispitivanom ugledu znatno se razlikovalo od onoga stanja, koje su pojedini istraživači pretpostavili. Zbog toga su, u najvećoj meri, i proistekle, razlike u saopštavanim rezultatima pojedinih istraživača.

Dosadašnja tehnika apliciranja opterećenja, koja je primenjivana za istraživanje graničnog stanja betona u uslovima složenog naponskog stanja, posebno ravnog, realizovana je na punim ili šupljim betonskim telima - ugledima. Pri tom, puna tela su bila sa pravim (kocke, kvaderi, prizme i sl.) ili zakrivljenim ivicama (cilindri). Opterećenje po ravnim stranicama ugleda aplicirano je preko masivnih-krutih, najčešće čeličnih ploća, dok se bočno opterećenje na cilindrične uglede izazivalo pomoću ulja pod pritiskom ili sprečavanjem bočnog širenja ugleda pomoću spiralne armature. Od šupljih tela najviše je kcrišćen šuplji valjak zbog jasnog naponskog stanja koje se u njemu može izazvati pri delovanju opterećenja u pravcu izvodnice, radijalnom pravu ili pri delovanju torzionog momenta.

Kada se opterećenje na ispitivani betonski ugled prenosi preko čeličnih ploća, tada sile trenja na kontaktnim površinama ugleda i ploča izazivaju značajna dodatna naprezanja, koja ugled, iz jasnog homogenog stanja (pod dejstvom upravnog opterećenja), prevode u jedan dosta složeni nehomogeni naponski sistem. Pošto se ove sile trenja pojavljuju u oba pravca kontaktne površine, to se ispitivani ugled, u zonama koje su bliže tim površinama, ustvari, nalazi u uslovima prostornog stanja napona. Tek na odredjenoj udaljenosti efekat sprečenog bočnog deformisanja betonskog ugleda se gubi i, u tome delu uzorka, imamo homogeno naponsko stanje (primer jednoosnog naponskog stanja kod standardne prizme 12/12/36 cm ili cilindra Ø15/30). Medjutim, pri ispitivanju ugleda čiji je odnos visine prema prečniku (širini osnove) manji od 1,5, /50/, uticaj sila trenja se oseća u svim zonama ugleda (primer kocke); dakle, u ugledu vlada troosno stanje napona. Poznato je da se, uklanjanjem trenja, ispitivani ugled dovodi u stanje loma pri znatno nižem opterećenju, nego kada je trenje prisutno .

Kada se opterećenje sa presa na ugled prenosi u dva ili tri upravna pravca, onda se, usled pojave trenja na kontaktnim površinama, ukupno spoljašnje opterećenje ne prenosi samo na ispitivani ugled, već i na susedne čelične ploče (sl.3.1). Medjutim, većina istraživača je pretpostavljala da se spoljašnje opterećenje prenosi samo na betonski ugled, pa su, iz uslova da je Gbi= Pi/Fbi (gde je Fbi - odgovarajuća površina betona), dobili preuveličane vrednosti za granične napone Ga(i=1,2) u uslovima ravnog stanja napona. U suštini, zbog postojanja sila trenja,i u pravcu upravnom na ravan Gi,G2, u uzorku je, zavisno od odnosa njegove debljine prema drugim dvema dimenzijama, moglo biti, i u svim zonama tela, ostvareno troosno stanje napona Pi(j=1,2).

Istini za volju posebnom obradom kontaktnih površina premaz uljima, parafinom, glačanjem, poliranjem, stavljanjem raznih podmetača i dr. - može se u znatnoj meri da umanji efekat trenja i tako uzorak dovede u željeno-jasnije naponsko stanje. Ipak, ovim putem, potpuno eliminisanje trenja je tehnički vrlo teško izvodljivo. Način na koji je H. Kupfer /71/ opterećivao ispitivani betonski ugled zaslužuje posebnu pažnju. On je primenio tzv. "čelične četke" koje su sposobne da na ugled prenesu aksijalno opterećenje (pritisak i zatezanje); a da se, pri tom, gotovo i ne pojave sile trenja-smicanja na kontaktnoj površini uzorka. Primera radi, pri lomu betonskog ugleda MB 600, realizovan je najveći napon smicanja oko 1,5 kp/cm², čiji se uticaj na dostizanje opterećenja loma P₁ i P₂može, u svakom slučaju, zanemariti, sl.3.2.

kodje skrenuti pažnju i na uslove ispitivanja cilindričníh ugleda i, u vezi sa tim, na interpretaciju rezultata. Naime, šuplji cilindrični ugledi su, jednom broju istraživača, poslužili kao "poligon" za odredjivanje graničnih vrednosti glavnih

sl. 3.1. Dispozicija nanošenja opterećenja sa prisustvom sila trenja na kontaktnim površinama

napona (pri raznim odnosima) u betonu za ravno stanje napona. Medjutim upotrebljeni odnos debljine zida i prečnika cilindričnog ugleda je bio takav, da su na dostizanje graničnog stanja, osim napona u tangencijalnom pravcu i u pravcu izvodnice, bitno uticali i radijalni naponi (hidrostatički pritisak). To je u ugledu stvorilo neku vrstu prostornog (nehomogenog po debljini zida), a ne ravnog stanja napona, kako se to pretpostavljalo u interpretaciji rezultata ispitivanja. Pokazalo se, kada su, pored radijalnog napona koji je uvek bio napon pritiska i ostala dva napona bili naponi pritiska (tangencijalni i u pravcu izvednice), da i relativno mala vrednost radijalnog napona znatno povećava granične vrednosti ostalih napona pritiska. Tako se mogu objasniti veoma visoke - 125 -

ustvari, u cilindričnom uzorku, eksperimentom ralizovano prostorno stanje napona, proglasili za ravno stanje, zanemarivši radijalni napon. Tako su došli do pogrešnog zaključka da, na primer, granične vrednosti dvoosnih jednakih napona pritisaka mogu prevazići i dvostruku vrednost čvrstoće prizme. Medjutim, kada je bar jedan od glavnih napona u ravni zida cilindra bio napon zatezanja, tada je uticaj radijalnog napona na granične vrednosti ovih napona bio skoro beznačajan. To se može videti iz uporedjenja prethodnih rezultata sa rezultatima ispitivanja kod kojih je stanje naprezanja u tankozidnom cilindričnom ugledu izazvano torzionim momentom i aksijalnom silom. Očigledno je da se, delovanjem torzionog momenta i aksijalne sile, takav ugled dovodi u ravno stanje napona. Stoga, tako opterećivani ugledi mogu dati pažnje vredne rezultate pri odredjivanju graničnih vrednosti napona u ravni.

sl.3.2. Dispozicija nanošenja opterećenja na ispitivani ugled bez prisustva sila trenja nakontaktnim površinama.

Na slici 3.3 i 3.4 prikazani su, u ravni Gi= $G_1 / B_{\rm pr} = G_2 = G_2 / B_{\rm pr}$ rezultati eksperimentalno dobijenih graničnih vrednosti napona u betonu za ravno stanje napona, i to prema ispitivan†u više autora. Pri tom su ogledi Rosenthal-a i Glucklich-a /113/ i Bellamy-a /14/, koji su sprovedeni na šupljim

valjcima sa aksijalnom silom i radijalnim (hidrostatičkim) opterećenjem, iz već pomenutih razloga, dali vrlo visoke granične vrednosti za Gi iGzu područjima dvoosnih pritisaka (Gi< 0, Gz< 0). Medjutim, čak i medju njima postoje razlike, koje, najverovat-

sl.3.3. Granične vrednosti napona u betonu -rezultati ogleda i uslovi loma.

ØX

nije, potiču i iz toga razloga što su ugledi Bellamy-a imali nešto manji odnos debljine zida prema prečniku _{Šup}ljeg valjka, pa je efekat prostornog stanja bio manje izražen, nego kod ugleda dvaju drugih autora.

Većina autora je, u području dvoosnih pritisaka, vršila ispitivanja na punim telima (kocke, kvaderi, pločice). Pri tom su Mc Heury-Karni /89/ i grupa autora u CNIISK-u /30/ opterećivali ugled preko krutih čeličnih ploča, bez posebne obrade u cilju smanjenja trenja, Glomb /33/ je vršio podmazivanje kontaktnih površina, a Weigler i Bocker /136/ su primenili veoma tanke betonske pločice (10/10/2,5 cm), smatrajući da se tako uticaj trenja na granično opterećenje csetno gubi. Kupfer /71/ je opterećenje, u ravan ispitivanih betonskih pločica, (20/20/5cm) uneo pomoću već pominjanih "čeličnih četki".

Sa dijagrama 6, , 62 , na sl.3.3. jasno se uočava do kakvih sve razlika u graničnim vrednostima napona dovodi sistem nejedinstvenog izvršenja ogleda i interpretacije dobijenih rezultata. Na osnovu napred izvedene analize može se smatrati da se u ugledima Kupfera, u najvećoj meri, realizovalo zahtevano ravno stanje napona, dok se kod drugih autora, zbog prisustva sila trenja (rogljasta tela) ili radijalnog napona (šuplji valjci) javlja nehomogeno prostorno stanje napona, a ne ravno, kako su to autori, u interpretaciji svojih eksperimentalnih podataka, pretpostavili. Ne treba zaboraviti ni to da krute čelične ploče prihvataju na sebe jedan deo opterećenja iz upravnog pravca, namenjenog ispítivanom betonskom ugledu (vidi sl. 3.1), što je takodje zanemarivano u interpretaciji ovih rezultata. Zbog svega toga, za sada, kao osnova za formiranje uslova loma betona u području dvoosnih pritisaka, mogu da posluže rezultati ogleda Kupfer-a /71/. Treba napomenuti da je i Nelissen u jednom preliminarnom ispitivanju /95/, primenjujući čelične četke", došao do rezultata koji su skoro istovetni rezultatima Kupfer-a.

Kada je jedan od glavnih napona-napon zatezanja ili kada su oba napona zatežuća (sl. 3.4), ogledi pokazuju da kvalitet betona bitno utiće na graničnu čvrstoću betona. Na primer, pri istoj vrednosti \vec{b}_1 dobijaju se veće vrednosti \vec{b}_2 ako je niži kvalitet betona i obratno. Takodje, iz eksperimentalnih podataka, uočava se tendencija stalnog blagog opadanja granične vrednosti \vec{b}_2 pri porastu \vec{b}_1 . U području dvoosnih zatezanja ($\vec{b}_1 > 0$, $\vec{b}_2 > 0$)javljaju se relativno velika rasturanja rezultata. Ipak,evidentno

127 =

st. 3.4. Granične vrednosti napona u betonu – rezultati ogleda i uslovi loma,

Na sl.3.3 i 3.4 dat je, prema predlogu više autora, i grafički prikaz analitičkih veza uslova loma betona za ravno stanje napona. Kako se vidi, svaka ova veza, dosta se dobro slaže samo sa odredjenim rezultatima ogleda. To je i razumljivo, jer su autori ovih analitičkih veza tražili potvrdu svoga predloga u onim rezultatima ogleda koji su se najviše približavali njihovoj predloženoj analitičkoj vezi. Medjutim, ako se rezultati ogleda, koje je sproveo Kupfer /71/, prihvate kao "reper" za formiranje analitičke veze za uslov loma u području dvoosnih pritisaka, onda se predložene analitičke veze za uslov loma /28/, /29/, /50/ i /113/ ne mogu prihvatiti, jer daju mnogo veće vrednosti za granične čvrstoće, nego što to pokazuju Kupferovi ogledi. Takodje ni uslov loma koji predlažu K. Hruban-J.Hruban /49/ nije prihvatljiv, jer znatno podcenjuje čvrstoću betona u ovoj oblasti.

Uslov loma – plastičnosti, koji su predložili Ivković – Aćić /53/, daje relativno dobra slaganja sa rezultatima ogleda Kupfer-a /71/, ako se pri odredjivanju konstanti, u izrazu za uslov loma, pretpostavi da čvrstoća betona, pri jednakim dvoosnim naponima pritiska, iznosi $G_1 = G_2 = 1,15/3_{\rm Pl}$, koliko se i dobija u Kupfer-ovim ogledima, a da čvrstoća betona pri čistom smicanju $G_1 = -G_2 = -1,1/3_z$, gde je /3_ jednoaksijalna čvrstoća betona pri zatezanju. Predlozi za uslov loma Genijeva /29/, Genijeva i Kisjuka /28/ znatno precenjuju čvrstoću betona pri zatezanju u području gde je $G_2 < 0$ (pritisak) i $G_1 > 0$ (zatezanje). Prema tim predlozima, odstupanja od eksperimentalnih podataka iznose i do 100%.

3.2. Predlog novog uslova loma za beton

Brojni ogledi loma betonskih ugleda pri složenim naponskim stanjima, kao i predlozi za njegovu generalizaciju pokazuju, kao što je poznato, da se uslov loma - plastičnosti za beton može prikazati u funkciji invarijanti tenzora napona

$$f(G_{ij}) = 0$$
 (3.1)

odnosno

 $f(I_1, J_2, J_3) = 0$

gde su: $I_1 = G_1 + G_2 + G_3$... prva invarijanta tenzora napona $J_2 = \frac{1}{3} \left[G_1^2 + G_2^2 + G_3^2 - (G_1G_2 + G_2G_3 + G_3G_1) \right] \dots drugi momenat$

devijatora tenzora napona, i

 $J_{3} = \frac{1}{27} \left[3 \left(5_{1} G_{2}^{2} + 5_{2} G_{3}^{2} + G_{3} G_{1}^{2} + G_{2} G_{1}^{2} + G_{3} G_{2}^{2} + G_{1} G_{3}^{2} \right) - 12 G_{1} G_{2} G_{3} - 2 \left(G_{1}^{2} + G_{2}^{2} + G_{3}^{2} \right) \right]$

treći momenat devijatora tenzora napona.

Do sada su, koliko je poznato, samo Genijev i Kisjuk /28/ pretpostavili da i invarijanta J3 utiče na početak plastičnog tečenja betona. Na taj način, oni su dobili vrlo komplikovane analitičke veze za uslov loma, a koji, kako je već rečeno u tački 3.1, nema valjanu potvrdu na oyledima.

Inače, najveći broj autora /29/, /79/, /50/, /53/, uslov loma daje preko invarijanti l_1 i J_2 u obliku,

 $f = J_2 - \mathcal{C}(I_3) = 0 \tag{3.1"}$

Za analizu rezultata veoma je pogodno da se uslov loma za beton prikaže u obliku,

 $T_o = f(G_o)$

a to je, u suštini, i kriterijum Nadai-a /94/, po kome se granično stanje loma izotropnih materijala, sa nejednakim čvrstoćama pri zatezanju i pritisku, dostiže pri postojanju odredjene

(3, 1')

 $\{3,2\}$

funkcionalne zavisnosti izmedju normalnih $\mathfrak{G}_{\mathfrak{o}}$ i smičućih oktaeda-rskih napona $\mathbb{T}_{\mathfrak{o}}$. Pri tom su

$$\mathbf{G}_{0} = \frac{\mathbf{G}_{1} + \mathbf{G}_{2} + \mathbf{G}_{3}}{\mathbf{T}_{0}} = \frac{1}{\sqrt{(\mathbf{G}_{1} - \mathbf{G}_{2}) + (\mathbf{G}_{2} - \mathbf{G}_{3}) + (\mathbf{G}_{3} - \mathbf{G}_{1})}} = \sqrt{\frac{2}{3}} \mathbf{J}_{2}$$

Za ravno stanje napona (G₃= O)imamo:

$$\mathfrak{G}_{\mathfrak{o}} = \frac{\mathfrak{G}_1 + \mathfrak{G}_2}{3} ; \quad \mathfrak{T}_{\mathfrak{o}} = \frac{\sqrt{2}}{3} \sqrt{\mathfrak{G}_1^2 - \mathfrak{G}_1 \mathfrak{G}_2 + \mathfrak{G}_2}$$

sl. 3. 5. Predloženi uslovi loma To=f1 (60) i To=f2(60) i rezultati ogleda.

3.5) može vrlo uspešno aproksimirati uslovom loma, u obliku, $T_0 = a G_0 + b G_0 + c$

gde su: $\mathcal{T}_0 = \mathcal{T}_0 / \beta_{pr} i \ \mathcal{G}_0 = \mathcal{G}_0 / \beta_{pr}$, dok su a, b, c konstante, koje se odredjuju iz sledećih graničnih uslova:

1. Pri jednoosnoj čvrstoći na pritisak,tj: $\bar{G}_1 = -1$, $\bar{G}_2 = 0$ imamo (jedn. 3.3) ... $\bar{G}_0 = -1/3$ i $\bar{T}_0 = 2/9$ 2. Pri jednakim naponima pritiska (sl.3.3 i 3.5), ogledi Kupfer-a daju $\bar{G}_1 = \bar{G}_2 = -1$,15, pa za $\bar{G}_1 = \bar{G}_2 = -1$,15 imamo $\bar{G}_0 =$ = -0,767 i $\bar{T}_0^2 = 0,294$.

3. Dobra saglasnost predložene krive $T_0 = f_2(G_0)$ sa rezultatima ogleda (sl.3.5) postiže se ako se za $G_1 = G_2 = -1,15$; odnosno $G_0 = -0,767$ usvoji da je $\frac{dT}{dt} = 0$

Iz prethodna tri uslova dobijaju se sledeće vrednosti za konstante:

r;

(3, 3)

(3.4)

Ako se pr-

ema analizi, sprovedenoj u tački 3.1, usvoji da, na današnjem stepenu saznanja o graničnim vrednostima napona u betonu, Kupferovi ogledi /71/ daju veoma valjane rezultate, onda se naponsko stanje dvoosnih pritisaka (6,<0, $\overline{G}_2 < 0$, odnosno $\bar{6}_{0} \leq -1/3; sl.$

a = -0,3816 , b = -0,5851 ; c = 0,0696.Tada je uslov loma (3.4), za stanje dvoosnih pritisaka, $1-1/31 \le |G_0| \le |-0,767|, dat jednačinom$ $T_0 + 0,3816 G_0 + 0,5851 G_0 - 0,0696 = 0$ (3.5)

Ako se pri odredjivanju konstanti - parametara <u>a</u>, <u>b</u>, <u>c</u> iskoriste rezultati ogleda Kupfera /71/ i primeni metod najmanjih kvadrata, jednačina (3.4) postaje

$$\tau_{\circ} + 0.4880 \ \overline{6}_{\circ} + 0.6907 \ \overline{6}_{\circ} - 0.0458 = 0$$
 (3.5')

čije se vrednosti, u naponskoj oblasti važenja jednačine, razlikuju za manje od 1% od vrednosti koje daje jednačina (3.5); koeficijent korelacije r = 0,97.

Koristeći veze (3.3), uslov loma (3.5), odnosno (3.5') prelazi u izraz

$$G_1^2 + G_2^2 - 0,5193 \ \overline{G}_1 \overline{G}_2 + 0,7371 \ (\overline{G}_1 + \overline{G}_2) - 0,2630 = 0$$
 (3.6)

cdnosno

$$\overline{G}_{1}^{2} * \overline{G}_{2}^{2} = 0,4116 \ \overline{G}_{1}\overline{G}_{2} + 0,8329 \ (\overline{G}_{1} + \overline{G}_{2}) - 0,1657 = 0$$
 (3.6')

sto, u koordinatnom sistemu \overline{G}_1 , \overline{G}_2 , predstavlja elipse čije se velike osovine nalaze na pravoj $\overline{G}_1=\overline{G}_2$, (51.3.6).

Valja napomenuti da granične vrednosti G_1 i G_2 , odnosno \overline{G}_0 i $\overline{\zeta}_0$, date jednačinama (3.5) – (3.6'), ne zavise od kvaliteta betona. To su, svojim ogledima, potvrdili Henry-Karni /90/, Roseuthal-Glücklich /113/, Weigler-Becker /136/, Glomb /33/ i Kupfer /71/, vršeći ispitivanja na dva, tri ili više veoma različitih kvaliteta betona. Betoni na kojima je Kupfer sproveo oglede imali su čvrstoću prizme 191, 311 i 594 kp/cm².

Posmatrajući rezultate ogleda, prikazane u naponskom sistemu G_0, \tilde{U}_0 (sl. 3.5), jasno se može uočiti, da se, ako je bar jedan od glavnih napona, napon zatezanja ($G_1 \ge 0, G_2 < 0$ ili $G_2 \ge 0,$ U < 0, odnosno - $G_0 \le 1/3$), rezultati ogleda grupišu oko prave $\tilde{U}_0 = f_1(G_0)$. To ukazuje na postojanje odredjene linearne zavisnosti izmedju G_0 \tilde{U}_0 , što navodi na zaključak da se ovo naponsko. Područje može vrlo uspešno aproksimirati jednačinom prave,

$$T_0 = a_1 G_0 + b_1$$
 (3.7)

pri cemu se konstante a i bi odredjuju iz graničnih uslova. Prava mora da prodje kroz "naponske" tačke koje predstavljaju jednoosne čvrstoće pri pritisku i pri zatezanju.

- 122 -

Dakle,

1. Pri jednoosnoj čvrstoći pri zatezanju β_z , tj. pri $\overline{G}_1 = + \frac{1}{2} = + k i \overline{G}_2$ 0 imamo $\overline{G}_0 = \frac{1}{3} i \overline{T}_0 = \pm \frac{\sqrt{2}}{3} k$

2. Pri jednoosnoj čvrstoći pri pritisku β_{pr} tj. pri \overline{b}_{1} = - 1 i \overline{b}_{2} = 0 imamo \overline{b}_{0} = - 1/3 i \overline{T}_{0} = $\pm \frac{\sqrt{3}}{3}$. Kada se iz ovih uslova sračunaju vrednosti za konstante \overline{a}_{1} i , jednačina (3.7) dobija oblik

$$\overline{\tau}_{o} = \sqrt{2} \frac{1-k}{1+k} \ \overline{G}_{o} - \frac{2}{3} \sqrt{2} \frac{k}{1+k}$$
(3.8)

koja, prevedena u ravan G₁, G₂ (pomoću relacija 3.3), predstavlja hiperbolu, datu jednačinom,

$$\mathbb{E}\left[1 - \left(\frac{1 - |\mathbf{k}|}{1 + |\mathbf{k}|}\right)^{2} \right] \left(\overline{G}_{1}^{2} + \overline{G}_{2}^{2}\right) + \mathbb{E}\left[1 + 2\left(\frac{1 - |\mathbf{k}|}{1 + |\mathbf{k}|}\right)^{2} \right] \overline{G}_{1} \overline{G}_{2} - \frac{4|\mathbf{k}|^{2} |1 - |\mathbf{k}|}{(1 + |\mathbf{k}|)^{2}} \right] \left(\overline{G}_{1} + \overline{G}_{2}\right) - \frac{4|\mathbf{k}|^{2}}{(1 + |\mathbf{k}|^{2})} = 0$$

$$(3.9)$$

 \check{c}_{ija} se glavna osovina poklapa sa pravom $G_1 = G_2$.

Jednačina (3.9), ustvari, predstavlja familiju hiperbola za razne vrednosti parametra $\mathbf{k} = \beta_z i / \beta_{pr}$. Pošto je ovaj parametar funkcija kvaliteta betona (k se kreće u granicama od 0,05 do 0,20; manji je kod betona višeg kvaliteta i obratno), to ovde i granične vrednosti G_i(i = 1,2) zavise od kvaliteta betona, za razliku od uslova loma (3.5) - (3.6'), gde to nije bio slučaj.

Prema uslovu (3.9), dvo osni jednaki naponi zatezanja pri lomu (teme hiperbole) $iznose G_1 = G_2 =$ - Bpr,odnosno $\vec{G}_1 = \vec{G}_2 = \frac{2 k}{3}$ dok čisto smicanje iznosi 🔓 🖛 $-G_2 = \frac{1}{\sqrt{3}(1+k)}/3pr$ odnosno G = - G - $=\frac{2k}{\sqrt{3}(1+k)}$, sto ima dobru saglasnost sa rezultatima ogleda, sl.3.6. Na sl.3.6, u sistemu 6, 6,,

Ø.

prikazani su uslov loma (3.6.) u obliku elipse i uslov loma (3.9) u obliku hiperbole. Hiperbola i rezultati ogleda su ucrtani za k = 0,10.

Pri rešavanju brojnih zadataka iz oblasti graničnih stanja, vrlo je pogodno uslove loma prikazati u koordinatnom sistemu p $=\frac{b_1+b_2}{2}$ I = $\frac{b_2-b_3}{2}$, gde su $T_m = \overline{T}_m \beta_{pl} maksimalni napon smica$ $nja, a p = p <math>\beta_{pl}$ srednji normalni napon.

Akc se \mathcal{G}_{\circ} i \mathcal{T}_{\circ} izraze pomoću \mathbf{p} i \mathcal{T}_{m} , dobija se $\mathcal{G}_{\circ} = 2/3\mathbf{p}$ i $\mathcal{T}_{\circ} = 2/9$ ($3\mathcal{T}_{m} + \mathbf{p}^{2}$). Tada uslov (3.5) prelazi u uslov

 $T_m + 0.5877 p^2 + 0.5851 p - 0.1044 = 0$

$$3L_{m}+[1-4(\frac{1-k}{1+k})]p^{2}-8\frac{k(1-k)}{(1+k)^{2}}p-\frac{4k}{(1+k)^{2}}=0$$

sl.3.7. "Granične krive" (3.10) i (3.11) u ravni p, Tm

(3.11)

(3, 10)

Uslov loma (3.10), u ravni \overline{p} , \overline{Tm} , predstavlja elipsu, a uslov (3.11) - hiperbolu, kod kojih se glavne osovine poklapaju sa apscisom \overline{p} (sl.3.7). Pri tom, tačka $1(\frac{2k}{3-k};0)$ odgovara dvoosnim jednakim naponima zatezanja, tačka 4 (-1,15; 0) dvoosnim jednakim naponima pritiska, dok tačka 2(0; $\frac{2k}{3(1+k)}$)

odgovara čistom smicanju. Presek krivih (tačka 3) ima koordinate E-0,5 ;±0,5].

Ci.

Uslov loma – plastičnosti betona može se iskoristiti i za formulisanje <u>uslova plastičnosti armiranog betona.</u> Pri tom se, u ovome radu, polazi od sledećih pretpostavki:

 a) Oba materijala, i beton i čelik, sprežu se u zajedničko prenošenje opterećenja, a oba dostižu neograničenu plastičnu deformaciju.

b) Štapovi armature primaju sile samo u pravcu ose štapa. c)št<mark>apovi</mark> armature su medjusobno ortogonalni i paralelni sa koordinatnim osama x i y.

Pretpostavka a) se ne može odnositi na one slučajeve kada se u preseku javlja zatezanje, jer tada do loma dolazi "cepanjem" betona pri dilatacijama koje su znatno manje od onih koje odgovaraju početku plastičnog tečenja čelika. Stoga će se predloženi uslov odnositi na armirani beton koji se nalazi u uslovima dvoosnih napona pritiska. A granična stanja, pri kojima dolazi do "cepanja" betona, biće razmatrana u poglavlju 4, gde se obradjuje Teorija deformisanja armiranog betona sa prslinama u uslovima ravnog stanja napona.

Pretpostavka c) je prihvaćena radi dobijanja nešto jednostavnijih izraza za uslov plastičnosti. Inače, zadatak se može rešiti i za proizvoljan položaj štapova armature.

Iz prethodnih pretpostavki proizilazi da sila loma N_iu armiranom betonu iznosi

 $N_i = N_b + N_a = F_b \cdot G_b + F_a \cdot G_v$

odnosno da je napon 🖏 pri kome dolazi do loma

 $G_i = G_b + \mathcal{A} \cdot G_v$ gde su:

6b - granična vrednost napona u betonu

Gy - granica velikih izduženja, odnosno granica tečenja čelika (3.12)

(3.13)

🎢 - koeficijent armiranja

Superpozicioni obrazac (3.12), ispisan u koordinatnom sistemu x, y,prelazi u oblik,

 $G_{xi} = G_x + \mathcal{M}_x G_v$

Gyi = Gy + My Gv

 $\overline{T}_{xyi} = \overline{T}_{xy} = \overline{T}$

Ovde: G_{xi} , G_{yi} , G_x , G_y , χ i G_v predstavljaju odnose graničnih vrednosti odgovarajućih napona i čvrstoće betonske prizme β_{pi} , dok su Mik koeficijenti armiranja. Pri tom je indeks "b", uz naponč, u betonu G_{bx} , G_{by} , χ_b , na desnoj strani izraza (3.13), izostavljen da bi se zadržale već ranije usvojene oznake.

Uslov loma betona za stanje dvoosnih pritisaka, dat jednačinom (3.5), može se, koristeći poznate veze

$$\overline{G}_{n} = \frac{\overline{G}_{n} + \overline{G}_{y}}{3} \quad i \quad \overline{T}_{n}^{2} = \frac{2}{3} \left(\overline{G}_{x}^{2} + \overline{G}_{y}^{2} - \overline{G}_{x} \overline{G}_{y} + 3\overline{T}^{2} \right)$$

izraziti pomoću komponentalnih napona

 $6_x + \overline{6}_y - 0.51936_x \overline{6}_y + 2.5193 T - 0.7371(\overline{6}_x + \overline{6}_y) - 0.2630 = 0$

Ako se u ovu jednačinu unesu vrednosti za \vec{b}_x i \vec{b}_y iz jednačine (3.13), dolazi se do uslova plastičnosti armiranog betona za stanje dvoosnih pritisaka, u obliku,

 $\overline{G_{xi}^{2}} + \overline{G_{yi}^{2}} = 0.7371 (\overline{G_{xi}} + \overline{G_{yi}}) = 0.5193 \overline{G_{x_{1}}} - 0.5193 \overline{C_{x_{2}}} + 2.5193 \overline{C_{x_{2}}} - M_{x} \overline{G_{y}} (2 \overline{G_{x_{1}}} - 0.5193 \overline{G_{y_{1}}}) = 0.5193 \overline{G_{y_{1}}} - 0.5193 \overline{$

 $-\mathcal{M}_{y}\mathcal{G}_{v}(2\mathcal{G}_{yi}-0.5193\mathcal{G}_{xi}) + (\mathcal{M}_{x} + \mathcal{M}_{y}^{z} - 0.5193\mathcal{M}_{x}\mathcal{M}_{y})\mathcal{G}_{v} + 0.7371(\mathcal{M}_{x} + \mathcal{M}_{y})\mathcal{G}_{v} - 0.2630 = 0$ (3.15)

ili, izraženo preko glavnih napona 6₁₁.6₂₁ .

 $\overline{6}_{1i}^{2} + \overline{6}_{2i}^{2} = 0,5193 \ \overline{6}_{1i} + \overline{6}_{2i} = 0,7371 + 0,7404 \ \overline{6}_{4} (M_{x} + M_{y})$ ($\overline{6}_{1i} + \overline{6}_{2i}) = 0,7371 + 0,7404 \ \overline{6}_{4} (M_{x} + M_{y})$

 $-1.2597 \,\overline{G_v} (\mathcal{H}_x \mathcal{H}_y) (\overline{G_{11}} - \overline{G_{21}}) \cos 2\mathcal{V} + \{\mathcal{H}_x^2 + \mathcal{H}_y^2 - 0.5193 \,\mathcal{H}_x \mathcal{H}_y\} \overline{G_y^2} - 0.7371 (\mathcal{H}_x + \mathcal{H}_y) \overline{G_y} - 0.2630 = 0 \ (3.16)$

Uslov plastičnosti (3.16), u koordinatnom sistemu $\overline{6}_{1i}$, $\overline{6}_{2i}$, predstavlja elipsu. Ako je $M_x = M_y$ tada glavna osovina elipse prolazi kroz početak koordinatnog sistema (izotropija). Medjutim, u opštem slučaju, pri $M_x \neq M$, uslov plastičnosti će zavisiti od veličine ugla (koga glavni napon $\overline{6}_{1i}(\overline{6}_{1i} > \overline{6}_{2i})$ zaklapa sa x-osom. Tada glavna osovina elipse neće više prolaziti kroz početak koordinatnog sistema, niti će biti paralelna pravoj $\overline{6}_{1i} = \overline{6}_{2i}(1 \pm \pi 1/4)$ $13\frac{51}{4}$. To znači da će se armirani beton u oblasti plastičnih deformacija ponašati kao anizotropan-ortotropan materijal.

3.3. <u>Primena ekstremalnih principa pri rešavanju</u> nekih zadataka granične ravnoteže

Tačan raspored napona i brzina deformacija u uslovima graničnog stanja može se odrediti primenom metode karakteristika samo onda kada polju napona odgovara polje brzina pomeranja kod koga su uslovi po brzinama pomeranja na konturi zadovoljeni. Ovaj uslov je mogućno ispuniti samo pri rešavanju manjeg broja inženjerskih zadataka. Stoga, ova metoda najčešće daje samo približna rešenja. Kada lom betonskog elementa nastaje kidanjem, tada se pojam "karakteristika" uopšte ne javlja, pošto je granično stanje definisano sistemom parcijalnih diferencijalnih jednačina eliptičnog tipa /1/, /50/. Medjutim, za praksu nije toliko interesantan stvarni raspored napona i deformacija u stanju loma ko-

(3.14)

liko je interesantno poznavanje opterećenja loma, odnosno koeficijenta sigurnosti protiv loma. U tom cilju veoma korisno mogu da posluže rešenja pomoću statički i kinematički mogućih polja sa ravnima diskontinuiteta. Ova polja, kao što je poznato, daju donju odnosno gornju granicu za opterećenje loma. Pri tom, statički moguća polja napona moraju da zadovolje uslove ravnoteže, uslove po naponima, na onom delu konture, gde su unapred propisani i da ne naružavaju uslov loma – plastičnosti($f(G_{ij}) \leq 0$). Kinematički moguća polja brzina pomeranja moraju da ispunjavaju uslove po brzinama pomeranja na svim delovima konture gde su unapred date, zatim da spoljašnje opterećenje vrši pozitivan rad duž konture, i na kraju da je kubna dilatacija pozitivna (e>0). Iz datih definicija proizilazi da su ova polja medjusobno nezavisna, a to umnogome olakšava njihova iznalaženja.

U radu će, na primerima zidnih nosača, biti odredjena donja granica za opterećenje loma primenom konstrukcije statički mogućih polja napona, odvojenih na diskontinualan način. Kao "reper" valjanosti takvih rešenja mogu poslužiti rezultati ogleda koje je autor ovog rada sproveo na zidnim nosačima.

Da bi u polju napona G_{ij} , u kome nije naručen uslov loma - plastičnosti{f(G_i) ≤ 0) postojala dva područja (1) i (2), sa različitim naponskim stanjima, diskontinualno odvojenim (sl.3.8), potrebno je i dovoljno da su na površini diskontinuiteta zadovoljeni uslovi:

$$G_{n}^{(0)} = G_{n}^{(0)} : \quad \mathcal{T}_{nt}^{(0)} = \mathcal{T}_{nt}^{(2)} \quad i \quad G_{t}^{(0)} \neq G_{t}^{(2)}$$
(3.17)

koji u naponskim ravnima p, T_mili u ravnima G_n, T_n predstavljaju Mohr-ove krugove koji se seku, ali ne narušavaju uslov plastičnosti.

Posmatrani u naponskoj ravni p. T., uslovi (3.17), prema /1/ glase:

$$p_{-}^{(1)} T_{m}^{(1)} \cos 2(\mathcal{L}_{1} - \mathcal{L}) = p_{-}^{(2)} T_{m}^{(2)} \cos 2(\mathcal{L}_{1}^{(2)} - \mathcal{L})$$

$$T_{m}^{(1)} \sin 2(\tau_{1} - \mathcal{L}) = T_{m} \sin 2(\tau_{-} - \mathcal{L})$$
(3.18)

gde su i (uglovi koje glavni naponi $\mathbf{5}_1''\mathbf{5}_1''\mathbf{5}_1''\mathbf{5}_2'$, u naronskim područjima (1) i (2), zaklapaju sa pozitivnim pravcem x-ose. Može se pokazati da površine diskontinuiteta u podru-

čju sa konstantnim stanjem napona prelaze u ravni, odnosno u prave za ravno stanje napona /47/.

sl.3.8. Naponska područja (1) i (2), diskontinentalno odvojena.

3.3.1. Primer 1

Za zidni nosač, čije su dimenzije i položaj opterećenja prikazani na sl.3.9, treba odrediti opterećenje loma. Nosač se duž cele visine H oslanja na tanke poprečne zidove.

sl. 3. 9. Zidni nosač sa poprečnim plutnima.

Jedno statički moguće polje napona, za k = 0,10, konstruisano je na sl.3.10. Ovo polje se sastoji iz tri različita naponska područja, ali sa konstantnim stanjem napona u svakom području. Područja su medjusobno pove-

zana linijama diskontinuiteta AFiBF Zhog simetrije nosača i opterećenja, tačka F leži na simetrali x = 0, a ordinatay_F tačke F ostaje nepoznata sve dok se ne određe uglovi $\measuredangle i/3$. Pošto ivica ADA nije opterećena, to se u području 1 pojavljuje jednoosno stanje napona $C^{(1)} = \mathbf{6}_x$ nepoznate veličine i poznatog pravca 1 0. U područjima 2 i 3 vlada dvoosno stanje napona. U njima treha odrediti glavne napone $\mathbf{6}_1^{(2)}, \mathbf{6}_2^{(3)}, \mathbf{6}_2^{(3)}$ i ugao $\mathcal{C}_1^{(2)}$, koji algebarski veći glavni napon $\mathbf{6}_1^{(2)}$ zaklapa sa pozitivnim pravcem xose. Iz uslova simetrije imamo $\mathcal{T}_{xy} = \mathbf{0}$, iz toga proizilazi da je $\mathcal{C}_1^{(3)} = \mathbf{0}$. Postavljanjem uslova da je, duž ivice x = + 0,4H, napon $\mathbf{6}_x^{(3)} = \mathbf{0}$ skoro da i ne protivreći realnom stanju /4/. Nepozna-

11
= 138 =

ti su i uglovi 🗸 i /3 koji odredjuju položaj linija diskontinuiteta AF i BF. Dakle, za tačno definisanje razmatranog polja napona, treba odrediti 8 nepoznatih veličina.

sl.3.10 Prikaz jednog statički mogućeg polja napona na primeru zidnog nosača

Za rešenje postavljenog zadatka stoje nam na raspolaganju sledeći uslovi:

- Četiri uslova za povezivanje naponskih područja preko linija diskontinuiteta AFiBF, tipa (3.18), izrazena preko glavnih napona:

$$\overline{G}_{1}^{(1)}(1 - \cos 2\alpha') = \overline{G}_{1}^{(2)} + \overline{G}_{2}^{(2)} - (\overline{G}_{1}^{(2)} - \overline{G}_{2}^{(2)}) \cos 2(\gamma_{1}^{(2)} - \alpha') - \overline{G}_{1}^{(1)}\sin 2\alpha' = (\overline{G}_{1}^{(2)} - \overline{G}_{2}^{(2)}) \sin 2(\gamma_{1}^{(2)} - \alpha') \overline{G}_{1}^{(2)} + \overline{G}_{2}^{(2)} - (\overline{G}_{1}^{(2)} - \overline{G}_{2}^{(2)}) \cos 2(\gamma_{1}^{(2)} - \beta') = \overline{G}_{1}^{(3)} + \overline{G}_{2}^{(3)} - (\overline{G}_{1}^{(3)} - \overline{G}_{2}^{(3)}) \cos 2/\beta$$

$$(\overline{G}_{1}^{(2)} - \overline{G}_{2}^{(2)}) \sin 2(\gamma_{1}^{(2)} - \beta) = -(1 + 6) \sin 2/\beta$$

$$(\overline{G}_{1}^{(2)} - \overline{G}_{2}^{(2)}) \sin 2(\gamma_{1}^{(2)} - \beta) = -(1 + 6) \sin 2/\beta$$

$$\overline{b}_{1}^{(1)} \operatorname{ctg}_{4} = \overline{b}_{1}^{(3)} \operatorname{ctg}_{7} 3$$

$$\overline{t}_{xy}^{(2)} = \frac{1}{2} - \left(\overline{b}_{1}^{(2)} - \overline{b}_{2}^{(2)}\right) \sin 2 \overline{t}_{1}^{(2)} = 0.4 \overline{b}_{2}^{(3)} \qquad (3.20)$$

$$\overline{b}_{1}^{(1)} \operatorname{ctg}_{4} = 2\overline{t}_{1}^{(2)} - 0.4 \overline{b}_{2}^{(3)}$$

- Geometrijska veza izmedju uglova Li/3: $ctg \sim + ctg / 3 = 2,50$

Rezultati rešenja postavljenog zadatka prikazani su na sl.3.11 pomoću Mohr-ovih krugova u ravni P, Tm.

Kako se, sa sl.3.11, vidi, stanje pune plastičnosti dostignuto je u područjima (1) i (2), dok u području (3) Mohrov krug leži unutar krive plastičnosti $f(p, \tilde{T}_m) = 0$, date pomoću jednačine 3.11. Ovo je i razumljivo, jer se u područjima (1) i (2) javljaju naponi zatezanja koji zidni nosač dovede u stanje loma.

Ukupna sila loma Piznosi:

300 kg/cm²,dobija se da je sila loma:

 $P = 64 \cdot 8 \cdot 0.345 \cdot 300 = 53000.0 \text{ kp} = 53.0 \text{ Mp}$

Ova vrednost sile loma je za 9,6% manja od srednje vrednosti izmerene sile loma na zidnim nosačima T_1 i T_2 , koje je autor rada, istražujući ponašanje ovih nosača, prikazao u tablici 2.1 (poglavlje 2). Pri tome, valja reći da su geometrija i kvalitet materijala ispitivanih nosača T_1 i T_2 bili jednaki odgovarajućim vrednostima iz ovoga brojnog primera.

Dobra saglasnost ovako teorijski dobijene sile loma i sile loma koju daju ogledi (tablica 2.1), pokazuje da je odredjivanje sile loma, primenom polja napona, bila opravdana. To, što se ovim putem ne dobijaju stvarni raspored i veličina napona u svim tačkama analiziranog nosača ne umanjuje značaj dobijenog rešenja.

Ako se pretpostavi da napone zatezanja u području (1), neposredno po dostizanju čvrstoće na zatezanje, prima ravnomerno raspodeljena armatura f_{0x} , onda je napon $G_x^{(i)} = \mathcal{H}_x G_0$, predstavlja ekvivalent naponu zatezanja u betonu, gde su 🛝 - koeficijent armiranja, a 6a≤6vi. To navodi na razmišljanje da se mogu konstruisati i takva polja napona u kojima će se naponi zatezanja u betonu, po dostizanju granične čvrstoće, predati ravnomerno

15

(3.21)

rasporedjenoj armaturi. Prve, vertikalne prsline, oko sredine nosača, u donjoj zoni područja (1), javljaju se pri opterećenju znatnom manjem od opterećenja loma, pošto granična nosivost no-

. sl3.11. Rezultati resenja zadatka sa sl.3.10 u koordinatnom sistemu p. Cm.

sača, pojavom ovih prslina, nije iscrpena. U preseku qde se zategnuti beton isključuje iz rada, uključuje se armatura. Inače, stvarni položaj neutralne ose u trenutku pr~ ed nastajanje prvih prslina u području (1), znatno je niži od tačke F u prikazanom polju napona. To i dovodi do rane pojave pr-

slina. Ali porastom opterećenja, prsline se sve više produžavaju naviše, tako da, u stanju neposredno pred lom nosača, dostižu nivo tačke F.

3.3.2. Primer 2

Na sl. 3.13 dato je jedno statički moguće polje napona (povezano linijama diskontinuiteta) za zidni nosač^{*)}, sa sl.3.12. Pri tom je pretpostavljeno da napone zatezanja u nosaču, na onom mestu gde su dostigli graničnu vrednost u betonu, prihvata ravnomerno rasporedjena armatura, koja u području (4) može da primi silu zatezanja 1,5 puta veću od granične sile zatezanja u betonu. Dakle, $\vec{G}_{v} = 15$ k, gde je k – odnos jednoosnih čvrstoća pri zatezanju i pritisku. Kešenje zadatka je dato za k = 0,10 za $\vec{G}_{x} \leq 0,15$.

^{*)} Geometrija ovog nosača odgovara geometriji nosača na kojima su sprovedeni ogledi (ZN 6, pogl.2)

141

16

sl. 3.12. Zidni nosač sa oslonačkim stubovima. Iz prikazanog polja napona jasno se vidi kakva naponska stanja vladaju u pojedinim područjima, pa nije potreban poseban komentar. Na sl. 3.14 date su vrednosti napona (u odnosu na čvrstoću prizme), odredjene, kao i u prethodnom primeru da su ispunjeni uslovi, neophodni za egzistenciju jednog statički mogućeg polja. U područjima (2) i (4), napone zatezanja prima armatura, jer je beton dostigao graničnu čvrstoću i pojavile su se prsline,

sl. 3.13. Jedno statički moguće polje napona

ĘÌ,

sl.3.14. Vrednosti napona u pojedinim područjima

Stanje pune plastičnosti dostignuto je u području (4) (čelik teče) i u području (2) ako je koeficijent armiranja (500 s. Stanje pune plastičnosti dostignuto je gotovo i u području (1), posto je $6_1 = -0,98 \approx -1,00$. Pri tom, treba naglasiti da je debljina zida u naponskom području (1) bila za 2,25 puta veća od debljine zida u osťa/m područjima, sl. 3.12.

Ako se za kvalitet materijala i za geometriju nosača, usvoje one vrednosti^{*)} koje odgovaraju ZN 6 (vidi poglavlje 2), računska sila loma iznosi

 $P_{f} = L_{o} \cdot \sqrt{5} \cdot \overline{G}_{y}^{(1)} / 3_{pr} = 64 \cdot 8 \cdot 0.546 \cdot 292 = 81630,0 \text{ kp}$

što je u odnosu na izmerenu silu loma na ZN 6 (R=83,6 Mp), manje za svega 2,4%. Dakle, prikazano statički moguće polje napona dateorijsku vrednost za silu loma praktično jednaki ogledom dobijenog vrednosti sile loma. To pokazuje, da i ovako konstruisa-

*) $L_{m} = 64 \text{ cm}; \quad S = 8 \text{ cm}; \quad R_{m} = 292 \text{ Kp/cm}^{2}$

na polja napona imaju svoju punu vrednost, ne samo onda kada je reč o veličini sile loma, već i onda kada je reč o proceni stepena plastifikacije pojedinih područja odnosno o uzrocima loma nosača. To se jasno uočava, uporedjujući stanja napona u pojedinim područjima zidnog nosača datog na sl. 3.13 i 3.14 sa zidnim nosačem ZN 6 u stanju loma, sl. 2.20.

4. PONAŠANJE ARMIRANOG BETONA SA PRSLINAMA U USLOVIMA RAVNOG NAPONSKOG STANJA

Kao što je poznato, većina armiranobetonskih konstrukcija u eksploataciji sadrži prsline u betonu. Stoga je veoma važno da se u takvim konstrukcijama poznaje realno stanje napona i deformacija. Posebno je ovo značajno kod površinskih nosača, gde prsline dovode do kvalitativne promene naprezanja i u betonu i armaturi, izazivajući preraspodelu sila i menjajući karakter deformisanja nosača. Poznavanje ponašanja konstrukcija sa prslinama postaje sve aktuelnije, jer se, iz ekonomskih zahteva i savremenije tehnologije gradjenja, sve više primenjuju nosači sa manjim poprečnim presecima, uz upotrebu betona i čelika visokih kvaliteta. To dovodi do pojave prslina u betonu pri relativno malim opterećenjima, manjim i od radnih - eksploatacionih opterećenja.

Do sada razradjene metode proračuna armiranobetonskih konstrukcija, koje vode računa o prisustvu prslina u eksploataciji nstrukcija odnose se uglavnom na linijske nosače napregnute na savijanje bez normalne i sa normalnom silom. Kada je reč o površinskim nosačima, može se slobodno reći da se istraživanja u ovoj oblasti nalaze u početnoj fazi. Predložene teorijske metode za odredjivanje stanja napona i deformacija daju dosta komplikovane analitičke izraze, a često nemaju ni potvrđu u ogledima. Stoga su neophodna dalja istraživanja, naročito na ogledima, kako bi se pored ostalog, utvrdilo koji faktori bitno utiču na ponašanje konstrukcije u fazi posle nastajanja prslina.

U ovom poglavlju analizira se ponašanje armiranobetonskih elemenata (konstrukcija), napregnutih silama u svojoj ravni u procesu obrazovanja i razvoja prslina. Dakle, analizira se armiranobetonski element u uslovima ravnog stanja napona kod koga su naponi ravnomerno raspodeljeni po njegovoj debljini.

Dosadašnja istraživanja u ovoj oblasti uglavnom su se odnosila na nosače sa ortogonalnom armaturom. Pri tom se, u cilju smanjenja statički nepoznatih veličina, polazilo od odredjenih uprošćenja. Tako, na primer, Leutz i Scholz /119/ polaze od pretpostavke da se pravci prslina i sile pritiska u betonu nalaze u simetrali ugla dvaju pravaca armaturnih šipki, dok Peter /102/ i Ebner /23/ pretpostavljaju da su ovi pravci normalni na najveću silu zatezanja. Baumann /13/ formuliše uslove ravnoteže i kompatibilnosti bez neke unapred pretpostavljene poznate veličine, a veličinu sile smicanja u prslini odredjuje primenom principa minimuma deformacionog rada. Pri tom, on zanemaruje uticaj deformacije betonskih traka (razdvojenih prslinama) na naprezanje armature. Dekanović /19/ je proučavao problem ponašanja armiranobetonskih i prethodnonapregnutih elemenata konstrukcije izloženih torziji, torziji sa savijanjem i torziji sa savijanjem i poprečnom silom. Posebno je istraživao mehanizam loma popuštanjem pritisnutog betona i,pri tom,pokazao da je op-

terećenje pri lomu, sračunato prema teoriji rešetke, znatno veće od opterećenja dobijenog na sopstvenim ogledima. Na osnovu toga on upozorava da primena teorije rešetke može dovesti do pogrešnih rezultata, jer stvarni koeficijent sigurnosti protiv loma može biti znatno manji od dopuštenog.

Takodje veoma značajne radove u ovoj oblasti dali su Gvozdjev /39, 40, 41/, Karpenko /58, 59, 60/, Genijev /31/ i dr. Oni su osim,istraživanja ponašanja nosača, opterećenih u svojoj ravni, istraživali i ponašanje ploča i ljuski kao i linijskih nosača opterećenih torzionim momentima i poprečnim silama.

Jedno od najkompletnijih pristupa rešenju ove problematike svakako je dao Karpenko. On polazi od pretpostavke da stanje napona i deformacija površinskih nosača u procesu obrazovanja prslina zavisi od niza faktora, kao što su: sheme prslina i njihova orijentacija, sheme armiranja, uzajamni položaj prslina, stepen veze "armatura-beton", širina prslina, stepen međjusobnog pomeranja susednih traka duž prsline i dr.

4.1. Osnovne teorijske pretpostavke i opšte karakteristike deformisanja armiranobetonskog elementa

Da bi se formulisale veze izmedju naponskih i deformacijskih veličina za armiranobetonski element u procesu obrazovanja i razvoja prslina, u ovome radu su učinjene sledeće pretpostavke:

- Globalne deformacije armiranobetonskog elementa, koje nastaju usled otvaranja prslina, jednake su srednjim deformacijama armature u pravcu njenog pružanja.

- Globalne deformacije armiranobetonskog elementa u pravcu pružanja betonskih traka jednake su srednjim deformacijama betona.

= 145 =

- Deformacije su male, tj. pretpostavlja se geometrijska linearnost.

- Armiranobetonski element se u celini posmatra kao homogena i kontinualna sredina. Pri tom se smatra da je medjusobno rastojanje prslina i rastojanje armature dovoljno malo u odnosu na dimenzije razmatranog armiranobetonskog elementa.

Eksperimentalna istraživanja saopštena u radovima /60/ i /30/, pokazala su da se uticaj armature, u stanju pre pojave prslina, najčešće može zanemariti pri odredjivanju pravca i položaja nastanka prsline. Stoga se stanje napona, u ovoj fazi može, sa dovoljnom tačnošću, odrediti zanemarujući prisustvo armature. Tada će se prsline obrazovati po glavnim ravnima, kada glavni napon **6 6** dostigne odredjenu graničnu vrednost, koja, kako je već naglašeno u poglavlju 3, zavisi i od veličine drugog glavnog napona. Njihova zavisnost, u ravni $\mathfrak{G}_1, \mathfrak{G}_2$, definisana je hiperbolom (v. jedn. 3.9 i sl. 3.6). Valja napomenuti da će se orijentacija novih prslina, pri daljem povećanju opterećenja, razlikovati od orijentacije prvih prslina, zbog prisustva napona smicanja u hetonskoj traci.

Ako se sa N_{bp} označi glavna sila zatezanja pri kojoj se obrazuje prslina, a sa $G_1\delta$ i $N_2 = G_2\delta$ sile u elementu od spoljašnj opterećenja, gde je debljina elementa, onda se mogu obrazovati dva tipa prslina:

– prsline koje se ne presecaju (ne ukrštaju iz dva pravca), ako je

	$N_1 > N_{bp}$	$N_2 < N_{bp}$	(4.1)
-	pr <mark>sl</mark> ine	koje se presecaju (ukrštaju) ako je	
	$N_1 > N_{bp}$	$i N_2 > N_{bp}$	(4.1 [′])

Drugi tip prslina se može pojaviti samo pri dvoosnom zatezanju, dok je prvi tip moguć i pri dvoosnom zatezanju i pri dvoosnom stanju "pritisak-zatezanje".

Sila zatezanja N_{bp} , pri kojoj se pojavljuju prsline u betonu, odredjuju se tako da napon N_{bp}/δ zadovoljava uslov plastičnosti, dat jedn. (3.9) poglavlje 3.

Kada se radi o prslinama koje se obrazuju pri stanju dvoosnih napona zatezanja ili stanju kada je jedan glavni napon napon zatezanja,a drugi napon pritiska, onda se, kao što je poznato, granična nosivost armiranobetonskog elementa ne dostiže destrukcijom betona u zategnutoj zoni pojavom prslina, jer su naponi u armaturi znatno niži od granice velikih izduženja,odnosno

Sl. 4.1. Uticaj stepena prianjanja armature za belon na stanje deforma cija i napona duž armature.

granice b_{02} , a naponi u pritisnutom betonu (slučaj dvoosnog stanja "pritisak-zatezanje") dostižu relativno male vrednosti.

Posle obrazovanja prslina^{*)} stvaraju se betonske trake (članci), odvojene prslinama, alí povezane armaturom u jedan zajednički sistem (sl.4.1). Zajednički rad takvog sistema je moguć postojanjem prianjanja izmedju armature i betona. Na mestu prsline, sile zatezanja prima armatura, dok se, idući ka sredini betonske trake, vrši postepena predaja jednog

dela sile zatezanja sa armature na beton. Na taj način se, u šipki armature pravca "i", normalni napon \overline{G}_{0i} u prslini smanjuje, u sredini izmedju prslina, na napon $\overline{\overline{G}}_{0i}$.

Za odredjivanje globalnih deformacija sistema konstrukcije interesantne su srednje deformacije armature $\mathfrak{C}_{\mathfrak{a}i}^{\mathfrak{s}}$, koje prema Murašovu /93/ iznose

$$C_{ai}^{s} = \frac{G_{ai}}{E_{a}} = \frac{Y_{ai}G_{ai}}{E_{a}} = \frac{G_{ai}}{E_{a}'}$$
(4.2)

*) Terminološki treba razlikovati pojmove: prve prsline, prsline, prskotine i pukotine, zavisno od njihove širine. Tada

$$E_{ai} = E_{ai} / \Psi_{ai}$$

predstavlja srednji modul deformacije armature u "Ū" - pravcu. Mulin i Gušća /92/ su proširili primenu pomenutih obrazaca i na slučaj kada se u armaturi mogu pojaviti plastične deformacije. Tako, oni odredjuju srednji modul deformacije armature pomoću obrasca

$$E'_{ai} = \frac{E_{a}}{\varphi_{ai} \varphi_{ai}}$$
(4.4)

gde je

$$\Theta_{ai} = 1 + \frac{\varphi_{3i}}{\varphi_{ai} \chi_{ai}} - \frac{\varphi_{3i}}{\varphi_{ai}}$$

pri čemu su, pomoću koeficijenta i V_{01} ,obuhvaćene srednje plastične deformacije armature na delu izmedju prslina. Tada za slučaj elastičnog ponašanja armature, koeficijenti Ψ_{3i} i V iznose i $V_{0i} = 1$, tj. $\Theta_{0i} = 1$, pa se izraz (4.4) svodi na izraz (4.3).

Sl. 4.2. Pravci prslina se seku pod uglom

Prsline^{*)} u armiranobetonskom elementu, manjeviše, narušavaju zajednički rad armature i betona u okolini prsline, što prouzrokuje pomeranje tačaka armature u odn<mark>osu na tačk</mark>e okolnog betona (sl.4.1). Maksimalna pomeranja javiće se na mestu prekida veze izmedju armature i betona,tj. u samoj prslini, a na sredini izmedju prslina pomeranja će biti ravna nuli. Za šipku armature, položenu u pravcu "i", maksimalno pomeranje iznosi

*) Sprovedena razmatranja se odnose i na prethodnonapregnute elemente, ako ti elementi sadrže prsline.

(4.3)

(4.5)

$$\max u_{i} = (\mathcal{E}_{ai} - \mathcal{E}_{bi}) \frac{1}{2} l_{pi} = (\mathcal{E}_{ai} - \mathcal{E}_{bi}) \frac{1}{2} \frac{l_{p}}{\sin(d_{c} + \beta_{i})}$$
(4.6)

gde su na E_{ol} i E_{bl} označene srednje dilatacije^{***} armature i betona u pravcu "i" šipke armature. Sa 🗸 i /S; označeni su uglovi, koje pravac prsline odnosno šipke "i" zatvara sa 30 osom.

Značenje dužina l_p i l_{pi} je jasno sa same slike 4.1.Ako prsline medjusobno nisu paralelne tada treba za dužinu l_{pi}, u jednaćini (4.6) staviti vrednost koja proizlazi neposredno iz geometrijskih odnosa, sl. 4.2:

$$p_{i} = \frac{1}{2} l_{p} \left[\frac{l_{p}}{\sin\left(\alpha + \beta_{i}\right)} + \frac{1}{\sin\left(\alpha + \beta_{i}\right)} \right] \approx \frac{l_{p}}{\sin\left(\alpha + \beta_{i}\right)}$$
(4.6a)

Ovakva shema prslina karakteristična je za zidne nosače.

Ako se sa ap označe pomeranja tačaka, upravna na pravac pružanja prsline, a sa ∆ pomeranja u pravcu prsline, onda pomeranja tačaka na mestu prsline, u pravcu šipke armature "\" i upravno na nju (sl.4.3) iznose:

 $u_i = 0.5 l_p \sin(\alpha(+/3_i) - 0.5 \Delta \cos(\alpha(+/3_i)))$

 $V_i = 0.5 a_p \cos(\alpha(+\beta_i) + 0.5 \Delta \sin(\alpha(+\beta_i))$

Sl. 4.3. Položaj šipke armature pre i posle otvaranja prsline, U daljem razmatranju biće vrlo pogodno da se pomeranja Ui V;, kao i pomeranja 1/2 ap i 1/2 ∆ izraze u funkciji pomeranja Ux i Vy u pravcu koordinatnih osa X i

y , s obzirom da se, u opštem slučaju, položaji prslina i armature mogu menjati od jedne do druge tačke na nosaču:

60

(4.7)

^{**)} Ovde je izostavljen, a i u daljem razmatranju biće izostav ljen indeks s, koji je u obrascu (4.2) označavao srednje deformacije.

Karpenko /60/ je uspostavio relaciju izmedju pomer_[nja V_i i napona smicanja u armaturi T_{oi}, analogno jednačini (4.6), u obliku,

$$V_{i} = n_{\tau i} \frac{l_{p} T_{a i}}{2 \sin(\omega + /\beta_{i}) E_{a i}}$$

$$4.8a$$

(4.8)

gde je n_{ti} bezdimenzionalni parametar kojim se obuhvata "popustljivost" betonske podloge na tangencijalna pomeranja V; armaturne šipke "į" u prslini.

Iz sl. 4.3 i jedn. (4.7) neposredno proizilazi da razvoj prslina nije vezan samo sa osnim Ujveć i sa tangencijalnim pomeranjem V₁ koje nastaje usled delovanja napona smicanja T_{ai} . Doduše, naponi T_{ai} su obično neznatni i u mnogim slučajevima se mogu zanemariti.

Pomeranje 🛆 predstavlja, ustvari, medjusobno pomeranje tačaka jedne trake betona po drugoj duž same prsline. Ono zavisi od stepena neravnina - nazubljenosti same površi prsline, koji, zavisno od veličine i oblika agregata i kvaliteta betona, može biti manje ili više izražen. One takodje zavisi od širine prsline, povišine armature koja preseca prslinu, zatim od zaostalih "veza" izmedju susednih traka betona, nastalih "zacepljenjem" betona u vidu "mostića", itd. Sve ovo utiče na veličinu sile smicanja koja se javlja na kontaktu susednih traka betona, tj. u prslini. Penwick /26/ je, na betonskim modelima, pokazao da se ova sila javlja sve dok je širina prsline tolika da se "zupci" susednih betonskih traka mogu da odupru jedni o druge. Kod malih sirina prslina (do 0,06 mm), on je dolljao napon smicanja duž prsline do 25 kp/cm², a pri širini prsline od 0,4 mm granična vrednost ovog napona smanjila se na oko 10 kp/cm². Pri tome su se pomeranja \Lambda povećala od 0,05 mm do 0,20 mm. Fenwick je eksperimentalnim putem takodje došao do zaključka da sila smicanja odnosno sila koja deluje upravno na pravac pružanja armature na

mestu prsline cpada sa porastom širine prsline. Osim toga, on je dao i teorijska rešenja, posmatrajući šipku na mestu prsline kao nosač elastično uklješten u betonsku masu. Medjutim, rezultati sprovedenih ogleda toliko se medjusobno razlikuju da je nemogućno doneti bilo kakve zaključke o valjanosti datog teorijskog rešenja i njegove primene u praksi.

Karpenko je u svojim ogledima /60/ pošao drugim putem. On je, za poznate spoljašnje sile zatezanja i smicanja u prslini, tražio kako se menja naprezanje u armaturi G_{01} , menjajući nagib ugla \checkmark armature prema prslini. Ovi ogledi su pokazali da zanemariv nje sile smicanja ϑ_{01} u armaturi, pri malim uglovima \checkmark i pri uglovima bliskim 90°, dovodi do grešaka kod odredjivanja normalnih napona u armaturi. Ipak, mora se konstatovati da su sva ova istraživanja, i po obimu i po varijaciji raznih parametara koji se mogu u praksi pojaviti, bila vrlo skromna, a da se rezultati istraživanja nalaze u vrlo širokim granicama. Stoga treba očekivati da naredna istraživanja unesu više svetla u ovu problematiku, a u primeni dosadašnjih eksperimentalnih rezultata treba biti vrlo obazriv.

Trake betona, razdvojene prslinama, a povezane armaturom, imaju dvojaku funkciju. Prvo, one, zbog postojanja prianjanja izmedju betona i armature, primaju jedan deo sile iz armature, čime se smanjuju deformacije armature, a preko toga smanjuju se i deformacije celog razmatranog sistema. Drugo, one primaju i sile koje deluju na ravan, upravnu na pravac pružanja prslina. (Ako se prsline ukrštaju onda ova funkcija betona nije ispunjena, jer se tada armiranobetonski element nalazi u uslovima dvoosnog stanja zatezanja). Zbog toga se u ovim trakama javljaju i normalni i smičući naponi. Svakako, na veličinu ovih napona utiče i veličina smičuće sile u prslini kao rezultat delimične ili potpune sprečenosti pomeranja susednih traka duž prsline. Ako se sa t označi pravac pružanja prsline, a sa n pravac upravan na prslinu, onda se u betonskoj traci javljaju naponi G_{bt}, G_{bn}, T_{bmi} i T_{binj}odnosno deformacije:

$$E_{bn} = \frac{1}{E_{bt}} (G_{bn} - M_t G_{bn}) \qquad (4.9)$$

$$\delta_{bnt} = \frac{1}{(1 + M_t)E_{bt}} (T_{bnt} + T_{btn})$$

9

gde su E_{bt} i _{At} modul deformacije i Poasonov koeficijent betona u trakama izmedju prslina,

Prikladno je da se, radi jasnijeg uvida u stanje deformacija, odvojeno izraze deformacije što potiču od napona \mathcal{G}_{bt} i \mathcal{T}_{btn} u betonu koji se pojavljuju u ravnima, upravnim na prsline. Sa ovim deformacijama povezane su dopunske srednje deformacije i naponi u armaturi. Ako se zanemari uticaj Poasonovog koeficijenta, deformacije betona iznose,

$$\widetilde{C}_{bt} = S_{bt} / E_{bt} \quad ; \quad \widetilde{T}_{btn} = \widetilde{T}_{btn} / E_{bt} \quad ; \quad \widetilde{C}_{bn} = 0 \qquad (4.10)$$

pri čemu je $E_{bt} = E_b \cdot \int$, gde $\langle 1 \rangle$ predstavlja koefiçijent neelastičnih deformacija trake betona duž prslina.

Usled deformacije betonske trake javljaju se dopunske deformacije šipke armature pravca "Ì"

$$\widetilde{C}_{\alpha i} = \Psi_{t i} + \overline{C}_{b i}$$
(4.11)

gde je $\varphi_{ti} = (1 - \varphi_{ui})$ koeficijent uticaja dilatacije betona \overline{c}_{bi} na dilataciju armature $\overline{c}_{\alpha i}$ pri delimičnom razaranju veze-prianjanja izmedju armature i betona.

St. 4.4. Prilog određivanju dopunskih deformacija armature.

Ilustracije radi, na sl.4.4, prikazana je betonska traka sa šipkom armature "1" koja preseca prsline u tačkama a i b . Pri naponu pritiska G_{bt} traka se skraćuje. Ako veza izmedju armature i betona nije narušena, tačke a i b se pomeraju u a'i b'. Medjutim, ako je veza narušena, tačka a i b (koje pripadaju betonu), pri deformaciji betona opet se pomeraju u a' i b', ali se armatura ne deformiše, pa tačka a prelazi u a", a b u b". Na osnovu eksperimentalnih istraživanja /60/, utvrdjeno je da je, za glatku armaturu $\Psi_a = 0, 15 \ldots$ u trenutku pojave prslina, i $\Upsilon_{ai} = 1$.

u trenutku rušenja veze izmedju armature i betona. Tada se, u prvom slučaju, dobija $\hat{\mathbb{L}}_{qi} = 0,85\hat{\mathbb{L}}_{bi}$, a u drugom, $\hat{\mathbb{L}}_{qi} = 0$. Uticaj napona 6_{bn} i T_{bnt} na vrednosti srednjih deformacija armature obuhvaćen je jednačinom (4.2). Priroda ovih napona je vezana za postojanje sile prianjanja izmedju armature i betona i za smanjenje napona u armaturu, u sredini betonske trake, u odnosu na napone u prslini.

Deformacije armiranobetonskog elementa, koji sadrži pr~ sline, mogu se podeliti na dva dela. Prvo, srednje deformacije koje nastaju otvaranjem prslina i medjusobnim klizanjem duž prslina (sl. 4.5b) i drugo, srednje *deformacije* trake betona, oivičene pr-

slinama (sl.4.5c).

Iz slike 4.5 proizilazi:

$$\mathbb{E}_{0} = \frac{\Delta_{0}}{1_{p}} + \mathbb{E}_{0,0} \quad \text{i} \quad \mathbb{E}_{\ell} = \mathbb{E}_{0,1} \quad \text{i} \quad \mathcal{S}_{0,1} = \frac{\Delta}{1_{p}} + \mathcal{S}_{0,1} = \overline{\mathcal{S}}_{0,1} + \overline{\mathcal{S}}_{1,0} \quad (4.12)$$

gde su:

$$\delta_{\rm int} = \frac{\Delta}{l_{\rm p}} + \frac{1}{2} \delta_{\rm btn}$$
 , $\delta_{\rm tn} = \frac{1}{2} \delta_{\rm btn}$

Pošto je klizanje 1/2 $\longrightarrow \neq \delta_{in} \neq \infty$, stanje deformacija u bilo kojoj tački tela bi bilo odredjeno nesimetričnim tenzorom deformacije. Medjutim, za eksploataciona pa i veća opterećenja, teško je očekivati da će se moći realizovati značajnija pomeranja Δ . Ako se, pri ovoj analizi, zanemari savijanje šipke armature u prslini (v. sl.4.6), što je opravdano, onda će komponentalne deformacije ξ_n, ξ_t i $1/2 \delta_{nt}$ činiti simetrični tenzor deformacije. Da bi se zadržao simetričan tenzor deformacije, a da se ipak, pri tom, vodi računa i o mogućnim pomeranjima Δ , može se izvršiti osrednjavanje klizanja δ_{tn} i δ_{nt} . Tada će u pravouglom koordinatnom sistemu xov biti $1/2 = \frac{1}{2} \{\delta_{xy} + \delta_{yx}\}$. U tome slučaju, stanje deformacija je odredjeno simetričnim tenzorom deformacije

sl. 4.6 Razmera max dozvoljene širine prsline (u eksploataciji) i prečnika šipke 46

4.2. Naponi u armaturi i srednje deformacije armiranobetonskog elementa, vezane za razvoj prslina

Sile u ravni N_x , N_y i N_{xy} sastoje se iz sila koje prima armatura i beton. Dakle, $N_x = N_{ux} + N_{bx}$, $N_y = N_{uy} + N_{by}$ i $N_{xy} = N$, N_{bxy} , pri čemu odgovarajuće sile u armaturi i betonu mogu biti istoy ili različitog znaka. Tako, na primer, u armiranobetonskom elementu u prslinskoj fazi, pri čistom smicanju imamo $N_{ui} = -N_{bi}$. (i = x, y), dok je, kao što je poznato, pre pojave prslina $N_{ui} = N_{bi} = 0$. (i = x, y). Na mestu prsline ukupne sile prima armatura. Si'a smicanja u armaturi N_{uxy} na mestu izvan prslina

 $N_{a\,x\,y} \lll N_{b\,x\,y}$, pa se može pisati da je $-N_{x\,y} \rightleftharpoons N_{b\,x\,y}$.

Da bismo odredili napone u armaturi na mestu prsline,

(0)

koristimo uslove ravnoteže i dopunske uslove po pomeranjima.

Ako se, u opštem slučaju, pretpostavi da armatura, na mestu prsline, osim aksijalnih sila prima i transverzalne sile Qi (Gi=foi·Toi), tada jednačine ravnoteže (v.sl.4.7) izgledaju:

$$N_x \sin \alpha C + N_{yx} \cos \alpha C = G_{\alpha x} f_{\alpha x} \sin \alpha C + G_{\alpha 3} f_{\alpha 3} \sin (\alpha C + \beta_3) \cos \beta_3 -$$

 $= \int_{ay} f_{ay} \cos \alpha - T_{a3} \sin (\alpha + \beta_3) \sin \beta_3 + N^* \sin \alpha - N^*_{nt} \cos \alpha$

(4.13)

E.J.

 $N_y \cos \alpha + N_{xy} \sin \alpha = G_{ay} t_{ay} \cos \alpha + T_{ax} t_{ax} \sin \alpha + G_{a3} t_{a3} \sin (\alpha + \beta_3) \sin \beta_3 +$

· Tusta sinta + B3) cos B3 + Nr cos & + Nrtsin &

Pri tom, pretpostavljena su tri pravca armiranja. Ortogonalna mreža postavljena je u pravcu osa x i y, a treći pravac armature zaklapa ugao $/3_3$ sa x-osom. Ovakav način armiranja može se sresti u zidnim nosačima, u ljuskama na pravougaonoj osnovi i sl. Inače, kao što je poznato, armatura je najčešće rasporedjena u dva ortogonalna pravca. Uticaji u prslini koji nastaju usled neravne površi (zupci, čepovi) i usled pojave "betonskih mostića", uvedeni su u prethodne izraze preko sila N_n^* t N_n , koje se mogu izraziti u obliku,

$$N_{\rm H}^* = \delta E_{\rm H}^* \frac{a_{\rm P}}{1_{\rm P}} \quad i \quad N_{\rm H}^* = \delta E_{\rm H}^* \frac{A}{1_{\rm P}} \tag{4.14}$$

gde su E_n i E_{nt} odgovarajući moduli deformacije, vezani za "stanje" prsline. Armatura $f_{oi} = f_{a}^{(i)} / e_i$ (i = x,y,3) je "razmazana" po elementu; $f_{a}^{(i)}$ je povisina šipke, a e_i (i=x,y,3) rastojanje šipki. Takodje se pretpostavlja da trougaoni element (sl.4.7) ima male, ali konačne dimenzije što dopušta da se zanemari promena sila N_x , N_y i N_{xy} na stranama trougla. S druge strane, pretpostavlja se da je dužina strana elementa velika u odnosu na rastojanje armature i rastojanje prslina.

Ako se veličine Δ i a_p izraze pomoću jednačine (4.8), a pomeranja u_i (i=x,y,3) pomoću jednačine (4.6) i pri tom, zanemari ε_{bi} kao mala veličina u odnosu na ε_{ai} , a zatim iskoristi relacija (4.2), jednačine (4.14) postaju,

$$N_{n}^{*} = d E_{n}^{*} \left(\begin{array}{c} B_{ax} \\ E_{ax} \end{array} \right)$$

$$N_{nt} = d E_{nt}^{*} \left(\begin{array}{c} G_{ay} \\ E_{ay} \end{array} tg \ll - \begin{array}{c} G_{ax} \\ E_{ax} \end{array} ctg \ll \right)$$

(4.15)

sl. 4.7 Raspored sila na stranama armirano-belonskog elementa

Koristeći relacije (4.8), (4.8a), (4.6) i (4.2), mogu se i ostale nepoznate veličine izraziti u funkciji napona G_{ax} i G_{ay} u obliku:

$$\frac{G_{03}}{E_{03}\sin(1-\frac{1}{3})} = \frac{G_{0x}\cos/3}{E_{0x}\sin/4} + \frac{G_{0y}\sin/3}{E_{0y}\cos/4}$$

$$(4.15a)$$

$$T_{0x} = \frac{G_{0y}E_{0x}\sin/4}{T_{0x}E_{0y}\cos/4} + \frac{G_{0x}E_{0y}\cos/4}{T_{0x}E_{0y}\cos/4}$$

$$(4.15bc)$$

$$\frac{E_{03}\sin(1-\frac{1}{3})}{n_{r_3}} + \frac{G_{03}\cos/3}{E_{03}\cos/3} + \frac{G_{0x}E_{0y}\cos/4}{E_{0x}\sin/4}$$

$$(4.15bc)$$

Da bismo odredili osam nepoznatih veličina, koristimo dve jednačine ravnoteže (4.13) i šest jednačina tipa(415-15d); dakle, zadatak se može jednoznačno rešiti.

Ako se vrednosti za nepoznate, date jednačinama(4.15 - 15d), unesu u jednačinu (4.13), dobijaju se naponi u armaturi, položenoj u X odnosno u Y pravcu:

$$5_{ax} = \frac{N_{1}}{f_{ax}} \lambda_{x} \left(1 - \frac{\lambda_{x} \cos \lambda_{3}}{f_{ax} E_{ax} + f_{ax}} f_{ax}\right) - N_{1} \frac{\lambda_{x} \lambda_{y} \lambda_{3} c_{1cc} c_{2cc}}{f_{ax} f_{ay} E_{ay} + f_{a3}} f_{a3}$$

$$5_{ay} = \frac{N_{1}}{f_{ay}} \lambda_{y} \left(1 - \frac{\lambda_{cb} \lambda_{3}}{f_{ay} E_{ay} + f_{a3}} - N_{1} - \frac{\lambda_{x} \lambda_{y} \lambda_{3} c_{1cc} c_{2cc}}{f_{ax} f_{ay} E_{ax} + f_{a3}} f_{a3}$$

$$(4.16)$$

a zatim, pomoću jedn. (4.15a),dobija se napon u armaturi pravca 3

$$G_{\alpha\beta} = \frac{N_{1} \lambda}{E_{\alpha\beta}} = \frac{N_{1} \lambda}{f_{\alpha\gamma} E_{\alpha\gamma} \Phi}$$
(4.17)

gde su:

$$N_{1} = N_{x} + N_{xy} \operatorname{ctg} = N + N_{xy} \operatorname{tg}$$

$$\frac{1}{N_{x}} = 1 + \frac{E_{ay} f_{ay} \cos^{2} \omega}{E_{ax} n_{cy} l_{ax} \sin \omega} + \frac{E_{a3} f_{a3} \sin(\omega + \beta_{3})}{E_{ax} n_{c3} f_{ax} \sin \omega} + \frac{d}{E_{ax} l_{ax}} \left(E_{n}^{*} + E_{nt}^{*} \operatorname{ctg}^{2} \omega \right)$$

$$\lambda_{3} = 1 - \frac{1}{n_{c3}}$$

$$\varphi = \frac{1}{E_{a3}^{*}} + \frac{f_{a3} \operatorname{cl}_{\omega}^{*} \lambda_{x} \lambda_{3}}{f_{ax} E_{ux}^{*}} + \frac{f_{a3} \operatorname{cl}_{\omega}^{*} \lambda_{x} \lambda_{3}}{I_{ay} E_{ay}}$$

$$c_{lw} = \frac{\cos(\beta_{3} \sin(\omega + \beta_{3}))}{\cos(\omega}$$

$$(4.18)$$

Izraz za odredjivanje veličine $\frac{1}{\lambda y}$ je isti kao i izraz $\frac{1}{\lambda x}$ samo što indeksi X i Y treba da zamene mesta. Sila N₁ je ustvari glavna sila zatezanja, koja deluje upravno na pravac prsline.

U slučaju da postoji samo ortogonalna armatura (f_{a3}=0), tada jednačine (4.16) prelaze u znatno jednostavniji oblik,

$$G_{\alpha\kappa} = N_1 \frac{\lambda_{\alpha\kappa}}{f_{\alpha\kappa}}$$
 $G_{\alpha\gamma} = N_1 \frac{\lambda_{\alpha\gamma}}{f_{\alpha\gamma}}$

(4.19)

- 158 -

Jednačine (4.13), (4.16), (4.17) i (4.18) takodje postaju znatno prostije, ako se pretpostavi da je uticaj napona T_{oi} i sila Nn i Nnt na stanje napona i deformacija zanemarljiv u odnosu na uticaj ostalih veličina koje figurišu u tim jednačinama. Kako ogledi /40, 60/ pokazuju, ova zanemarenja su vrlo često opravdana.

U izrazima (4.18, ,,) pojavljuju se nepoznati parametri $n_{\tau i}$ (i=X,y,3).Preciznije teorijsko odredjivanje ovih parametara, napr. iz proračuna mikrogrede, uklještene u betonsku traku izmedju prslina, je vrlo teško, pošto je nepoznat stepen uklještenja. Zato je Karpenko pomoću ogleda /60/, koje smo već ranije spomenuli, odredio parametre λ_x i λ_y za poznate spoljašnje sile N i T, gde je N sila zatezanja upravna na prslinu, a T sila smicanja u prslini. Mereni su naponi $G_{\alpha x}$ i $G_{\alpha y}$ u armaturi kvadratne mreže, položene pod različitim uglovima \measuredangle prema prslini. Na taj način, sve veličine u jednačinama tipa (4.19) su bile poznate, osim parametara λ_x i λ_y , pa je njihovo odredjivanje usledilo iz ovih jednačina. Na osnovu tih ispitivanja, on predlaže sledeće obrazsce za odredjivanje parametara λ_x i λ_y

$$\lambda_{x} = \frac{16 \Theta_{ax} f_{ax}}{\Theta_{ax} f_{ay} ctg \ll \cos^{2} \varkappa + 16 \Theta_{ay} f_{ay}}$$

 $\lambda_y = \frac{1}{\Theta_{ay} f_{ay} t_g^2 \ll \sin^2 \ll +16 \Theta_{ax} f_{ax}}$

Parametri Θ_{0x} i Θ_{ay} su dati obrascem (4.5). Za λ_3 Karpenko predlaže v ednost 15/16. Kada je $Q_{ai} = 0$, tj. kada je $T_{ai} = 0$, tada je $\lambda_i = 1$ (i = x, y). Ustvari, u razmatranom slučaju koeficijent λ_i je jednak odnosu napona G_{ai} (i = x, y) sa uzimanjem u obzir i zanemarivanjem napona T_{ai} (i = x, y). Analizirajući jednačine (4. 16) (4.18), (4.19) i 4.20) može se zaključiti da, pri malim uglovima i pri \checkmark bliskim 90°, zanemarivanje napona smicanja u armaturi T_{ai} može dovesti do pogrešnih rezultata pri odredjivanju normalnih napona G_{ai} u armaturi. Inače, u ostalim slučajevima naponi T_{ai} se najčešće mogu zanemariti. Velićina koeficijenta λ_x , odnosno λ_y u funkciji ugla \checkmark prikazana je na sl.4.8.

(4.20)

Iz sračunatih napona $G_{\alpha i}$ (j = x,y,3) mogu se odrediti srednje deformacije armature $\mathcal{E}_{\alpha i}$ (j = x, y, 3) po obrascu (4.2).

$$\varepsilon_{ax} = \frac{16i_x}{E_{ax}} = C_{a11} N_x + C_{a12} N_y + C_{a13} N_{xy}$$

$$\varepsilon_{ay} = -\frac{G_{ay}}{E'_{ay}} = C_{a+2} N_x + C_{a22} N_y + C_{a23} N_{xy}$$

odnosno Ny od ugla ok .

Klizanje se može dobiti iz uslova da je dilatacija armature, postavljene duž prsline jednaka nuli (E_{ot} =0), odnosno

$$\varepsilon_{0x}\cos^{2}\alpha + \varepsilon_{0y}\sin^{2}\alpha - \chi \sin \alpha \cos \alpha = \varepsilon_{01} = 0$$

odakle je

Koristeći jednačine (4.21) klizanje V_{uxy} se može napisati u obliku

 $M_{xy} = C_{a13} N_x + C_{a23} N_y + C_{a33} N_{xy}$

1

(4.22)

$$\frac{\lambda_{x(y)}}{f_{ax(y)} = ax(y)} = \frac{\lambda_{x(y)} \lambda_{x(y)} \lambda_$$

 $c_{a12} = c_{a21} = -\frac{\lambda_x \lambda_y \lambda_3 c_{a12}}{f_{ax} f_{ay} E_{ax} E_{ay} \Phi}$

ca13= ca31= ca11 ctgal + ca12tgal

Co33-Co22.g2. + 2Co12+ Colletg2.

Veličine C_{1ac} , C_{2ac} i \oplus su odredjane relacijama (4.18). Pri upotrebi samo ortogonalne armature (f_{aj} = 0), izrazi (4.23) se znatno pojednostavljuju, a koeficijenti $C_{012}=C_{021}=0$.

4.3. Deformacije betonske trake i njen uticaj na ukupnu deformaciju armiranobetonskog elementa

Izrazi (4.21) i (4.22) odnose se na srednje deformacije armature koje su vezane za otvaranje prslina. Medjutim, usled deformacije betonske trake javljaju se dopunski naponi \tilde{G}_{0i} i dopunske deformacije \mathcal{E}_{0i} (i=x,y,3) koje treba superponirati sa naponima \tilde{G}_{0i} i deformacijama \mathcal{E}_{0i} datim jednačinama (4.16) i (4.17), odnosno (4.21) i (4.22).

Koristeći relacije (4.10) i (4.11) i usvajanjući pretpostavku da su globalne deformacije u pravcu prsline jednake srednjim deformacija^{ma}betonske trake ($\mathcal{E}_{at} = \mathcal{E}_{bt}$, v.sl.44), mogu se dopunske deformacije armature u ravni x, y izraziti u obliku,

$$\widetilde{\delta}_{ax} = \widetilde{\mathcal{E}}_{bx} + \widetilde{\mathcal{E}}_{ay} = \widetilde{\mathcal{E}}_{by} + \widetilde{\mathcal{E}}$$

gde su:

$$E_{by} = \frac{1}{E_{by}} \left(\overline{G}_{by} \sin^2 \alpha - \overline{T}_{bxy} \sin \alpha \cos \alpha \right) = \frac{1}{E_{by}} \left(\overline{G}_{bx} \cos^2 \alpha - \overline{T}_{bxy} \sin \alpha \cos \alpha \right)$$
$$= \frac{1}{E_{by}} \left(\overline{G}_{by} \cos^2 \alpha - \overline{T}_{bxy} \sin \alpha \cos \alpha \right)$$

$$\mathcal{E}_{t} = \mathcal{E}_{bt} = \frac{1}{|\mathbf{E}_{bt}|} \left(\mathcal{G}_{bx} \cos^{2} \omega + \mathcal{G}_{by} \sin^{2} \omega - 2\mathcal{T}_{bxy} \sin \omega \cos \omega \right)$$

(4.23)

(4.25)

Ako se naponi u betonu izraze u obliku $G_{bxiyf} (N_{x(y)} - N_{ox(y)}) / \delta$ i $T_{bxy} = (N_{xy} - N_{oxy}) / \delta$, i ako se, umesto sila u armaturi, ispišu naponi u armaturi, tada će dopunske deformacije armature $\overline{\mathcal{E}}_{ox}, \overline{\mathcal{E}}_{oyi}$ X_{oxy} biti izražene, kao i u slučaju primarnih deformacija (vidi jedn. 4.21 i 4.22), u funkciji sila N_x , N_y i N_{xy} , u obliku

(4.26)

$$\varepsilon_{ox} = C_{b11} N_x + C_{b12} N_y + C_{b13} N_{xy}$$

$$C_{ay} = C_{b12} N_x + C_{b22} N_y + C_{b23} N_{xy}$$

$$A_{0xy} = C_{b13} N_x + C_{b23} N_y + C_{b33} N_{xy}$$

a pri čemu koeficijenti imaju sledeće značenje:

$$C_{b12} = C_{b12} = C_{b21} = 0 \quad ; \quad C_{b13} = -\frac{\Psi_{tx} \sin 2\omega}{2E_{bt}}$$

$$C_{b23} = -\frac{\Psi_{1x} \sin 2\omega}{2E_{bt}} \quad ; \quad C_{b22} = -\frac{\Psi_{ty} \sin^2 \omega}{E_{bt}} \quad ; \quad C_{b22} = -\frac{\Psi_{ty} \sin^2 \omega}{E_{bt}} \quad ; \quad (4.2)$$

$$C_{b33} = -\frac{1}{E_{b10}} = \Psi_{1x} \sin^2 \omega + \Psi_{1y} \cos^2 \omega + (1 + f_{ax} E_{ax} C_{a13} ctg \omega) + (1 - \Psi_{1x}) + (1 + f_{ax} E_{ax} C_{a13} ctg \omega) + (1$$

Veličine E_{bl} , Ψ_{lx} i Ψ_{ly} definisane su izrazima (4.9), (4.10) i (4.11). U trenutku pojave prsline može se, bez velike greške,

pretpostaviti da je $\mathcal{P}_{ui}(i_{i=x,y}) = 0$ (v. jedn. 4.2), odnosno ti(i_{x,y}) , a pri potpunom rušenju veze-prianjanja izmedju betona i armatuze da je $\mathcal{P}_{ui(i=x,y)} = 1$, odnosno $\mathcal{P}_{ti(i=x,y)} = 0$. Tada (se izrazi (4.27) znatno pojednostavljuju. U slučaju potpuno narušene veze armatuza-betona, svi koeficijenti C_{bij} , osim koeficijenta C_{b33} , postaju jednaki nuli. Iz toga proizilazi da su $\tilde{E}_{ux} = \tilde{E}_{uy} = 0$, što je već ranije konstatovano, (v.sl.4.4).

Prema tome, ukupne globalne deformacije armiranobetonskog elementa sa prslinama jednake su srednjim deformacijama armatu usled uticaja koji deluju u ravni prsline i usled uticaja koji deluju na ravan upravnu na pravac prslina. Dakle, superpozicijom odgovarajućih veličina, datih jednačinama (4.21) i (4.22) sa veličinama iz jednačine (4.26) dobija se:

$$\mathcal{E}_{x} = \mathcal{E}_{ax} + \overline{\mathcal{E}}_{ax}$$
 $\mathcal{E}_{y} = \mathcal{E}_{ay} + \overline{\mathcal{E}}_{ay}$, $\mathcal{S}_{xy} = \mathcal{S}_{axy} + \overline{\mathcal{S}}_{axy}$ (4.28)

(4.29)

odnosno

$$\mathcal{E}_{xy} = C_{11} N_{x} + C_{12} N_{y} + C_{13} N_{xy}$$
$$\mathcal{E}_{y} = C_{12} N_{x} + C_{22} N_{y} + C_{23} N_{xy}$$
$$\mathcal{E}_{xy} = C_{13} N_{x} + C_{23} N_{y} + C_{33} N_{xy}$$

gde su koeficijenti krutosti C_{ij} =C_{aij} +C_{bij}.

Jednačine (4.29) predstavljaju generalisani Hocke-ov zakon za anizotropni materijal. To znači da se armirani beton u naponskoj fazi kada sadrži prsline, a radi u uslovima ravnog naponskog stanja, ponaša kao anizotropni materijal. Iz analize jednačine (4.23) i (4.27) može se zaključiti da je matrica koeficijenata C_{ij} simetrična u odnosu na glavnu dijagonalu, da su koeficijenti C_{ij} (i=j) pozitivni, a da koeficijenti C_{ij} (i≠j) mogu biti i pozitivni i negativni, što je svojstveno generalisanom Hocke-ovom zakonu za elastični anizotropni materijal. Medjutim, ovde nisu konstantni koeficijenti C_{ij}. Oni se menjaju u zavisnosti od procesa razvoja prslina, odnosno od veličine sila N_x, N_y i N_{xy}.Prema tome, armirani beton se ponaša kao nelinearni anizotropni materijal, gde je ta nelinearnog fizičkog karaktera.

Valja uočiti da, pri ovakvom tretiranju isprskalog armiranobetonskog elementa, deformacije \mathcal{E}_x i \mathcal{E}_y zavise ne samo od normalnih, nego i od smičućih sila, a da klizanje ∂_{xy} ne izazivaju samo smičuće, već i normalne sile. Takodje, treba uočiti da smičuće sile, nezavisno od znaka, povećavaju deformacije zategnute armature, da normalne sile zatezanja povećavaju deformacije klizanja, a da je normalne sile pritiska smanjuju.

4.4. Prsline

Kada su poznati dilatacije upravno na pravac prslina E_{op}i rastojanje prslina (p, može se odrediti širina prsline po ap = Egnilo

Invarijantnost stanja deformacija dopušta da se \mathcal{E}_{an} izrazi u obliku

$$\mathcal{E}_{an} = \mathcal{E}_{n} = \mathcal{E}_{bn} = \mathcal{E}_{x} + \mathcal{E}_{y} - \mathcal{E}_{t} - \mathcal{E}_{bn}$$

Dilatacije betona upravno na pravac prsline \mathcal{E}_{bn} su zanemarljive u odnosu na ostale dilatacije. Ako se one zanemare, širina prslina se može odrediti po obrascu

$$a_p = (\varepsilon_x + \varepsilon_y - \varepsilon_1) \cdot I_p$$

gde se dilatacije \mathcal{E}_x , \mathcal{E}_y i \mathcal{E}_t mogu odrediti pomoću relacija (4.28) 1 (4.25):

Ako naponi pritiska u betonskoj traci nisu veliki,odnosno ako je dopunsko naprezanje armature od deformacije betonske trake $\mathcal{E}_{t} = \mathcal{E}_{pt}$ neznatno u odnosu na srednje deformacije armature, koje nastaju pri obrazovanju i širenju prslina, onda se može pisati da je

$$a_{p} = \mathcal{E}_{ax} * \mathcal{E}_{ay} \cdot |_{p} \qquad (4.33)$$

gde se srednje dilatacije \mathcal{E}_{ox} i \mathcal{E}_{oy} odredjuju po obrascima (4.21).

Ako se sa 6₀ označi napon u armaturi na mestu prsline, a sa G₀; napon u armaturi neposredno pred pojavu nove prsline na onom mestu gde glavna sila zatezanja u betonu dostiže vrednost N_{bp}, onda se rastojanje izmedju prslina l_o odredjuje iz uslova ravnoteže sila koje deluju na šipku armature "i" na dužini izmedju prslina:

$$l_{p}^{(i)} = \frac{G_{ni} f_{ui} \sin (\omega_{c} + \beta_{i})}{\omega_{i} \cdot T_{pi} \cdot S_{i}}$$

gde su:

T_{pi} - maksimalni napon prianjanja

Wi - koeficijent punoće dijagrama napona prianjanja, i

S; - obim šipke "i"

Juačenje uglova 🖧 i /3; se jasno uočava sa slika 4.1, 4.2 i 4.9.

Pojava prslina izaziva preraspodelu sila izmedju betona i armature. Stoga nova prelina II-II, (v.sl.4.9), po pravilu, nije paralelna ran 🤌 formiranoj prslini I-I. Ugao 🗸 2, koji nova prslina zatvara sa x-osom može se odrediti po poznatom obrascu

(4.34)

(4.32)

(4.30)

(4.31)

- 164 -

___ Otpornosti materijala, ako se poznaju sile Nx, Ny i Nxy .

Veličina $G_{n1}^{b} = (G_{01} - G_{01})$ predstavlja dodatne napone u armaturi kao rezultat preraspodele sila sa betona na armaturu na mestu pojave nove prsline. Ona se može odrediti po obrascima (4.16) i (4.17) za armaturu položanu u tri različita pravca ili po obrascima (4.19) za armaturu položenu u dva ortogonalna pravca. Pri tom, treba da je glavna sila zatezanja N1, definisana jednačinom (4.18), jednaka glavnoj sili zatezanja N_{bo v}

kojoj se pojavljuje prslina. Na ovaj način, jednačine (4.34) u onoliko rešenja za l_p koliko ima različitih pravaca armatu-Jasno je da za rastojanje k treba usvojiti najveću od dobijenih vrednosti pošto ona najviše ukazuje na liniju gde se potpuno uspostavilo prianjanje svih pravaca armature sa betonom.

4.5. Stanje granične nosivosti

Izložena teorijska rešenja mogu da obuhvate ponašanje armiranog betona kroz sve faze opterećenja, počev od pojave prvih prslina do iscrpljenja granične nosivosti. Zadržimo se na pitanju granične nosivosti, koja može biti dostignuta po armaturi $[G_{01} = G_{021})$, po betonu ili po armaturi i betonu.

Ako iscrpljenje granične nosivosti nastaje po armaturi, tada su sile u prslini i N_{nt}, (v.jedn. 4.14), jednake nuli. Zanemare li se i smlčući naponi u armaturi T_{oi} , a pretpostavi da, radi jednostavnijih izraza, postoji samo ortogonalna armatura u pravcu koordinatnih osa x i y, uslovi ravnoteže (4.13), pri tečenju armature { G_{oi} = G_{02i}), prelaze u oblik,

 $(G_{02y}f_{0y} - N_y)\cos \alpha_0 - N_{xy}\sin \alpha_0 = 0$

4.35

gde je √_Cugao koji linija loma (tečenja) zatvara sa x-osom. Kako SIN √₀ i COS√₀ istovremeno ne mogu biti jednaki nuli, to determinanta sistema mora biti jednaka nuli, tj.

$$\left(G_{02x} f_{ax} - N_x \right) \left(G_{02y} f_{ay} - N_y \right) - N_{xy}^2 = 0$$
(4.36)

Ova jednačina, ustvari, predstavlja uslov plastičnosti armiranobetonskog elementa, dostignutog po armaturi. Izrazi $\{6_{02}, f_{11} - N\} \ge 0$ i $(6_{02y}f_{0y} - N_y) \ge 0$, jer sile $N_x \perp N_y$ ne mogu biti veće od sila koje može da primi armatura.

v obliku;

 $f g_{\alpha} \mathcal{L}_{\alpha} = \mathbb{E}\left[\sqrt{\left(\left. \theta_{\alpha \beta \alpha} f_{\alpha \beta} - N_{\alpha} \right) \right] / \left(\left. \theta_{\alpha \beta \alpha} f_{\alpha \alpha} - N_{\alpha} \right) \right.} \right]$

Za stanje dvoosnih pritisaka, uslov plastičnosti za armirani beton, formulisan je ranije u poglavlju 3 pomoću jednačine (3.16).

(4.37)

Betonske trake, razdvojene prslinama, a povezane armaturom, nalazerse, kao što je već u tački 1 ovog poglavlja naĢlašeno, u uslovima ravnog stanja napona, gde je jedan od glavnih napona – napon pritiska, a drugi napon zatezanja. Zato, u ovoj naponskoj oblasti, treba primenjivati već formulisani uslov plastičnosti dat jedn. (3.9) (poglavlje 3), koji u ravni 6_1 , 6_2 predstavlja hiperbolu.

5. PRIMENA METODE KONAČNIH BLEMENATA PRI REŠAVANJU PROBLEMA ARMIRANOG BETONA

5.1. Uvod i pretpostavke

Metoda konačnih elemenata je relativno novijeg datuma; njen razvoj i primena su usko povezani sa upotrebom elektronskih računara velikih kapaciteta. Inače, suština metode se sastoji u fizičkoj diskretizaciji kontinuma i primeni varijacionih principa mehanike na tako diskretnu strukturu. Dakle, za razliku od diforencnog postupka, ovde se radi o diskretizaciji fizičkog karaktera gde se stvarni kontinum zamenjuje jednim diskretnim konstrukcijskim sistemom koji se dalje matematički strogo analizira, dok se kod diferencnog postupka, eyzaktno postavljene jednačine stvarnog fizičkog problema rešavaju približnim matematičkim postupcima.

U ovome radu je učinjen pokušaj da se jedan postojeći program za rešavanje ravnih problema teorije elastičnosti primeni i na rešavanje problema u armiranom betonu sa prslinama, menjajući geometriju nosača zavisno od razvoja prslina. Pri tome je korišćen trougaoni konačni element sa čvorovima u temenima i sredinama strana trougla^{*)}. Takav model konačnog elementa daje kvadratnu promenu pomeranja odnosno linearnu promenu komponenti deformacija u svakom konačnom elementu. Komponente deformacija u čvorovoma na sredini strana dobijaju se kao srednje vrednosti odgovarajućih deformacija u susednim čvorovima.

Kao osnovne nepoznate veličine usvojene su komponente pomeranja čvorova (metoda deformacije). Za opisivanje komponenata pomeranja, kao funkcija koordinata tačaka, koriste se polinougog reda, što znači da se uvodi 12 parametara, po 6 za svaku komponentu pomeranja.

Proračun stanja napona i deformacija armiranobetonskog (zidnog) nosača metodom konačnih elemenata, zasniva se na sledećim pretpostavkama:

^{*)} Ovaj model konačnog elementa se danas najviše primenjuje pri rešavanju problema Teorije elastičnosti. Fraeijs de Venbeke ga je primenio još 1964. godine, a zatim razradio Argiris. Konačan oblik u bezdimenzionalnim koordinatama formulisao je Felippa.

a) Pretpostavka o geometrijskoj, statičkoj i fizičkoj linearnosti problema.

b) Nosač se nalazi u uslovima ravnog stanja napona.

c) Armatura je ravnomerno raspodeljena po širini betonskog preseka, tj. diskretno postavljene šipke armature se pretvaraju u sloj širine jednake širini nosača.

d) Sile na mestu prsline prima samo armatura.

e) Oblik i lokacija prslina su unapred odredjeni.

f) Relativno pomeranje izmedju armature i betona nije mogućno.

g) Svako novo stanje prslina predstavlja i novu geometriju nosača.

U suštini, pretpostavkom pod e) obezbedjuje se da se prslina ne pojavi unutar konačnog elementa, već duž njegovih strana, što umnogome olakšava posao oko ispisivanja ulaznih podataka za elektronski računar. Naime, ova pretpostavka omogućuje da se jednom, na početku, usvojeni raspored konačnih elemenata, i za sve ostale faze opterećenja,odnosno u čitavom procesu razvoja prslina. Jasno je da će ovako idealizirani položaj sline biti bliži stvarnom položaju ako se oko prsline odaberu konačni elementi što manjih dimenzija. U ovome radu se pošlo od prethodno definisane prsline, dobijene na ogledima autora ovog rada. Položaj idealizovane prsline (sl. 5.1) poklapao se sa položajem stvarne prsline, izuzev na onim mestima gde je stvarna

prslina presecala konačni elemenat. Tu je idealizirana prslina prošla bližom stranOm konačnog elementa.

Položaj prslina može se i računskim putem odrediti. U čvornim tačkama konačnog elementa, gde glavni normalni naponi u betonu zadovoljavaju uslov loma, dat jednačinom 4 (poglavje 3), pojaviće se prsline u betonu. Ovim putem je, za neke faze opterećenja, kontrolisano da li se lokacija i orijentacija, računom dobijenih prslina slaže sa onima iz ogleda, pri čemu je dobíjena zadovoljavajuća saglasnost.

Pretstavljanje prslina pomoću modela konačnih elemenata postiže se tako što se čvorovi betonskih konačnih elemenata, sa svake strane, uz prslinu, označavaju različitim brojevima. Na taj način konačni elementi su razdvojeni prslinom. Par čvorova, koji se nalaze nasuprot jedan drugome,sa svake ivice prsline, imaju iste koordinate. Otvaranjem prsline, čvorovi se medjusobno pomeraju. Na mestu gde armatura preseca prslinu, konačni elementi koji predstavljaju armaturu se ne razdvajaju, tj. čvorovi se ne udvajaju.

5.2. Brojčani primer

Proračun stanja napona i deformacija armiranobetons. og zidnog nosača, čije su dimenzije i shema opterećenja prikazani na sl. 5.2, izvršen je metodom konačnih elemenata. Pri tome analizirana tri različita naponsko deformacijska stanja, karakteristična za jasnije sagledavanje ponašanja ovih nosača: stapre pojave prslina (sl. 5.2a), stanje posle pojave prvih pr-(sl.5.7b) i najzad,stanje znatnog razvoja prslina (sl.5.2c).

st.5.2 Anatizirani zidni nosači

12

U primeru je, na sl.5.2h, pretpostavljena samo jedna vertikalna prslina u sredini nosača, dok se na sl.5.2c pretpostavlja postojanje pet prslina, simetrično lociranih u odnosu na osu X = L/2. sustini, geometrijske karakteristike, lokacije prslina i intenziteti opterećenja za pojedina naponsko deformacijska stanja, kao i kvalitet materijala analiziranog nosača, odgovaraju onim vrednostima koje su dobijene ogledom na zidnom nosaču ZN 7 (v. pogl. 2.). Zbog različitog stanja prslina, naponsko deformacijska analiza se mora sprovesti posebno za svaki od tri pomenuta stanja, kao da se radi o različitim nosačima. Stoga, označimo ih kao nosače A, B i C. Jednako podeljeno opterećenje na ivici y = H = 80 cm, iznosi $p_1 = p_2 = 36,0$ Mp/m' (nosači A i B),odnosno $p_3 = 2p_1 = 72,0$ Mp/m' (nosač C).

sl. 5.3. Raspored konačnih elemenata na zidnom nosaču C .

Usvojeni sistem konačnih elemenata prikazan je na sl.5.3. Ukupan broj trougaonih elemenata iznosio je 288, a broj čvorova 629 (nosači A i B) odnosno 653 (nosač C). Težilo se da se usvoji, što veći broj konačnih elemenata radi veće tačnosti dobijenih rezultata. U oblastima, gde se očekivalo da će promene napona biti nagle, usvojeni su konačni elementi manjih dimenzij i obrnuto. Da bi se što bolje obuhvatila geometrija nosača (sl.5.2), konačni elementi, pomoću kojih je izvršena diskretizacija oslonačkih stubova ($0 \le X \le 0, 1L$; $0 \le y \le H$), imali su 2,25 puta veću debljinu od ostalih konačnih elemenata nosača. Pokazalo se da su trougaoni elementi vrlo pogodni za diskretizaciju sredine neposredno oko prslina, jer mogu vrlo uspešno pratiti prslinu, koja u opštem slučaju, kao što je poznato, može biti proizvoljnog oblika.

Zbog simetrije nosača, prslina i opterećenja, posmatrana je samo jedna polovina nosača. Prema tome, u osi X = L/2, horizontalna pomeranja čvorova, koji pripadaju konačnim elementima armature, jednaka su nuli. Takodje, na ovoj osi, jednaka su nuli i horizontalna pomeranja onih čvorova kroz koje nije prošla prslina. Kontura prsline nije opterećena (pretpostavka d u tački 5.1), a pomeranja čvorova, koji se nalaze na njoj, nisu sprečena.

Karakteristike konačnih elemenata betona usvojene su u skladu sa rezultatima, datim na dijagramima 2.10 i 2.11 (pogl. 2),Usvojena je MB 250. Modul elastičnosti i Poasson-ov koeficijent za čelik: $= 2.1.10^6 \text{ kp/cm}^2$ i) = 0,3. Napon u armaturi za analizirana naponsko-deformacijska stanja nosača bio je ispod granice elastičnosti.

5.2.1. Analiza rezultata

Program omogućuje dobijanje napona, dilatacije i pomeranja u svim čvorovima konačnih elemnata.

> Odabrani rezultati su predstavljeni na sl.5.4 do 5.9. Na osnovu dobijenih rezultata može se zapaziti sle-

deće:

a) Naponi u čeliku i betonu zidnih nosača A i B razlikuju se samo u oblasti neposredno oko prsline. Na udaljenosti od prsline, većoj od njene dužine, gotovo da i nema razlike u stanju napona ovih dvaju nosača. To je u potpunoj saglasnosti sa poznatim Saint-Venant-ovim principom, prema koje se stanje napopa i deformacija u odredjenim delovima tela ne menja ako se opterećenje koje napada lokalno zameni statički ekvivalentnim opterećenjem. U konkretnom slučaju, otvaranjem prsline, nosać A prelazi u nosać B, a sile u zategnutom betonu, na celoj dužini pr-!jne, zamenjnju se ekvivalentnim silama u zategnutoj armaturi. Na sl. 5.4. i sl. 5.6 - 5.8 jasno se uočava da se uticaji usled

pojave prsline lokalizuju. Udaljavajući se od prsline, naponi i u betonu i u armaturi teže da se povrate onim vrednostima koje su bile u fazi bez prslina.

"Uvodjenje" sile iz armature preseka sa prslinom u betonsku traku izmedju prslina slično je uvodjenju sile prednaprezanja u betonsku konstrukciju.

b) Ako je broj prs-

si.5.4 Raspored napona 6, u čeliku duž raspona nosača: A,BjC.

lina veći, odnoso ako je njihov razmak manji, tada se uticaji usslina mogu da prenose skoro do susednih prslina. učaj sa nosačem C koji u odnosu na "reperni" nosač A, pa je u odnosu na nosač B, u najvećem delu no uča, ima drugačije tanje napona i deformacije. Naponi u čeliku (sl.5.4) u preseku sa prslinom dostižu višestruke vrednosti napona u preseku izmedju jutim, u procesu razvoja prslina naponi u armaturi se ne menjaju linearno sa opterećenjem. Pri porastu opterećenja, priras^c napona u prslini je sporiji nego prirast opterećenja. Ovo je rezultat povećanja kraka unutrašnjih sila sa razvojem prslina. Tako, na primer, odnos napona G_a u preseku 10 nosača C i B znatno je manji od dva, jako je opterećenje nosača C dva puta veće nego nosač B.

C) Numerički dobijene vrednosti napona u betonu reladobro slažu sa rezultatima ogleda, izvršenim na armiranobetonskim zidnim nosačima. Pri tome su slaganja veća u oblastima su udaljenije od armature i prslina (sl. 55). Numeričke i merene vrednosti napona u čeliku se takodje dobro slažu pre jave prslina i u početnoj fazi razvoja prslina (sl. 5.4, nosači Medjutim, sa širenjem prslina (nosač C), odstupanja posnačajna, posebno u presecima izmedju prslina.

karakterističnim presecima zidnih nosača A,B i C. (1) dijagrami G_{bx}, b) dijagrami G_{by}.

= 173 ==

sl. 5.7. Glavni naponi u zidnom nosaču B ,

st. 5.8. Glavni naponi u zidnom nosaču C.

U tački 5.2 odredjeno je stanje napona i deformacija u armiranobetonskom zidnom nosaču u zavisnosti od dostignutog stepena razvoja prslina, primenjujući metodu konačnih elemenata. Pri tome je uporedna analiza ovih i eksperimentalnih podataka pokazala da primenjeni numerički postupak pruža velike mogućnosti u istraživanju ponašanja armirano betonskih konstrukcija sa prslinama. Naravno, neophodno je da svojstva koja dajemo konačnim elementima što vernije odražavaju stvarno stanje konstrukcije. S tim u vezi, mora se naglasiti da neke od učinjenih pretpostavki (v.t. 5.1) o ponašanju armirano betonskog elementa predstavljaju dosta grubu aproksimaciju stvarnog stanja. Jasno je da su one ovde proistekle kao posledica mogućnosti korišćenja jednog postojećeg programa, namenjenog rešavanju ravnog problema teorije elastičnosti, a ne kao posledica realnog sagledavanja ponašanja armiranog betona. Stoga i ovde učinjeni prilaz, u analizi stanja napona i deformacija, treba shvatiti više kao ilustraciju primene metode konačnih elemenata u armiranom betonu i ukazivanje na otvorena pitanja, nego kao tačniju aproksimaciju stvarnog ponašanja armiranobetonskog elementa. Inače, složenost pojava, koje se manifestuju u armirano betonskom elementu, posebno u procesu razvoja prslina i iscrpljenja granične nosivosti, zahteva mnogo tačniju aproksimaciju ponašanja armiranog betona. Pre svega, u analitičkom modelu mora se uvesti pretpostavka o fizičkoj nelinearnosti problema. Takodje se moraju uvažavati i anizotropna svojstva armiranog betona.

Učinjena pretpostavka f (t.5.1), prema kojoj ne postoji relativno pomeranje izmedju tačaka armature i betona, na spoju armatura-beton, prihvatljiva je, prema eksperimentalnim ispitivanjima, za stanja pre pojave prslina i za stanja u početnom stadiju razvoja prslina. Pri obrazovanju prslina većih razmera, kao što je poznato, dolazi do narušavanja veze-iscrpljenja čvrstoće prianjanja izmedju betona i armature. U početku se ova veza narušava neposredno u okolini prsline, a zatim, pri daljem povećanju opterećenja, narušavanje se produžava sve dalje i dalje od prsline, što prouzrokuje da se armatura, u tome delu nosača, deformiše nezavisno od betona koji je okružuje. Taj fenomen nije bio analitički obuhvaćen u brojnom primeru pa su se, uglavnom,zbog toga i pojavile razlike izmedju numerički i eksperimentalno dobijenih rezultata (v.sl.5.4, nosač C). Osim toga, usvajanjæmpretpostavke da deformacije betonskih elemenata-traka, razdvojenih prslinama, nisu medjusobno zavisne, prihvatljiva ^{je}samo u slučajevima kada je širina prslina relativno velika /60, 26/. Inače, pri manjoj širini prslina, usled neravne površi prsline, u njoj se javljaju sile smicanja, što znači da tada, betonski elementi, koje deli prslina nisu potpuno razdvojeni.

Lako je zapaziti da metoda konačnih elemenata, uz primenu elektronskih računara velikih kapaciteta, pruža moguć~ nosti da se napred pomenuti fenomeni kao i drugi (viskozne deformacije i sl.), karakteristični za ponašanje armiranog betona, uključe u analitički model. Jasno je da će tačnost analitičkog postupka zavisiti najviše od toga u kojoj meri se, takvim analitičkim modelom, mogu opisati ti fenomeni koji su, u opštem slučaju, funkcija opterećenja. U vezi sa tim, treba ukazati na to da su eksperimentalna istraživanja ovih fenomena vrlo oskudna. Na osnovu njih još uvek je teško definisati zakonitost izmedju napona i deformacija "spoja-veze" armature sa betonom. Još manje pouzdanih podataka, o ovoj zavisnosti, ima kada je reč o "vezi" koja postoji izmedju dve susedne betonske trake u prslini. (Detaljnije, v. pogl. 4). Doskora se takodje vrlo malo znalo o stvarnom ponašanju betona u uslovima ravnog stanja napona. Kupfer /71/ je, u ovoj oblasti bio prvi koji je dao eksperimentalne podatke o zavisnosti glavnih napona \mathbb{G}_1 , \mathbb{G}_2 i dilatacija \mathbb{G}_1 i \mathbb{G}_2 ,kao i modula deformacije 👘 i E2 i Poisson-ovih koeficijenata 🕅 i 🚺 .

Ngo i Scordelis /97/ su predložili da konačni elementi za simuliranje veze izmedju armature i betona budu bez dimenija, ali da imaju svojstva elastičnih opruga, postavljenih paralelno i upravno na šipku armature. Ove opruge, zavisno od njihovih krutosti, dopuštaju relativna pomeranja izmedju čvorova konačnih elemenata betona i armature (sl. 5. 9). Kada je veza izmedju armature i betona potpuno narušena, krutosti su jednake nuli, a pri potpuno ostvarenom spoju, teže beskonačnosti. Sigurno je da se na sličan način može da simulira stanje napona i deformacija u prslini. Samo krutost takvog veznog elementa, upravno na prslinu je jednaka nuli, pošto u tome pravcu zrna agregata ne pružaju nikakav otpor medjusobnom razmicanju tačaka susednih betonskih traka. Krutost veznog elementa, u pravcu paralelnom

prslini je funkcija više parametara (krupnoće zrna agregata, širine prsline i dr). U graničnom slučaju, kada dodje do medjusobnog klizanja susednih betonskih traka duž prsline, krutost ovoga veznog elementa teži nuli, dok u obrnutom slučaju, kada je ovo pomeranje potpuno sprečeno, krutost teži beskonačnosti.

U analiziranom brojčanom primeru, učinjene pretpostavke u tački 5.1, svode se, u suštini, na to da se prelime mogu slobodno otvarati, tj.

da je krutost veznih elemenata u njima jednaka nuli, a da su, na spoju armature sa betonom, relativna pomeranja tačaka dvaju materijala jednaka nuli, tj. da krutosti veznih elemenata teže beskonačnosti.

LITERATURA

178

- A ć i ć M. Granična ravnoteža zidnih nosača od betona (Magistarski rad), Gradjevinski fakultet, 1968.
- A ć i ć M. Prilog rešenju graničnog stanja zidnih nosača od betona. Zbornik radova Gradjevinskog fakulteta, sv. 11. br. 7, 1969.
- A ć i ć M. Granična ravnoteža zidnih platana od betona, časopis DGA, 1969.
- A ć i ć M. Uticaj oslonačkih pojačanja na stanje napona u zidnim nosačima. Časopis "Izgradnja", 7/1976.
- A ć i ć M. Zidni nosači (7. poglavlje u Priručniku o primeni Pravilnika za beton i armirani beton). SJL, Beograd, 1975.
- 7. А л и и к е с И. А. Чес мая способность келезоветонных былок-стонок. Туды Фоланского политетинческого института. Серия А, № 05, 1955.
- 8. Andjelić T. Tenzorski račun. Naučna knjiga, Beograd, 1967.
- Andjelić M. Visokostjeni nosač opterećen u srednjoj ravni. Doktorska disertacija, Zagreb, 1972.
- B a y H. Über den Spannungszustand in hohen Tragern und die Bewehrung von Eisenbetontragwanden, Stuttgart, 1931.
- Bay H. Wandartiger Trager und Bogenscheibe. Wittwer--Verlag, Stuttgart, 1960.
- B a r e š R. Proračun ploča i zidnih platna prema graničnoj nosivosti. (Prevod sa češkog). Gradjevinska knjiga, Beograd, 1972.
- B a u m a n n Th. Tragwirkung orthogonaler Bewehrungsenteze beliebiger Richtung in Flachentragwerken aus Stahlbeton, DAfSt 217.
- Bellamy C.J. Strength of concrete under combined stresses. Proceedings ACI, Vol. 58, No 4, 1961.

- I4а. Берг О. :. ₂изплеские основы теории прочности бетопа и : слезоветона. Росстройиздат, Т^с I.
- 15. Bresler B. Pister K. Failure of Plain Concrete "Proc. of ASCE", V.81, N674, 1955.
- 15a. Brčić V. Otpornost materijala. Beograd, 1975.
- CEB-FIP, International recommendations for the design and construction of concrete structures - Appendix 3; deep beams, London, 1970.

Q,

- 17. C l e m e n s G. Polarizationsoptische Untersuchung der Spannungsverteilung in wandartigen Tragern mit Randverstarkung. Wissenschaftliche Zeitschrift der Hochschule für Bauwesen. Leipzig, 1959.
- 18. Craemer H. Teorija plasticiteta armiranog betona.
- 19. D e k a n o v i ć Dj. Comprortement des panneaux minces en béton arme ou precotraint soumis a des efforts tangents concomitants aux efforts normaux. Disertacija. Paris, 1975.
- 20. Dischinger F. Beitrag zur Theorie der Halbscheibe und des wandartigen Balkens. AIPC, Tom I, Zürich 1932.
- Т. Дуоинский А. П. Расчет несущен способности телезобетонных илит и оболочек. Чод. "Будивельник". Киев, Т. 20.
- 22. D j u r i ć M. Opšta teorija tankih ljuski. Gradjevinski fakultet, Beograd, 1965.
- 23. E b n e r F. Über den Einflußder Richtungsabweichung der Bewehrung von der Hauptspannungstrichtung auf das Tragverhalten von stahlbetonplatten. Disertation T.H. Karlsruhe, 1963.
- 24. в а р б е р С. Г. Маследование предельних состоянии с слезобатонних белок-степок. Труди Гарьковского инжеи рио-строительного инстатута. Вынуск РГ, ТОС?.
- е и и б е р г С. Прилани предальной напряженности. И.М.Л.Ф. 12, ГАС.
- 26. F e n w i c k B. The Shear Strength of Reinforced Concrete Beams University of Canterbury, Christchurch, Neuseeland, 1966.
- 26а. илоненко Городич М. М. Механические теории прочности. Изд. 1977, Р. Т.
- 27. Franc G, Niedenhoff H. Die Bewerung von Konsolen und gedrungenen Balken. Beton und Stahlbetonbau. 5/1963.

- 179 -

- Гениев Г. А., Кисвк В. Н. И вопросу обобмения теории прочност о тона. Естон и железобетон, 1,65, 2.
- 29. Генпев 1. А. Квопросу об условни прочности бетопа. тури СССР. Москва, 1958.
- Зо. Генцев Г. А. Кнесеюк В. П., Тюпин Г. А. Теории пластичность бытова и колезобетона. Этрониздат. Москва, Г. І.
- 31. Гение с. А., онии Г. А. Пекоторые вопроси теория пр гости и изсетниности услезобетона при навоиструкций". Лосна, .
- 32. G i r k m a n K. Površinski sistemi nosača. Gradjevinska knjiga, Beograd, 1965.
- 33. G 1 o m b J. Badanie wytrzyma ości betonu w konstukcjach p ytowych. Archiwum Inžynierii Ladowej, t.x, 3/1964.
- 34. Grüning G. Beitrag zum Spannungsbild des wandartigen Tragers. Bauplanung+Bautechnik. 8/1956.
- 35. G o d y c k i T. Naprezenia powstawanie rys, oraz wymiarowanie zelbetowych belek-scian (tarcz) w fazie II. Doktorska disertacija, Gdanjsk, 1962.
- 36. Godycki-Ćwirko T. Scinanie w zelbecie Arkady, Warszawa, 1968.
- 37. G o d y c k i T. Wandartige Stahlbetonträger mit Auflagerverstarkungen (Lisenen) iz Zustand I und II. Bauplanung - Bautechnik H.6 i 7, 1969.
- 38. Graf O, Brenner E, Bay H. Versuche mit einem wandartigen Tragen aus Stahlbeton. DAfSt, H.99, Berlin, 1943.
- 19. 1 в о з д с в А. А. Расч т несущей способности констр кина по в толу предельного равновесия. Винуск Т. Росство Продат. Босква, Тейт.
- Гвоздев А. А., Карпенко Н. И. Работа железобетона с трежинами при плоском напряженном состояни... Строитольная межаника и расчет сооружении.
- ЧТ. "вовщев А. А., Лынтриев С. А., Крылов С. П. и др. Повое о прочности железобетона. Стройнадат. посква, Т 77.

- 42. H a m p e E. Beitrag zur Theorie des ausgesteiften wandartigen Tragers, Diss. T.H. Dresden, 1954.
- 43. H a j d i n N. Teorija površinskih nosača II deo ravan problem. Gradjevinski fakultet, Beograd, 1977.
- 44. H a j d i n N. Proračun linijskih nosača prema stadijumu loma. Zbornik "Čelične konstrukcije", "Izgradnja", 1976.
- 45. H a m p e E. Beitrag zur Untersuchung des wandartigen Tragers. Bauplannung und Bautechnik 12/1954.
- 46. H a m p e E. Zur berechnung von beliebig begrenzten Scheiben mit Hilfe der Airyschen Spannungsfunktion. Bauplannung W. Bautechnik 3/1955.
- или Р. Патенски тория пластичности /перевод с инглабского/ С. Петенского О-Леннаград
- 48. Hobbs D.W, Pomeroy C.D, Newman J.B. Desing stresses for concrete structures subject to multiaxial stresses. The structural Engineer/April 1977/No 41 Vol. 55.
- 49. Hruban K, Hruban J. Schubbewehrung von-Stahlbetonbalken bei Berechnung nach Grenzzuständen. Bauplanung-Bautechnik 3/1963.
- 50. I v k o v i ć M. Ponašanje betona u oblasti granične ravnoteže. Doktorska disertacija, Gradjevinski fakultet, Beograd, 1962.
- 51. I v k o v i ć M. Zakoni plastičnog tečenja za beton i njihova primenljivost u praktičnim proračunima. Biro za gradjevinarstvo, Beograd, 1971.
- 52. I v k o v i ć M. Prsline i deformacije. SJL. Beograd, 1975.
- 53. I v k o v i ć M, A ć i ć M. Uslovi plastičnosti-loma betona pri složenim naponskím stanjima. Časopis "Izgradnja", Beograd, 9/1975.
- 54. I v k o v i ć M, A ć i ć M. Granična nosivost lokalno opterećenih betonskih elemenata. Časopis "Izgradnja" Beograd, 11/1975.
- 55. I v k o v i ć M. Neka pitanja osnovnih mehaničkih karakteristika betona. Saopštenja Instituta "Jaroslav Černi", 1957.
- с. Чо ше А. Д., Тн. омиров В. М. Теория .кстрепоннот зарач. Мад. "Наука". Москва, 1974.

- 57. Качанов Л. М. Основи теории пластичности. Изд. "Наука". Москва, 1969.
- нариенко п. И. Чеоретическое исслерование дейорпания железоостояных платтии и оболочек с трещинами при сложном армировании. Этропиздат. Москва, 1972.
- Карпенко И. И., Кукунаев В. С. Трещиностойкость и зеткость — онных илит с трещинами при совместном деясты и поментов и меморанных сим. Стропиздат. Москва, 1976.
- 60. Кариенко П. И. Теория дебормирования железобетона с треминами. Стробнаятт. Москва, Т970.
- и и И. П. Ист пок портойкости однопропок портойстви м кратковременнол и длятельном иструзки. Строительные конструкции. Билуск 2, 1 4.
- 52. Klingroth H. Versuche an Stahlbetontragwarden und deren Auswertung. Beton und Eisen H.9/10, H.11/12. 1942.
- 63. Kong F.K, Rodins P.J, Cole D.F, Web Reinforcement Effects on Deep Beams. ACI Journal, 12/1970.
- 64. Kong F.K, Robins P.J, Kirby D.P, Short D.R. Deep Beams With Inclined Web Reinforcement. ACI Journal 3/1972.
- 65. Kong F.K, Robins P.J, Singh A. Sharp G.R. Shear analysis and design of reinforced concrete deep beams. The Structural Engineer, Vol. 50, No 10, 10/1972.
- 66. Kong F.K, Robins P.J, Sharp G.R. The design of reinforced concrete deep beams in current practice. The Structural Engineer, Vol 53, No 4, 4/1975.
- 67. Kung F.K, Robins P.J. Web Reinforcement Rff. ts on Lighweight Concrete Deep Beams. ACI Journal, 7/1971.
- 68. Kong F.K, Singh A. Diagonal Cracking und Ultimate Loads of Lightweight Concrete Deep Beams. ACI Journal, 8/1972.
- 69. K u m a r P. Collapse load of deep reiforced concrete beams. Magazine of Concrete Research, Vol 28, No 94 3/1976.
- 70. Kupfer H.B, Hilsdorf H.K, Rüsc H. Behavior of concrete undr blaxial stresses. Proceedings ACI Vol 66, No 8, 8/1969, pp 656-666.

- 71. K u p f e r H. Das Verhalten des Betons unter mehrachsiger Kurzzeitbelastung unter Besonderer Berücksichtigung der zweiachsigen Beanspruchung. DAfSt Heft 229. 1973.
- 72. L a z a r e v i ć Dj. Usidrenje zavarenih cvasti. Naše Gradjevinarstvo, 3/1964.
- 73. Lazarević Dj. Granična nosivost linijskih no-ci sača. Gradjevinska knjiga, Beograd, 1971.
- 74. La zarević Dj, Ivković M. idr. Plastično ponašanje gradjevinskih konstrukcija. Biro za gradjevinarstvo, 1971.
- 75. La zarević Dj. Osnovi teorije armiranog betona. Beograd, 1967.
- 76. La zarević Dj, Aćić M. Granična nosivost dvozglobnog okvira opterećenog razmicanjem oslonaca, SJL, Beograd, 1972.
- 77. La zarević Dj, Ivković M. Nelinearne deformacije betona. Saopštenja V kongresa Jugoslovenskog društva gradjevinskih konstruktera i I kongresa Jugoslovenskog društva za seizmičko gradjevinarstvo, sv. A, Budva, 1974.
- Ле ницки В С. Г. Анизотраные пластинки. ОРИЗ. Гостольдат. моства-1947-Ленинград.
- 79. Leon A. Uber die Rolle des Trenbruches in Rahmen der Mohrschen Anstrengungshypothese. Der Bauingenieur, nr 31/32 - 1943.
- 80. Leonhardt F, Walther R. Schubverzuche an Plattenbalken mit hoher Schubbeanspruchung DAfSt, H 152/1962.
- 81. Leonhardt L, Walther R. Wandartige Träger. DAfSt, H. 178. Berlin 1966.
- 82. Leonhardt F. Vorlesungen über Massivbau, 1, 2, 3 and 4. Teil, Springer-Verlab. Berlin. Heidelberg. New York, 1975-1977.
- 83. Le onhardt F. Poutres-Cloisons Structures planes shargées paralleelement, a leur plan moyen. Co. Le Européen du Beton. No 65, 2/1968.
- 84. L' H e r m i t e. Que savons-nur la rupture du beton. Traveaux publik, 1954.
- 85. Linse H. Wandartige Trager mit Pfeilervorsprüngen Die Bautechnik, 116, 118, 1961.

183 -

- 86. Лугша Л.К. Красчету прочности бетона в обоиме. Бетон и селезобетов. № I,
- 87. И у г в а Л. К. Прочность бетона при сложных напряженных состояниях в книге "Структура, прочность и деформапен бетонов". Стройиздат. Москва, 1966.
- Medjunarodne preporuke Evropskog komiteta za beton za proračun i izvodjenje betonskih konstrukcija, DGA 1972.
- 89. Mehmel A, Freitag W. Tragfahigkeitsversuche an Stahlbetonkonsolen.
- 90. Mc H e n'r y D, K a r n i J. Strenght of concrete under combined tensile and compressive stress. ACJ Journal, 4/1958.
- 91. Mitrinović D.S, Kečkić J.D. Jednačine matematičke fizike. Gradjevinska knjiga, Beograd, 1972.
- 92. улин , Гуша В. П. Дейормации желозобестој левой арматуры в упру-1. бетон. № 5, -
- . у рота в В. И. Трещиноустоичтвость, жесткость и полостона. Встройиздат. Москва, 1950.
- 14. Цадан А. Швостичность и разрушение твердых тел. / неревод нгл. го/ (ква, Г. .
- 95. Nelissen L.J. Twee-assig onderzoek van grindbeton. Stevin Laboratorium, TH Delft, 1970.
- 96. N e v i l A.M. Svojstva betona (prevod sa engleskog) Gradjevinska knjiga, Beograd, 1976.
- 97. Ngo D, Scordelis A.C. Finite Elment Analysis of Reinforced Concrete Beams. ACI Journal 3/1967.
- 98. Ngo D, Franklin H.A, Scordelis A.C. Finite Element Study of Reinforced Concrete Beams with diagonal Tension Cracks. University of California Berkeley, California 1970.
- тевировски. Я. М., Никитин И. цисите расчёта жёсткости железобетонных поментов. Бетон и железоветон. № 2.
- Пос. Гемированного состояния телезобетонных элементов с деформированного состояния телезобетонных элементов с учетом работи растанутого остопа над трешинами и нересмотр на этой основе теории расчёта дебормации и раскрытия трещин. В сборнике ШШ Б "Прочность и жёсткость железобетонных конструкций" под ред. Гво з де в а А.А. Стройиздат. Москца, Т. 2.

- 184 -

- 101. Nylander H, Holst H. Nagra undersökningar rörande skivor och höga balkar ay armerad betong. Stockholm, 1946.
- 102. Peter J. Zur Bewehrung von Sheilben und Schalen für Hauptspannung schiefwinklig zur Bewehrungsrichtung, Disertation, TH Stuttgart, 1964.
- 103. P f e i f f e r G. Beitrag zur Berechnung und Bemessung von über den Auflagern verstarkten wandartigen Durchlauftragern. Diss. Hannover, 1965.
- 104. И ратер В., Зод ж. й. Р. Теория идеанно пластических тел. /перевод с английского/ Москва, Т956.
- 105. И р и с Б.Б., Д в в и с Д. Д. Моделирование железоостонных констракций. /перевод с англимского/ Изд."Вышемшая чакола". Минск, 1979.
- 106. Raius ch E. Torzija, smicanje i čisto smicanje u armiranom betonu, Beograd 1959.
- 107. R a d o j k o v i ć M. Ispitivanje konstrukcija, I deo, 1959. II deo, 1974. Beograd.
- 108. Radwon de Paiva H.A, Ch P. Siess. Strength and behavior of deep beams in shear. Pros. ASCE, Vol 95, Structural Devision, 10/1965.
- 109. Ramakrishnan V, Ananthanarayana Y. Ultimate Strength of Deep Beams in Shear, ACI Journal 2/1968.
- 110. Regles techniques de conception et de calcul des ouvrages et constructions en beton armé. Paris, 1968.
- 111. Richart F.E, Brandtzaeg A, Brown L. The failure of plain and spirally reinforced concrete in compression. University of Illinois, Eng Expt. Stat. Bulletin No 190, 1929.
- 112. Rolenhaupt S. Beitrag zu Berechnung von Shreiben mit seitlichen Verstreifungen. Die Bautechnik 2/1964.
- 113. Rosenthal I, J. Glücklich. Strength of Plain concrete Under Biaxial Stress. ASI Joyrnal 11/1970.
- 114. Radenković D, Ivković M. Jedna primena ekstremalnih principa u geomehanici. SANU, Beograd, 1956.
- 115. R o b i n s P.J, K o n g F.K. Modified finite element method applied to RC deep beams. Civil Engineering and Public Works Review. 11/1973.
- 116. Roš M, Eichinger E. Die Bruchgefahr fester Korper, Bericht nr 172, ZMPA, Zürich 1949.

- 117. Rüsch H, H a u g l i F.R, M a y e r H. Schubversuche an Stahlbeton - Rechteckbalken mit gleichmäi ig verteilter Belastung. DAfSt, H.145/1962.
- 118. S c h l e e h W. Die Rechteckscheibe mit beliebiger Belastung der Kurzen Ränder. Beton und Stahlbeton H3, 1961.
- 119. Scholz G. Zug Frage der Nethbewehrung von Flachentragwerken. Beton-und Stahlbetonban 10/1958.
- 120. S c h u t t H. Uber das Tragvermögen wandartiger Stahlbetonträger. Beton und Stahlbeton H.10, 1956 i doktorska disertacija, Hannover, 1953.
- 121. S e k u l o v i ć M. Predavanja o konačnim elementima, odrzana na poslediplomskim studijama na Gradjevinskom fakultetu u Beogradu.
- I сополости й Б. Б. Теория пластичности. Москвав то-Беренсерд.
- 123. S p i r i g S. Beitrag zur Lösung von Scheiben-Platten-und Schalenproblemen mit Hilfe von Gitterrostmodellen. Diss. TH Hannover 1963.
- 124. Stoljarov J.V. Uvod u teoriju armiranog betona (prevod sa ruskog). Zagreb, 1949.
- 125. Stipanić E. Viša matematika, I i II deo Beograd,1971.
- 126. Thon R. Beitrag zur Berechnung und Bemessung durchlaufender wandartiger Träger. Beton-und Stahlbetonbau 12/1958.
- 127. Thon R.E. Das Spannungsbild in wandartigen Tragern. Diss TH München, 1958.
- 128. The imer O.F. Hilfstafeln zur Berechnung wandartiger Stahlbetonträger nebst 3 Rechenbeispielen. Berlin, Wilhelm Ernst-Sohn, 1960.
- 1.". "ихай М., Ізакоспик И. Расчёт железоветонца плетыческой стадин. Источен должно плей. /неревод с эптимаского/ Стройиздат. цаоского, эт М...
- 130. Timošenko S, Gudier J.N. Teorija elastičnosti. Gradjevinska knjiga, Beograd, 1962.
- 131. Timošenko S, Vojnovski Kriger. Teorija ploča i ljuski. Gradjevinska knjiga, Beograd, 1962.
- 132. Thürlimann B, Grob J, Lüchinger P. Torsion, Biegung und Schub in Stahlbetonträgern. Institut für Baustatik und Konstruktion. ETH Zürich, 1975.

133. Венцель Е.С. Теория вероятностой. Москва, 1969.

- 134. V u k o t i ć R. Prilog rešenju graničnog stanja štapova napregnutih savijanjem i torzijom. Magistarski rad Beograd, 1968.
- 135. V u k o t i ć R. Granična stanja štapova od armiranog i prethodno-napregnutog betona opterećenih torzijom i savijanjem. Doktorska disertacija, Beograd 1977.
- 136. Weigler H, Becker G. Untersuchungen über das Bruck und Verformungsverhalten von Beton bei zweiachsiger Beanspruchung. DAfSt 157, 1963.

Ū.

- T37. Zienkiewicz O.C. Merog Koneunux элементов в G. Zari Campiekoro/ Bound, 175.
- 138. Ж.д. з н. н. н. Расчет колозобетонных бункеров по на полно соотонным. Изд. литературо по строительству. Косква, Т. 70.
- Советсяти и к. И. Сопротивление бетона разрушению при совмествов к. Прастативающих и сжимающих усилии.
 Совется сообы, с научно-исследоватеньских расотах, в нелети в восних учесных заведениях. "Строительные совсто/чнов", прасов, с 7.

