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Featured Application: The best use of this paper is for the revision of the worldwide used ICAO
calculation procedure for fillet design elements at airports. Also, the developed calculation
method for maximum transient offtracking calculation can be used for more accurate positioning
of single-unit autonomous road vehicles negotiating circular curves.

Abstract: The low-speed turning maneuverability of vehicles is closely related to a well-known
offtracking phenomenon which occurs when the rear wheels of a turning vehicle deviate towards
the inside of a horizontal curve. Although numerous mathematical models and computer programs
for vehicle swept path analysis have been developed in the past, only a few of them can calculate
the maximum transient offtracking of a turning vehicle, yet with limited accuracy. The authors
were motivated by this fact to find a new mathematical solution for maximum transient offtracking
calculation of a single-unit vehicle when negotiating circular curves. In the first stage, a transcendental
equation defining vehicle maximum transient offtracking position is derived and numerically solved
by Python 3.10.12. In the second stage, the polynomial regression model predicting accurate numerical
solutions of the transcendental equation with the desired level of accuracy was developed and tested.
The new calculation method is simple enough to simply take the vehicle datum length, circular curve
radii, and turn angle, while instantly producing the maximum transient offtracking value, without
the need to draw any of the vehicle movement trajectories.

Keywords: road design; low-speed offtracking; maximum transient offtracking; vehicle movement;
ICAO; transcendental equation; numerical solution; Python; polynomial regression model

1. Introduction

When a vehicle turns, particularly trucks or other long wheelbase vehicles, the rear
wheels deviate inside the path traced by the front wheels. The trailing axles of a turning
vehicle increasingly deviate towards the curve center, until the rear axle wheels finally
reach the maximum steady-state offset from the steering alignment path. This phenomenon
is well known in transportation engineering as low-speed offtracking [1–3]. In contrast to
this phenomenon, high-speed offtracking introduces movements of trailing vehicle axels
outward the curve center due to the lateral acceleration of the vehicle as it traverses a
horizontal curve at high speeds [4,5]. In addition to the vehicle wheelbase length, road
geometry parameters, such as the turn radius and turn angle, dominantly influence offtrack-
ing intensity [6]. In general, two different states of low-speed offtracking exist: steady-state
offtracking and active transient state offtracking.

According to the authors of [7], steady-state offtracking is not normally reached
before covering turn angle of 270◦. This means that particular vehicle will reach steady-
state offtracking only after covering a constant radius curve with a turn angle greater
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than 270◦. The most widely accepted procedure for steady-state offtracking calculation is
the traditional “sum of squares” method originally developed by the Western Highway
Institute (WHI), and published in 1970 [8], and the letter repeatedly revised by the Society
of Automobile Engineers—SAE International [9,10].

Since roadway edges, especially in intersection zones, are usually designed with
relatively small radii and with turn angles in the order of 90◦, the potential application
of steady-state offtracking calculation methods is quite limited, if not questionable, in
practice. When a vehicle performs a sharp turn like this one, it remains in an active
transient offtracking state. Hence, the question how to accurately calculate the maximum
offtracking value for a vehicle if an active transient offtracking state arises.

Perhaps the most acute problem related to the lack of accurate transient offtracking
calculation comes from the field of airport design. The official ICAO procedure for taxiway
fillet design [11] assumes that the maximum offtracking is reached when the aircraft datum
point (usually the cockpit) reaches the end of the taxiway lead arc, which is incorrect. The
consequence is an insufficient pavement width in taxiway turns. Even in standard cases
(turn angle of 90◦ and radii of 50 m), the magnitude of error is in the range of 0.30–0.75 m.
In less common dispositions, when larger aircrafts, i.e., the Airbus A380, negotiate sharp
turns, the error exceeds an enormous 4.3 m!

Also, the lateral positioning of autonomous vehicles in relation to the geometry of
roadway edges demands efficient transient offtracking assessment in order to safely guide
vehicle through the crossroad [12–14]. This is especially critical in the case of an articulated
autonomous vehicle such as a semi-tractor trailer [15,16].

In past decades, numerous mathematical and numerical models for setting vehicles’
movement trajectories, while negotiating different steering path alignment configurations,
have been developed and tested in the field [17–23]. Additionally, commercial computer
programs for the simulation of vehicle movements and vehicle swept path analysis, such
as the Auto CAD Vehicle Tracking 2024 and Transoft AutoTURN 12.0.0, have become
indispensable tools for civil engineers and other specialists involved in intersection and
roundabout design [24,25]. Recently, extensive analyses, addressing the accuracy of the
available numerical models and commercial software applications for setting vehicle move-
ment trajectories, were conducted in a Ph.D. thesis [26]. However, amongst all of the
addressed mathematical and numerical models, only a few of them offered a solution for
the calculation of the exact vehicle position where the maximum active transient offtracking
is reached [7,27]. This position indicates the exact cross section where the width of the
pavement is at its maximum. The distance between the inner edge of the pavement and the
steering path, at this very location, is of crucial importance when it comes to some elements
of the crossroads [28,29]. For example, in the most standards and design practices [1,30],
the usual width of the right-turn channel passing behind the triangular isle is 4.5–5.5 m.
Though such a channel is slightly tapered (getting narrower towards its end), its net width
is constant, as measured between the marking lane on the left and the curb on its right side.
This particular net width comes directly from the maximum transient offtracking. Also,
when it comes to the spiral ramps in multilevel garages (180◦ turns), their width is a direct
consequence of the maximum transient offtracking.

Nowadays, as demonstrated in [26], their efficiency and accuracy are not enough
for road infrastructure design purposes, especially for autonomous vehicle positioning in
horizontal curves. For example, the results of the maximum transient offtracking calculation
in Lawrence’s mathematical model for low-speed offtracking [27] are generated by the
computer in a form of a graph. Before plotting the graph, equations determining the
maximum transient offtracking vehicle position were numerically solved by the computer
program. The graph shows the maximum offtracking for turn angles of up to 300◦ and
various wheelbase/turn radius ratios. The graph is simple and suitable for everyday
use, but the mathematical apparatus underlining the graph is not available to the user.
In other words, the user cannot check the validity of the maximum transient offtracking
graphically read from the diagram. The computation workload of Woodrooffe’s method [7]
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is equivalent to ICAO’s [11]. The method relies on the deployment of an “equivalent base”,
acting as a virtual base of an entire multibody vehicle assembly. Woodrooffe’s procedure
retrieves the maximum transient offtracking value, but with the error of 0.06–0.10 m in
lateral terms and more than 1.2 m in longitudinal terms, as proven in [26]. On the other
hand, commercially available software tools for vehicle swept path analysis based on CAD
platform require from the user to draw guideline first, and then based on its shape and
generated swept path width, determine the maximum transient offtracking for a selected
design vehicle [31].

The aforementioned deficiencies were the key motivation for the authors of this paper
to develop an exact mathematical solution for the maximum transient offtracking calcula-
tion in sharp turns. In fact, the primary aim was to develop mathematical formulas which
will calculate accurately single-unit vehicle position where the maximum transient offtrack-
ing is reached. The new calculation method will eliminate the need to perform the vehicle
movement simulations first and draw any of the vehicle movement trajectories, before
determining the maximum transient offtracking value. Thus, by avoiding unnecessary
procedures, calculation method presented herein is simple enough just to enter the vehicle
datum length d, circular radii R and turn angle, and instantly produces the maximum
transient offtracking value, including the vehicle position where this maximum transient
offtracking is reached.

The sections in the paper are structured in the following order. In Section 2, mathemat-
ical definition of the problem and necessary parameters are presented, while in Section 3,
mathematical solution of the problem is given. In Section 4 the accuracy of developed
calculation method based on adopted regression model was evaluated and discussed. The
last, Section 5, contains conclusions and future research plan to further improve application
of the presented calculation method.

2. Problem Statement and Input Parameters

The International Civil Aviation Organization (ICAO) has its own mathematical model
for the offtracking calculation of the main undercarriage center of the aircraft [11]. Based
on this mathematical model, fillets at taxiways turns and intersections are designed. The
same model applies to movement of an aircraft leaving its parking position on an apron
or maneuvering on a holding bay. Basic terms and symbols related to aircraft kinematic
model, taxiway and fillet design are displayed in Figures 1 and 2.

In Figure 2b the path of the aircraft main undercarriage center (U), while the aircraft
cockpit negotiates circular curve, is shown. Actually, the shortest distance between the
circular curve denoting aircraft’s cockpit guideline and the path of the main undercarriage
center represents offtracking. The position of aircraft while its datum point, or cockpit, (S)
follows an arc of a circular radii R can be determined based on the arc length expressed by
its central angle θS and the steering angle β. According to ICAO mathematical model [11],
the steering angle β between the tangent on the arc in the datum point (S) and the aircraft
longitudinal axis is calculated as follows:

tan
(

β

2

)
=

1 − eKθS

X − K − X·eKθS − K·eKθS
(1)

where the angle θS should be entered in radians.
As the result of the calculation, Equation (1) returns the value of the steering angle

β also expressed in radians. It should be noted that Equation (1) was derived assuming
that R > d, where d is the aircraft datum length in meters (Figure 1b). In addition to the
taxiway center line, which is followed by the airplane cockpit during turning maneuver,
the example of two fillets, each composing of an arc of a circle and two tangents, can be
seen in Figure 2c.



Appl. Sci. 2024, 14, 5570 4 of 22

The parameters X and K used in Equation (1), respectively, refer to the following:

X =
R
d

(2)

K =
√

X2 − 1 (3)

The maximum steering angle βmax is achieved when the aircraft datum point (S)
reaches the end of a circular arc (Figure 3). However, according to the authors of mathemat-
ical models for transient offtracking calculation [7,27], the maximum transient offtracking
of the main undercarriage center is not reached at the same point as the angle βmax (at the
end of arc), but some distance beyond the end of the arc (Figure 4). Thus, as will be demon-
strated later, the ICAO’s assumption that the aircraft main undercarriage center reaches the
maximum transient offtracking in the same position in which the βmax is achieved causes a
significant error.
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While the datum point (S) follows a straight guideline coinciding with the arc exit
tangent, the steering angle β progressively decreases and the aircraft main undercarriage
center (U) follows a tractrix (Figure 3). As defined in the ICAO mathematical model [11],
the steering angle β is calculated as a function of the distance F which the datum point (S)
has covered along the straight exit tangent:

ln
(

tan
(

β

2

))
= ln

(
tan

(
βmax

2

))
− F

d
(4)

where βmax represents, again, the maximum steering angle at the end of an arc, and d is the
aircraft datum length. In the last 60 years the ICAO mathematical model has been used for
fillet designs at international airports by civil aviation authorities all over the world, and
the accuracy of Equations (1) and (4) is unquestionable.

By applying simple transformation, Equation (4) can be written in a more convenient form:

F = d·ln

 tan
(

βmax
2

)
tan

(
β
2

)
 (5)
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It is important to emphasize that all the formulas in the ICAO mathematical model,
derived for the calculation of the aircraft undercarriage offtracking, can also be applied to
the calculation of offtracking for a single-unit vehicle. In contrast to the aircraft undercar-
riage, where the datum point was located exactly in the center of the aircraft cockpit, the
datum point on the datum length of the single-unit vehicle is usually defined as the most
prominent point in the center line of the vehicle front part, i.e., the point in the middle of
the vehicle front bumper (Figure 5).
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Looking at Figure 4, and based on the previously described formulas from the ICAO
mathematical model, the calculation of the exact aircraft position where its main undercar-
riage center (U) reaches the maximum transient offtracking OTmax arises as a key problem
that will be addressed in this paper. This particular aircraft position is determined by two
parameters: the distance FOTmax which the datum point (S) has covered along the straight
exit tangent, and the steering angle βd between the longitudinal aircraft axis and the exit
tangent direction. Therefore, in the maximum transient offtracking position, based on the
previous Equation (5), a new equation is established:

FOTmax = d·ln

 tan
(

βmax
2

)
tan

(
βd
2

)
 (6)

Since there are two unknown variables, distance FOTmax and the angle βd, basic mathe-
matical logic requires forming a system composed of two different equations in order to
calculate these two variables. As Equation (6) applies to all positions of the aircraft when its
datum point follows the exit tangent, for the second equation of the system it is necessary
to find another reliable relation between the distance FOTmax and the angle βd that would
be valid only in the position where the maximum transient offtracking is reached.

The required additional relation between the distance FOTmax and the angle βd is
obtained from the study [27] focused on the development of a mathematical model for
transient offtracking calculation. This study proved that the maximum transient offtracking
of a single-unit vehicle occurs when the direction of the motion of the rear axle (vector

→
m)

is parallel to the tangent to the steering path (guideline). The geometry describing this case
is shown in Figure 6. In other words, only in the maximum transient offtracking position is
the direction of the vector

→
m perpendicular to the line passing through the center of the

rear axle (U) and the circular arc center C. Only in this particular position is the distance of
the vehicle datum point (S) from the beginning of the exit tangent Fd equal to the unknown
distance FOTmax:

Fd = FOTmax (7)
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Using simple geometric relations retrieved from Figure 6 and the previous identity in
Equation (7), the following equation is established:

d·cosβd − Fd = (R − d·sinβd)·tgβd (8)

where the required distance Fd can further be expressed as follows:

Fd = d·cosβd − (R − d·sinβd)·tgβd (9)

Since the required angle βd varies in the range 0 < βd < βmax, and βmax is al-
ways βmax < 90◦, both sides of Equation (9) can be multiplied by cosβd. Namely, as
it is well known from trigonometry that cosα always has positive values in the angle range
0 < α < 90◦, Equation (9) becomes

Fd·cosβd = d·cos2βd − R·sinβd + d·sinβd·sinβd (10)

Fd·cosβd = d·
(

cos2βd + sin2βd
)
− R·sinβd (11)

Bearing in mind the basic trigonometry identity sin2
βd

+ cos2
βd

= 1, Equation (11)
eventually becomes the following:

Fd =
d − R·sinβd

cosβd
(12)

Now, both equations of the system that should be solved in order to calculate the
required variables Fd and βd which determine the maximum transient offtracking position
are known:

Fd = d·ln
[

tan
(

βmax
2

)
tan

(
βd
2

)
]

Fd = d−R·sinβd
cosβd

(13)
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3. Mathematical Solution of the Problem
3.1. Transformation and Solving the Established Equation System

The angle βd could be calculated by taking the right sides from Equation (13) as equal:

d − R·sinβd
cosβd

= d·ln

 tan
(

βmax
2

)
tan

(
βd
2

)
 (14)

Both sides of the newly formed Equation (14) can be divided by the datum length d,
and then transformed:

d·
1 − R

d ·sinβd

cosβd
= d·ln

 tan
(

βmax
2

)
tan

(
βd
2

)
 (15)

1
cosβd

− R
d
· sinβd
cosβd

= ln

 tan
(

βmax
2

)
tan

(
βd
2

)
 (16)

1
cosβd

− R
d
·tgβd = ln

 tan
(

βmax
2

)
tan

(
βd
2

)
 (17)

The maximum steering angle βmax can be calculated applying Equation (1) from the
ICAO mathematical model, described in the previous section:

tan
(

βmax

2

)
=

1 − eKθS

X − K − X·eKθS − K·eKθS
(18)

Considering Equations (2) and (3), the angle βmax directly depends on the steering
path circular radii R, the datum length d, and the turning angle θs which are constant when
performing the turning maneuver. In accordance with that, the angle βmax also represents a
constant value. Therefore, in order to facilitate the solving of Equation (17), the constant c
is introduced:

c = tan
(

βmax

2

)
(19)

To further simplify the Equation (17), the following trigonometry half-angle identities
are used:

cosβd =
1 − tg2

(
βd
2

)
1 + tg2

(
βd
2

) (20)

tgβd =
2·tg

(
βd
2

)
1 − tg2

(
βd
2

) (21)

and Equation (17) takes the following form:

1
1−tg2

(
βd
2

)
1+tg2

(
βd
2

)
− R

d
·tgβd = ln

 c

tan
(

βd
2

)
 (22)

1 + tg2
(

βd
2

)
1 − tg2

(
βd
2

) − R
d
·

2·tg
(

βd
2

)
1 − tg2

(
βd
2

) = ln

 c

tan
(

βd
2

)
 (23)
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Finally, by introducing the substitution t = tg
(

βd
2

)
, Equation (23) is transformed into

the following:
1 + t2

1 − t2 − R
d
· 2·t
1 − t2 = ln

( c
t

)
(24)

ln
( c

t

)
=

1 − 2· R
d ·t + t2

1 − t2
(25)

The last equation represents the most important contribution to the exact mathematical
solution of the addressed problem. Its solution first returns the value of the substitution t,
and then consequently the required parameters Fd and βd which precisely determine the
maximum transient offtracking vehicle position.

Nevertheless, Equation (25) belongs to the group of transcendental equations that
cannot be solved by classic algebraic methods alone and often require the application of
various numerical techniques, i.e., the Newton–Raphson method, bisection method, secant
method, regula falsi methods, etc. Additionally, these numerical methods are useful for
approximating the equation solution to any desired degree of accuracy [32].

The only unknown variable in Equation (25) is the substitution t which refers to the
angle between the arc exit tangent and the vehicle’s longitudinal axis. Given that the
required steering angle βd varies in the range 0 < βd < βmax, then the calculated values of
the previously introduced substitution t = tg

(
βd
2

)
can vary only in the following range:

0 < t < tg
(

βmax

2

)
(26)

Considering that Equation (19) has introduced the constant c, the inequality (26) can
be written as follows:

0 < t < c (27)

As it has already been stated that βmax < 90◦ and tg
(

90◦
2

)
= 1, the last inequality

eventually takes the following form:

0 < t < 1 (28)

Thus, in addition to the condition R > d formerly imposed by the ICAO, all values of
the substitution t obtained from the numerical solution of Equation (25) should be in the
0 < t < 1 range.

3.2. Numerical Solution of Derived Transcedental Equation

For the numerical solution of the transcendental Equation (25), a new Python script
following the algorithm flow chart displayed in Figure 7 is written. At first, the input
dataset is generated by varying the turn angles θS, circular arc radii R, and vehicle datum
lengths d. For each of the 30 analyzed turn angles θS varying from 30◦ to 180◦, and circular
radii to datum length ratios R/d in the range 1.0101 < R/d < 5.0, unknown values of the
substitution t are calculated. The used ratios R/d are limited to within a specified range
because other combinations of the designed vehicles’ datum lengths and radius of the
horizontal curves negotiated by these vehicles are not common in road design practice.

In line with the assumptions in the previous section of the paper, only the calculated
values of the substitution t that meet the condition 0 < t < 1 are plotted as results. A total
of 26,400 different combinations of turning angles and ratios R/d from the input dataset
are addressed. Selected parameters in the input dataset and the obtained results of the
calculation are shown condensed in Table 1.
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Table 1. Input dataset for numerical calculation of transcendental equation and obtained results.

Input Parameters Results

No * θS [◦] R [m] d [m] R/d K eKθs c βmax [◦] t βd [◦]

1 30.00 10.00 2.00 5.000000 4.898979 13.001954 0.093324 10.6633 0.066106 7.5642
2 30.00 10.00 2.10 4.761905 4.655721 11.447024 0.097003 11.0811 0.067365 7.7078
3 30.00 10.00 2.20 4.545455 4.434090 10.192827 0.100561 11.4848 0.068529 7.8406
4 30.00 10.00 2.30 4.347826 4.231264 9.165848 0.104000 11.8748 0.069609 7.9637
5 30.00 10.00 2.40 4.166667 4.044887 8.313643 0.107323 12.2514 0.070612 8.0782
6 30.00 10.00 2.50 4.000000 3.872983 7.598033 0.110534 12.6151 0.071547 8.1848
7 30.00 10.00 2.60 3.846154 3.713879 6.990714 0.113638 12.9663 0.072420 8.2843
8 30.00 10.00 2.70 3.703704 3.566149 6.470358 0.116636 13.3054 0.073236 8.3773
9 30.00 10.00 2.80 3.571429 3.428571 6.020653 0.119534 13.6330 0.074001 8.4645

10 30.00 10.00 2.90 3.448276 3.300092 5.628956 0.122336 13.9493 0.074720 8.5464
11 30.00 10.00 3.00 3.333333 3.179797 5.285346 0.125044 14.2550 0.075395 8.6233
12 30.00 10.00 3.10 3.225806 3.066892 4.981948 0.127663 14.5504 0.076031 8.6958
13 30.00 10.00 3.20 3.125000 2.960680 4.712452 0.130197 14.8360 0.076632 8.7642
14 30.00 10.00 3.30 3.030303 2.860548 4.471749 0.132648 15.1121 0.077199 8.8288
15 30.00 10.00 3.40 2.941176 2.765957 4.255668 0.135020 15.3792 0.077736 8.8900
16 30.00 10.00 3.50 2.857143 2.676428 4.060777 0.137317 15.6376 0.078244 8.9479
17 30.00 10.00 3.60 2.777778 2.591534 3.884227 0.139541 15.8876 0.078727 9.0029
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Table 1. Cont.

Input Parameters Results

No * θS [◦] R [m] d [m] R/d K eKθs c βmax [◦] t βd [◦]

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

26,384 180.00 20.00 16.60 1.204819 0.672004 8.257840 0.484965 51.7435 0.357094 39.3026
26,385 180.00 20.00 16.80 1.190476 0.645936 7.608518 0.492151 52.4083 0.359695 39.5668
26,386 180.00 20.00 17.00 1.176471 0.619744 7.007523 0.499366 53.0720 0.362259 39.8268
26,387 180.00 20.00 17.20 1.162791 0.593365 6.450203 0.506612 53.7347 0.364787 40.0826
26,388 180.00 20.00 17.40 1.149425 0.566726 5.932363 0.513888 54.3961 0.367279 40.3345
26,389 180.00 20.00 17.60 1.136364 0.539743 5.450199 0.521193 55.0564 0.369736 40.5823
26,390 180.00 20.00 17.80 1.123596 0.512315 5.000239 0.528526 55.7153 0.372158 40.8263
26,391 180.00 20.00 18.00 1.111111 0.484322 4.579285 0.535889 56.3727 0.374546 41.0665
26,392 180.00 20.00 18.20 1.098901 0.455613 4.184352 0.543280 57.0287 0.376901 41.3030
26,393 180.00 20.00 18.40 1.086957 0.425998 3.812606 0.550699 57.6830 0.379224 41.5358
26,394 180.00 20.00 18.60 1.075269 0.395225 3.461274 0.558145 58.3357 0.381514 41.7651
26,395 180.00 20.00 18.80 1.063830 0.362952 3.127537 0.565619 58.9866 0.383773 41.9909
26,396 180.00 20.00 19.00 1.052632 0.328684 2.808334 0.573119 59.6357 0.386001 42.2132
26,397 180.00 20.00 19.20 1.041667 0.291667 2.500018 0.580647 60.2829 0.388198 42.4322
26,398 180.00 20.00 19.40 1.030928 0.250624 2.197581 0.588200 60.9281 0.390366 42.6480
26,399 180.00 20.00 19.60 1.020408 0.203059 1.892555 0.595780 61.5713 0.392505 42.8605
26,400 180.00 20.00 19.80 1.010101 0.142492 1.564635 0.603385 62.2123 0.394615 43.0699

* Due to limited available space, only a small fraction of the whole table is displayed in the paper.

Numerical solving of the transcendental Equation (25) was conducted by employing
Python’s SciPy library “fsolve” function which is a wrapper around MINPACK’s HYBRD
and HYBRJ algorithms. HYBRD and HYBRJ are essentially the same, but HYBRD uses
forward-difference approximation to compute the jacobian whereas HYBRJ requires the
user to provide the jacobian. The purpose of HYBRD is to find a zero of a system of N
nonlinear functions in N variables by a modification of the Powell hybrid method [33]. The
user must provide a subroutine which calculates the functions.

3.3. Regression Model Substituting Numerical Solution of Transcedental Equation

Although the presented method for numerical solutions of a transcendental equation
returns accurate values of the substitution t and consequently the precise vehicle position
where the maximum transient offtracking is reached, its practical application is inefficient
and requires advanced mathematical and programming skills. To address this issue, it is
necessary to create a more efficient and simplified calculation procedure which is able to
instantly return the required parameters determining the maximum transient offtracking
position with the desired accuracy. Moreover, a newly designed calculation tool should
eliminate the need to perform any additional vehicle movement simulation or swept
path analysis in order to determine the critical vehicle position in an active transient
offtracking state.

Regarding a relatively big dataset of generated input parameters and corresponding
calculation results, the selection of an appropriate regression model which can predict the
substitution t with the desired level of accuracy turned out to be the most practical solution.
Several widely used nonlinear regression models were tested and compared by applying
available Python functions. The benchmark for the desired level of accuracy of the tested
regression models applied for the prediction of the steering angle βd is set as 1/10 of the 1◦

angle, or in decimal form 0.10◦. This means that the maximum error allowed or root mean
square error (RMSE), when predicting the value of the substitution t by using the tested
regression model is as follows:

RMSEt = tg
(

βd
2

)
= tg

(
0.10◦

2

)
= 0.000873 (29)
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But, for engineers and practitioners it is probably more important what the previously
set benchmark for the maximum RMSE value represents in a geometrical sense. Bearing
in mind that the maximum allowed single-bus length is around 14.5 m, a 0.1◦ error in
the predicting steering angle βd, with a fourth-degree polynomial regression function,
guarantees a 0.025 m lateral accuracy (tan (0.1◦)·14.5 m = 0.025 m). Polynomial regression
of the third degree produces a 0.05 m lateral accuracy, while second-degree polynomial
regression results in errors exceeding 0.10 m. The single bus was selected as an appropriate
design vehicle to calculate the lateral positioning error due to its long wheelbase.

In Table 2, the results of testing various nonlinear regression models and their corre-
sponding RMSE metrics are listed.

Table 2. Tested nonlinear regression model for the prediction of substitution t values.

Nonlinear Regression Model Type RMSE

Polynomial Regression (4th degree) 0.000496
Ridge Regression 0.002261
Lasso Regression 0.073637

Elastic Net Regression 0.073637
Decision Tree Regression 0.002843

Random Forest Regression 0.000995
Support Vector Regression—SVR 0.051933

Gradient Boosting Regression 0.001854
K Neighbors Regression 0.001480

AdaBoost Regression 0.009943

Evaluation of the compared regression models was not performed by using the whole
set of input data (26,400 combinations in total)—80% of the combinations from the input
dataset were used to train the models, while the remaining 20% were used for testing. This
specific ratio for the input dataset split used later for the model training and testing is
recommended by advanced Python users [34].

As can be seen in Table 2, only polynomial fourth-degree regression fulfills the set
benchmark for the maximum RMSE value. Even when the whole set of the input data
was considered, the obtained RMSE value for the polynomial fourth-degree regression is
0.000508, which is still the best in comparison to the other tested regression models. In
addition to the desired value of RMSE, the coefficient of determination of the R-squared
value (R2) for the selected polynomial regression model is R2 = 0.99988. Despite the R2

not considering overfitting, the achieved R2 value is very close to 1. Before the fourth-
degree polynomial regression model was adopted as an optimal solution, second- and
third-degree polynomial regression models were also tested, but their RMSE values, as well
as their lateral positioning errors, were considerably higher than the previously established
benchmark. In addition, as displayed in the Table 3, the obtained R2 values for the second
and third polynomial regression models were also very close to 1, but their RMSE metrics
could not meet the desired level of accuracy.

Table 3. Lateral positioning error, RMSE, and R2 values for polynomial regression of various orders.

Degree of Polynomial Regression Model Lateral Positioning Error [m] RMSE R2

2nd-degree polynomial regression >0.100 0.002453 0.99904
3rd-degree polynomial regression 0.050 0.001754 0.99944
4th-degree polynomial regression 0.025 0.000496 0.99988

The relationship between the dependent variable, i.e., the substitution t, and the inde-
pendent variables representing the turn angles θS and R/d ratio in the modeled polynomial
regression function looks as follows:
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t = −0.044417+0.044078·
(

R
d

)
+0.004485·θs+(−0.010769)·

(
R
d

)2
+(−0.001131)·

(
R
d

)
·θs+(

−6.53·10−6)·θ2
s+

(
−6.78·10−5)·( R

d

)3
+0.000310·

(
R
d

)2
·θs+

(
−6.35·10−6)·( R

d

)
·θ2

s+

2.61·10−8·θ3
s+0.000215·

(
R
d

)4
+
(
−3.68·10−5)·( R

d

)3
·θs+

(
7.34·10−7)·( R

d

)2
·θ2

s+

9.36·10−9·
(

R
d

)
·θ3

s+
(
−5.80·10−11)·θ4

s

(30)

The formula is rather a complex one, but it could be processed easily on a handheld
computer, even the one installed in an autonomous vehicle. Though perhaps impractical
for common use and not concurrent with vehicle movement simulation software, the math-
ematical solution developed herein could easily be used to guide the vehicle safely through
the sharp turn. With the substitution t finally retrieved, the critical angle βd and critical
distance Fd could be calculated easily (βd = 2·arctg(t) and Fd = (d − R·sinβd)/cosβd).
Three-dimensional plots and graphs illustrating the relationship amongst the substitution t
and the independent variables θS and R/d are displayed in Figure 8. 
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Figure 8. Graphical interpretation of relationship amongst the substitution t, turn angle θS, and
R/d ratio.

4. Evaluation of the Adopted Regression Model and Discussion

In this section, an evaluation of the adopted regression model is performed and
some practical aspects of its application are discussed. The simplest method of evaluation
assumes the use of existing Python tools and plotting substitution t values, retrieved using
numerical methods, against the values coming from the polynomial regression model. An
example of such a diagram, covering the whole set of generated input data, is shown in
Figure 9.
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numerical calculation and the polynomial regression model.

It is evident from the diagram in Figure 9 that the polynomial regression function fits
the numerically calculated values of the substitution t very well. A certain discrepancy
occurs for the substitution t values of less than 0.10, which corresponds to turn angles θS
smaller than 40◦.

To evaluate the potential limitations and pre-suppositions for its use, robustness
analyses of the adopted polynomial regression model were conducted. Standard methods
and their corresponding procedures, briefly described in Table 4, were applied to test the
robustness of the established fourth-degree polynomial regression model.

Table 4. Overview of standard methods to test robustness of a regression model.

No Methods Brief Description of Steps to Test the Robustness of the Selected Method

1 K-Fold Cross-Validation
The procedure has a single parameter called k that refers to the number of

groups that a given data sample is to be split into. As such, the procedure is
often called k-fold cross-validation.

2 Repeated Train/Test Splits
Perform multiple train/test splits with different random seeds and evaluate

the model on each split. Calculate and compare the performance metrics (e.g.,
R2, RMSE) across these splits.

3 Robustness to Noise
Add different levels of noise to the input features and observe changes in

performance metrics. For example, Gaussian noise can be added to analyzed
features to see how the model’s predictions and accuracy are affected.

4 Outlier Analysis Introduce synthetic outliers into the dataset and evaluate the model’s
robustness by observing changes in performance metrics.

5 Generalization to Unseen Data
If researchers have access to an external dataset that was not used in training,

they can evaluate the model on this dataset to check its
generalization capabilities.

6 Stress Testing with Extreme Values Test the regression model with extreme or edge-case values for input features
to evaluate how it handles these unusual cases.
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K-fold cross-validation was used for the RMSE and R2 metrics’ robustness testing.
Herein, the parameter k was equal to 5, which means that the sample dataset was divided
into five parts that were (roughly) equal in size. The k-fold cross-validation results are
listed below:

• Cross-validation RMSE scores: [0.00050482 0.00051121 0.00050779 0.00050810
0.00052693];

• Cross-validation mean RMSE score: 0.00051177;
• Cross-validation R2 Scores: [0.99987991 0.99988177 0.9998805 0.99987864

0.99987698];
• Cross-validation mean R2 score: 0.99987956.

The produced cross-validation RMSE scores and the corresponding mean show that
there is no RMSE value above the established benchmark for the desired level of accuracy
(Equation (29)). Also, the obtained cross-validation R2 scores and their mean negligibly
differ from the R2 value which was initially achieved for the whole generated dataset.

The methods “repeated train/test Splits, robustness to noise, outlier analysis, and
generalization to unseen data” cannot be directly implemented because polynomial regres-
sion function was established by using the whole dataset. In addition, the used dataset
with different combinations of parameters R, d and θ was artificially created, while the
previously listed methods, particularly robustness to noise and outlier analysis, are more
suitable for the robustness analysis of experimentally collected data, i.e., data acquired
from measurements in the field. Generalization to unseen data requires the introduction
of an external dataset that was not used in model training, which is not relevant in this
case—because predetermined combinations of the key input parameters R, d, and θ were
used to generate the whole dataset.

The stress testing with extreme values method gave the following results:

• MSE on the high-value subset (HVS) range: 2.757111×10−7;
• RMSE on the HVS range: 0.000403;
• MSE on the low-value subset (LVS) range: 6.017358×10−7;
• RMSE on the LVS range: 0.000595.

HVS includes predicted values of substitution t in the range: t > MDNt;
LVS includes predicted values of substitution t in the range: t ≤ MDNt.
It can be seen that higher mean square error (MSE) and RMSE values were obtained

below the median (MDN) of predicted substitution t values, which is MDNt = 0.188780.
MDNt closely matches to the combination of the turn angle θ of 75◦ and the R/d ratio of
1.40845. This means that the adopted regression model has a slightly lower accuracy for
turn angles θ smaller than 75◦ and R/d ratios below 1.408451 or d = 0.71·R.

Robustness analyses of the fourth-degree polynomial regression model revealed new
pre-suppositions for its use. In addition to the precondition R > d, originally imposed
by the ICAO, and the numerically calculated possible range for the substitution t values
0 < t < 1 (Equation (28)), robustness analyses pointed out that the regression model has a
negligibly lower prediction accuracy for the turn angles of θ < 75◦ and R/d ratios in the
range of R/d < 1.408451.

The accuracy of the adopted regression model was thoroughly evaluated by compar-
ing substitution t values calculated both numerically and by the fourth-degree polynomial
regression function (29). In addition to the substitution t values, corresponding steering
angles βd and distances FOTmax determining the vehicle maximum transient offtracking
positions were calculated and mutually compared. As expected, the biggest absolute dif-
ferences between the parameters βd and FOTmax calculated by the two compared methods
appear only in a limited number of cases for the combinations of input parameters at the
beginning of the generated input dataset. These critical combinations of input parameters
refer to the ones with the smaller turn angles θS, usually less than 35◦, which is in accor-
dance with the previous findings acquired from the diagram displayed in Figure 9 and
robustness analyses.
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Moreover, the results of the calculation methods’ comparison displayed in Table 5
should be discussed from the road designers’ perspective as well. Although the 0.20 m
difference between the compared values FOTmax at first seems like a serious error in the
prediction of the regression model, it should be highlighted that it is actually an error
in determining the position of the vehicle’s datum point in the “longitudinal sense”. In
contrast to this, the observed error in the “lateral sense” is far smaller, as can be seen in
Figure 10.

Table 5. Comparison of the values of t, βd, and FOTmax calculated numerically and by the
regression model.

Input Parameters Numerical Solution Regression Model Abs. Differences

No * θS [◦] R/d βmax [◦] tN βd-N [◦] FOTmax-N tR βd-R [◦] FOTmax- R [m] ∆βd [◦] ∆FOTmax [m]

1 30.00 5.000000 10.6633 0.066106 7.5642 0.690 0.073171 8.3699 0.487 0.8057 0.203
2 30.00 4.761905 11.0811 0.067365 7.7078 0.766 0.072593 8.3039 0.609 0.5962 0.157
3 30.00 4.545455 11.4848 0.068529 7.8406 0.844 0.070955 8.1172 0.767 0.2767 0.077
4 30.00 4.347826 11.8748 0.069609 7.9637 0.923 0.070269 8.0390 0.902 0.0753 0.022
5 30.00 4.166667 12.2514 0.070612 8.0782 1.005 0.070210 8.0323 1.018 0.0459 0.014
6 30.00 4.000000 12.6151 0.071547 8.1848 1.087 0.070559 8.0721 1.122 0.1127 0.035
7 30.00 3.846154 12.9663 0.072420 8.2843 1.171 0.071166 8.1413 1.217 0.1430 0.045
8 30.00 3.703704 13.3054 0.073236 8.3773 1.256 0.071928 8.2282 1.305 0.1491 0.049
9 30.00 3.571429 13.6330 0.074001 8.4645 1.343 0.072777 8.3249 1.389 0.1396 0.047
10 30.00 3.448276 13.9493 0.074720 8.5464 1.430 0.073663 8.4260 1.471 0.1204 0.041
11 30.00 3.333333 14.2550 0.075395 8.6233 1.518 0.074557 8.5278 1.551 0.0955 0.034
12 30.00 3.225806 14.5504 0.076031 8.6958 1.607 0.075436 8.6280 1.631 0.0678 0.024
13 30.00 3.125000 14.8360 0.076632 8.7642 1.696 0.076287 8.7249 1.711 0.0393 0.014
14 30.00 3.030303 15.1121 0.077199 8.8288 1.786 0.077100 8.8176 1.791 0.0112 0.004
15 30.00 2.941176 15.3792 0.077736 8.8900 1.877 0.077872 8.9055 1.871 0.0156 0.006
16 30.00 2.857143 15.6376 0.078244 8.9479 1.969 0.078600 8.9884 1.953 0.0405 0.016
17 30.00 2.777778 15.8876 0.078727 9.0029 2.061 0.079283 9.0662 2.035 0.0633 0.025
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

26,383 180.00 1.219512 51.0779 0.354454 39.0342 4.898 0.354516 39.0405 4.895 0.0063 0.003
26,384 180.00 1.204819 51.7435 0.357094 39.3026 5.081 0.357041 39.2973 5.083 0.0053 0.002
26,385 180.00 1.190476 52.4083 0.359695 39.5668 5.267 0.359525 39.5496 5.275 0.0172 0.008
26,386 180.00 1.176471 53.0720 0.362259 39.8268 5.457 0.361969 39.7974 5.470 0.0294 0.014
26,387 180.00 1.162791 53.7347 0.364787 40.0826 5.649 0.364375 40.0409 5.668 0.0417 0.019
26,388 180.00 1.149425 54.3961 0.367279 40.3345 5.844 0.366742 40.2802 5.870 0.0543 0.025
26,389 180.00 1.136364 55.0564 0.369736 40.5823 6.043 0.369071 40.5153 6.074 0.0670 0.032
26,390 180.00 1.123596 55.7153 0.372158 40.8263 6.244 0.371364 40.7464 6.282 0.0799 0.038
26,391 180.00 1.111111 56.3727 0.374546 41.0665 6.448 0.373621 40.9735 6.492 0.0930 0.045
26,392 180.00 1.098901 57.0287 0.376901 41.3030 6.655 0.375843 41.1968 6.706 0.1062 0.051
26,393 180.00 1.086957 57.6830 0.379224 41.5358 6.864 0.378030 41.4162 6.922 0.1196 0.058
26,394 180.00 1.075269 58.3357 0.381514 41.7651 7.077 0.380184 41.6320 7.142 0.1331 0.065
26,395 180.00 1.063830 58.9866 0.383773 41.9909 7.292 0.382305 41.8442 7.364 0.1466 0.072
26,396 180.00 1.052632 59.6357 0.386001 42.2132 7.510 0.384394 42.0529 7.589 0.1603 0.079
26,397 180.00 1.041667 60.2829 0.388198 42.4322 7.730 0.386451 42.2581 7.817 0.1741 0.087
26,398 180.00 1.030928 60.9281 0.390366 42.6480 7.954 0.388477 42.4600 8.048 0.1880 0.094
26,399 180.00 1.020408 61.5713 0.392505 42.8605 8.180 0.390473 42.6586 8.281 0.2019 0.102
26,400 180.00 1.010101 62.2123 0.394615 43.0699 8.408 0.392439 42.8540 8.517 0.2159 0.109

* Due to limited available space, only a small fraction of the whole table is displayed in the paper.

To more practically explain the minor importance of errors in the “longitudinal sense”
when determining FOTmax distances on the overall accuracy of the maximum transient
offtracking calculation, one of the situations with an unfavorable (critical) combination of
input parameters (R, d, and θS) is presented in Figure 10. The selected vehicle with a datum
length d = 5.00 m negotiates a circular curve with a turn angle of 30◦ and a radius R = 20 m.
The required parameters FOTmax and βd, determining the maximum transient offtracking
position of the vehicle, are calculated numerically.
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Figure 10 proves that the lateral offset (transient offtracking) varies slightly whether
the vehicles datum point is moved back or forth along the exit tangent, in relation to the
point where the actual maximum transient offtracking is reached. Of course, the movement
of the point concerned should stay within reasonable limits (1.0 m in Figure 10). Negligible
differences between the pairs of lengths OTmax and OT′, and OTmax and OT′′, confirm that.
From the presented example, it is clear that the maximum error of ∆FOTmax = 0.203 m when
calculating FOTmax distances using the derived polynomial regression function, in terms
of practical engineering applications, has a negligible impact on the overall computation
accuracy of the maximum transient offtracking position.

Now, it is important to notice that the difference between the maximum transient
offtracking value OTmax and the offtracking OTβmax, calculated in the position where the
maximum steering angle βmax is reached (the exact end of the arc) is 0.04 m. Though
some safety margins must always be observed, the typical accuracy of construction works
in plan projection must be within 1 cm. And as for aircraft negotiating taxiway turns,
the error becomes much higher, compromising not specific ICAO formulas but the entire
calculation procedure. The formulas recommended by the ICAO are absolutely correct, but
the assumption that the maximum offtracking is reached when the aircraft datum point
reaches the end of an arc is absolutely incorrect. In the common taxiway fillet case, when a
Boeing 747–100 negotiates a θS = 90◦, R = 50.00 m curve, the error increases up to 0.30 m. In
the same turn, the Airbus A380 produces a 0.75 m error. In a less common situation, the
A380 negotiating a θS = 45◦, R = 50.00 m turn, the error is 2.79 m. With θS decreasing to
30◦, the error exceeds 4.3 m! There are even some rare θS, R combinations producing errors
exceeding 6.0 m!

5. Conclusions

The calculation method presented herein offers a unique and practical solution for the
calculation of the maximum transient offtracking of a single-unit vehicle when negotiating
circular curves. It uses well-proven mathematical formulas from the ICAO mathematical
model for the derivation of only one transcendental equation which precisely determines
the maximum transient offtracking position of the vehicle. Complicated numerical meth-
ods for solving this type of equation were substituted by a relatively simple polynomial
regression function capable to predict the maximum transient offtracking position with the
desired level of accuracy. In this manner, computationally demanding numerical methods
for transcendental equation solving are successfully compensated with a more practical and
efficient calculation method. The accuracy of the presented regression model was assessed
on the whole set of input data parameters, including all combinations of R/d ratios and
θS turn angles. The largest discrepancies in relation to the numerical calculations appear
for turn angles θS smaller than 35◦, but the magnitude of these discrepancies negligibly
affects the reliability and overall accuracy of the developed regression model. Robustness
analyses of the fourth-degree polynomial regression model revealed that the regression
model has a negligibly lower prediction accuracy for the combination of input parameters
covering turn angles θ < 75◦ and R/d ratios in the range R/d < 1.408451.

Though the polynomial regression function seems too long at first sight, its main
advantage is the almost instant calculation of the maximum transient offtracking position.
Minimal effort and an ordinary pocket calculator are enough to calculate maximum tran-
sient offtracking position for the specified input parameters R, d, and θS. All previously
published mathematical models and, in particular, the currently available software tools
for vehicle swept path analyses require more time and engineering skills to achieve the
same results. Additionally, the method retrieves the maximum transient offtracking from
the three input parameters (R, d, and θS), skipping the need for CAD-like steering path
construction (as an input) and swept path generation (as an output).
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It is demonstrated and proved that the maximum transient offtracking is not achieved
when the vehicle’s datum point reaches the end of circular arc (assumption in ICAO’s
design manual), but some distance beyond. What is more important, the error caused by
this ICAO’s assumption can significantly affect the accuracy of fillet design at airports.

By applying the regression model proposed herein, it is possible to calculate the
maximum transient offtracking only when the vehicle negotiates simple circular curves.
For other steering alignment configurations, which include more complex horizontal curve
types, i.e., transition and revers curves, this method cannot be used. Currently, the proposed
regression model can be applied for the maximum transient offtracking calculation of a
single-unit vehicle and not for articulated or multi-unit vehicle combinations. These flaws
have already been considered by the authors of the paper and new mathematical models
which tackle these issues are already under development.
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Abbreviations

Abbreviation Description
θs turn angle—in [◦]
d aircraft (vehicle) datum length—in [m]
R circular curve radii—in [m]
S aircraft datum point
U aircraft main undercarriage center
β steering angle—in [◦]
X R/d ratio
βmax maximum steering angle—in [◦]
F distance that aircraft datum point (S) covered along arc exit tangent—in [m]
OTmax maximum transient offtracking—in [m]

FOTmax
distance that aircraft datum point (S) covered along arc exit tangent in maximum
transient offtracking position—in [m]

w vehicle track width—in [m]

βd
steering angle between the longitudinal aircraft axis and exit tangent in maximum
transient offtracking position— in [◦]

c constant
t substitution (independent variable)
RMSE root mean square error
R2 coefficient of determination (R-squared value)
MSE mean square error
MDNt median of predicted substitution t values
HVS high value subset
LVS low value subset
tN substitution t calculated numerically
tR substitution t calculated by polynomial regression function
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Abbreviation Description
βd-N steering angle βd obtained from the substitution t numerically calculated— in [◦]

βd-R
steering angle βd obtained from the substitution t calculated by adopted
polynomial regression function— in [◦]

FOTmax-N
distance FOTmax obtained from numerically calculated substitution t and steering
angle βd-N—in [m]

FOTmax-R
distance FOTmax obtained from the substitution t and steering angle βd-R
calculated by polynomial regression function—in [m]

∆βd
absolute differences between previously calculated steering angles βd-N and
βd-R—in [◦]

∆FOTmax
absolute differences between previously calculated distances FOTmax-N and
FOTmax-R—in [m]

OTβmax
transient offtracking calculated in the position where the maximum steering
angle βmax is reached—in [m]
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