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Abstract: Water resource has become a guarantee for sustainable development on both local and global scales. 
Exploiting water resources involves development of hydrological models for water management planning. In this paper 
we present a new stochastic model for generation of mean annul flows. The model is based on historical characteristics 
of time series of annual flows and consists of the trend component, long-term periodic component and stochastic 
component. The rest of specified components are model errors which are represented as a random time series. The 
random time series is generated by the single bootstrap model (SBM). Stochastic ensemble of error terms at the single 
hydrological station is formed using the SBM method. The ultimate stochastic model gives solutions of annual flows and 
presents a useful tool for integrated river basin planning and water management studies. The model is applied for ten 
large European rivers with long observed period. Validation of model results suggests that the stochastic flows simulated 
by the model can be used for hydrological simulations in river basins. 
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INTRODUCTION 

 
Systematic streamflow gauging in the modern era began ra-

ther late. The longest time series are available in Europe but 
they do not exceed 200 years. Long-term fluctuations of hydro-
logical and meteorological quantities have been the object of 
attention of hydrologists and climatologists since the beginning 
of the 20th century.  

Long-term river flow variations are generally studied by 
trend analysis, where the Mann-Kendall trend test is often used 
to identify the trend (Machiwal and Jha, 2006; Salas et al., 
1980). The trend analysis may be misleading because long-term 
flow fluctuations are disregarded. As such, it is necessary to use 
several full time series cycles to assess the trend. There may be 
an additional problem if spatial correlation is disregarded. It 
might lead to reduction in the trend assessment data (Douglas et 
al., 2000). Khaliq et al. (2009) presented ways to remove serial 
correlation from hydrologic time series, such as pre-whitening, 
variance correction and block bootstrap. Apart from trend anal-
ysis, long-term variation can be studied by moving statistical 
distribution (Hanggi and Weingartner, 2011) and multi-
temporal analysis (Hannaford et al., 2013). 

On the global scale, upward annual river flow trends have 
been registered in parts of the northern hemisphere, such as 
North America and northern Europe (Kundzewicz et al., 2008). 
Downward trends have been reported in parts of western and 
southern Africa, southern Europe and the Middle East (Milly et 
al., 2005). Birsan et al. (2005) performed trend analysis in 48 
Swiss watersheds. They identified the significant upward annual 
flow trends in the winter and spring, and registered downward 
trends during the summer. Stahl et al. (2010) revealed 
downward annual flow trends in southern and eastern Europe, 
and upward trends in other parts of Europe. 

Hurst (1951) examined the special behavior of hydrological 
time series in a study of long-term water availability. The phe-
nomenon is based on the tendency of a dry year to group within 
a long dry period, as well as a wet year to group within a wet 
period. Box and Jenkins (1970) proposed methods for modeling 
long-term flow variations based on linear autoregression models 
while Yevjevich (1972) studied flow variability using the period-

gram (discrete spectrum). Further developments in spectrum 
estimation involved the multitaper spectrum (Mudelsee, 2010) 
and the wavelet transform method (Labat et al., 2004).  

The long-term flow fluctuation in European rivers was 
revealed by Probst and Tardy (1987), Pekarova et al. (2006) 
Pekarova and Pekar (2006), Labat (2006) and Fendekova et al. 
(2014). They discussed shifting of multiple-year dry and wet in 
the river basin.  

The present research addresses mean annual flows of ten 
large European rivers. The objective is to establish the 
stochastic structure and model the annual flow series Qm, 
assuming that the time series is non-stationary and composed of 
the sum of the following components: trend component QT, 
periodic component Qp, stochastic component QAR and the error 
term ε. In order to model the periodic component, Fourier’s 
transformation of the time series is applied. The stochastic 
component is modeled by the linear autoregressive models. The 
error term is generated by the single bootstrap model (SBM) 
with resampling of historical data. The aim is to create a 
stochastic ensemble of simulations which could be used in 
water planning and management. 
 
Data sets 

 
Institute for the Development of Water Resources “Jaroslav 

Černi” maintains a database of hydrological and meteorological 
parameters of the longest time series on record worldwide. It 
was compiled using data provided by the Institute of Hydrology 
SAS from Bratislava, Slovakia, and the Global Runoff Data 
Centre attached to the German Federal Institute of Hydrology 
from Koblenz, Germany. The longest time series of mean 
annual flows were selected to assess runoff associated with 
large European rivers. The hydrological stations used in the 
study are listed in Table 1. 
 
METHODOLOGY 
 

In the analysis of the structure of the time series, the trend of 
time series is an important feature. Many trend analyses are 
based on the well-known Mann-Kendall trend test (Machiwal  
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Table 1. Hydrological stations at the European rivers used in the study with basic information on the stations and the long-term mean 
annual flow Q. 

 
River and Station: Country: Basin area (km2): Total years: First year: Q (m3/s): 

Elbe - Decin CZ 51123 157 1851 305.3 

Danube - Bratislava SLO 131331 102 1900 2050 

Rhine - Cologne D 144232 193 1816 2088 

Weser - Vlotho D 17618 189 1820 168.0 

Inn - Wasserburg D 11983 182 1826 350.5 

Salzach - Burghausen D 6649 182 1826 258.6 

Danube - Orsova RO 576232 151 1840 5602 

Vuoksi - Tainionkoski SF 61061 158 1847 592.1 

Northern Dvina - Usti-Pinega RUS 348000 123 1881 3331 

Nemunas - Smalininkai LT 81200 192 1812 536.9 

 
and Jha, 2006), a nonparametric test, based on the data ranks 
within the time series. This approach is used in this study to 
determine the significance of the annual flow trends, either 
linear or nonlinear. In order to model the trend and extract it 
from the rest of the time series, the trend in the time series is 
assumed to be linear. Significance of the parametric linear trend 
slope is tested for all annual flow series using the parametric 
Kendall-Stuart test (Kendall and Stuart, 1966). The hypothesis 
H0 that there is no significant linear trend is rejected at signifi-
cance level of α = 5% if the identified trend slope β is greater 
than: 
 

3
121.96 ,
N

β >
  

(1) 

 
where N is length of the annual flow series Q. 

For the long-term periodicity analysis, the flow time series 
have to be smoothed in order to facilitate recognition and ex-
traction of the periodic component with oscillation period that 
govern alternating multiple-year dry and wet periods in the river 
basin. For this purpose the LOESS smoothing technique is 
applied (Stojković et al., 2012). If the time series exhibits the 
long-term periodicity, it would be identified by the Hurst analy-
sis. In this paper the well-known R/S analysis is applied (Blasco 
and Santamaria, 1996). 

 The inherent assumption of spectral analysis is that the con-
sidered time series can be broken up into a set of finite or infi-
nite sums of trigonometric sine and cosine functions (Shuster, 
1887). The periodic component QP can then be expressed as: 

 

( )
1

( ) sin(2 ) cos(2 )    1,..., ,
q

P i i i i
i

Q t a f t b f t t N
=
= π + π =  (2) 

 
where t is the time step, fi is the frequency, ai and bi are the 
Fourier coefficients (amplitudes) and q is the number of signifi-
cant harmonics. The Fourier analysis provides the coefficients ai 
and bi as: 
 

1 1

2 2cos(2 ),  sin(2 ).
N N

i i i i i i
t t

a Z f t b Z f t
N N= =

 = π = π  (3) 

 
The periodogram is comprised of q = (N–1)/2 discrete values 

if N is an odd number and q = N/2 if N is an even number. The 
intensity of periodicity is determined as: 

( ) ( )2 2 ; 1,2,...,
2i i i
NI f a b i q= + =  (4) 

 
The intensity of periodicity is computed using Eq. (4) for 

discrete frequencies fi = i/N (Yevjevich, 1972), where fi is the 
frequency of the i-th period and i is the serial number of the 
period (i = 1,2,...,q). The Fourier analysis was used to determine 
the coefficients ai and bi (Eq. 3). In the next step, the Fisher’s 
test and the relative cumulative periodogram (RCP) (Pekarova 
et al., 2003; Yevjevich, 1972) are applied to define significant 
periods.  

The periodicity of annual flows characterized by short-term 
periods is analyzed by applying the autoregressive models (Box 
and Jenkins, 1970). This component of annual flows is referred 
to as stochastic component. When the linear trend QT and the 
long-term periodic component QP are removed from the annual 
flow time series Q, the remaining part presents the stochastic 
and the random component. The remainder of the time series is 
called the residual flow QR, derived as follows: 

 
( ) ( ) ( ) ( ).R T PQ t Q t Q t Q t= − −  (5) 
 
The residual flow series QR is considered as a stochastic 

stationary process xt, which represents the standardized series 
xt = QR/σR where σR is standard deviation of QR. The AR(p) 
models were used to model stochastic component from the 
standardized residuals xt (Box and Jenkins, 1970): 

 
1 2( ) ( 1) ( 2) ... ( ).t t t p tx t x t x t x t pφ φ φ= ⋅ − + ⋅ − + + ⋅ −  (6) 

 
The above equation shows that the AR(p) model represents 

the weighted sum of the finite number p of previous events in 
the stationary time series xt with AR parameters ϕ1, ϕ2, ..., ϕ p. 
The Akaike criterion AIC is used to select the order p of the 
AR(p) model (Salas et al., 1980).  

In the next step we transform the standardized residual time 
series xt from Eq. (6) into the stochastic component QAR: 

 

1 2( 1) ( 2)
( ) ( ) .

... ( )
t t

AR t R R
p t

x t x t
Q t x t

x t p
φ φ

σ σ φ
⋅ − + ⋅ − + 

= =  + ⋅ − 
 (7) 

 
The random time series ε, or the error term, is then deter-

mined by subtracting the stochastic component QAR from the 
residual series QR: 



                                                                                                                                   Stochastic structure of annual discharges of large European rivers 

65 

1 2

( ) ( )
( 1) ( 2)

( ) .
... ( )

R AR

t t
R R

p t

t Q t Q
x t x t

Q t
x t p

ε
φ φ

σ
φ

= − =
⋅ − + ⋅ − + 

= −  + ⋅ − 

 (8) 

 
In order to generate a stochastic ensemble of ε we use the 

single bootstrap model (SBM). A method of random resampling 
of the error term is used to generate simulations. This method is 
based on resampling the historical data, without modifying the 
values. The error term vector is presented as {ε}t = {ε1, ε1,..., εN} 
where t was a time step (t = 1, ..., N). If the SBM model is ap-
plied for single station, the stochastic ensemble of ε is the fol-
lowing matrix: 
 

{ }
1 1 1 1 2 2 2 2
1 2 1 1 2 1

  
1 2 1

, ,..., , ;    , ,..., , ;  
.

  ...    , ,..., ,

N NN N
t x B B B B B

NN

ε ε ε ε ε ε ε ε
ε

ε ε ε ε
− −

−

  =  
  

 (9) 

 
where B is the number of the bootstrap resampled vectors. In 
this case, the number of the resampled vectors is equal to the 
length of time series Q (i.e. B = N). Therefore, the stochastic 
ensemble {ε}t x B  represents a square matrix. 

The ultimate stochastic model represents the sum of the 
modelled components at the same time step and includes the 
SBM model of the resampled random vector ε: 
 
{ } { } { } { } { }       .m T P ARt t t t x Bt x BQ Q Q Q ε= + + +  (10) 
 

The correlation coefficient CORR and the Nash–Sutcliffe co-
efficient NSE are used to evaluate the variation between the 
observed flows Q and the modeled time series Qm.. 
 
RESULTS AND DISCUSSION 

 
The hydrologic stations at ten large European rivers used in 

this study are shown in Table 1. We used the mean annual flow 
time series from these stations to analyse their stochastic struc-
ture. In the first step, presence of trend is tested by the paramet-
ric Kendal-Stuart test and the nonparametric Mann-Kendall test. 
The results of the trend analysis are shown in Table 2. 

A statistically significant linear trend was identified at all 
hydrological stations at the 5% significance level (|β|>β(α=5%)) 
except at the Orsova station. The Mann-Kendall test lead to a 
different conclusion: significant trend was detected at the 
Burghausen station only (|ZMK|>1.96). However, it should be 
noted that the trend direction and magnitude depend on the 
series length (Stojković et al., 2014). In further analysis the 
significant linear trend was removed from the flows time series Q. 

Time series of annual flows exhibit the same characteristics 
as the series with long memory. The values of the Hurst coeffi-
cient h at the analyzed stations prove this: Decin (h = 0.640), 
Bratislava (0.563), Cologne (0.608), Vlotho (0.741), Wasser- 

burg (0.541), Burghausen (0.648), Orsova (0.596), Tainionkoski 
(0.707), Ust Pinega (0.737), Smalininkai (0.673). The time 
series with long memory show in general the high frequency 
variations and the long-term cyclical behavior. The Fourier 
transform is therefore suitable for modeling hydrological time 
series with long memory. 

The periodogram as given in Eq. (4) was used to identify the 
long-term periodicity in the annual flow time series. The 
LOESS method was applied to smooth the time series and in 
order to determine significant periods in the mean annual flow 
time series. Figure 1 shows the periodogram and the relative 
cumulative periodogram of the observed and the smoothed 
annual flows at station Orsova. The periodogram of the 
smoothed series in Fig. 1a has several peaks at low frequencies, 
which are governing the alternating long-term dry and wet 
periods. The level of significant periods (LSP) was set at 95% 
of the cumulative periodogram (Fig. 1b). 

The LSP of 95% was applied to determine significant periods 
at all the considered hydrological stations, where the number of 
significant periods q is used to model the periodic component 
by Eq. (2). The same periods were also significant according to 
the Fisher test at the 5% significance level. The characteristic 
periods are: 7, 10–12, 14–15, 20–25 and 30 years. In addition, 
very long periods greater than 100 years were also identified at 
the Vlotho, Burghausen, Usti-Pinega and Smalininkai stations. 
The long-term periodic component is determined from Eq. (2) 
based on the identified significant periods. The periodic compo-
nents of analysed European river show synchronous multi-
annual oscillations. 

Annual flow residuals were modeled using the AR models of 
the order p ranging from 5 to 7. The order p of these models 
was adopted according to the Akaike criterion (AIC). The sto-
chastic component QAR was consequently determined by Eq. (7). 
When the linear trend QT, periodic component QP and stochastic 
component QAR had been defined, we determined the error term 
(i.e. the residual series) as given by Eq. (8). The error term is a 
random time series with mathematical expectation E(ε) = 0 and 
with no significant autocorrelation at each station. In the next 
phase we generated a stochastic ensemble of random residuals 
{ε}t x B using the single bootstrap model (Eq. 9) by performing 
B=N simulations with resampling of the residuals at each sta-
tion. The method can also be applied for the multi-site 
resampling of the residual series which exhibit a significant 
cross-correlation between each other. This approach is primarily 
intended for sites which are located at the same river basin and 
which are expected to be cross-correlated. For the sites in the 
same river basin the hybrid moving block bootstrap multi-site 
model (HMM) proposed by Srinivas and Srinivasan (2005) 
could be used to simulate the annual flow series. This paper 
considers stations over a wide European region at which the 
residuals do not show significant cross-correlation between the 
sites despite the finding that they have synchronous long-term 
flow fluctuations. 

 
 

Table 2. Trend in annual flow series: linear regression slope coefficient β, critical value of β at α = 5% and the values of the Mann-Kendall 
test statistic ZMK. 

 
Station: β β (α=5%) ZMK Station: β β (α=5%) ZMK 
Decin 0.024 0.003 0.836 Burghausen –0.165 0.003 –2.812 
Bratislava 0.022 0.007 0.267 Orsova 0.003 0.003 0.030 
Cologne 0.037 0.003 0.582 Tainionkoski –0.011 0.003 –0.106 
Vlotho –0.105 0.003 –1.911 Ust-Pinega –0.087 0.005 –0.972 
Wasserburg –0.029 0.003 –0.616 Smalininkai –0.053 0.003 –0.904 
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Fig. 1. Periodogram (a) and relative cumulative periodogram, RCP, (b) of the original and the smoothed annual flows at the Orsova station. 
 

 
 
Fig. 2. Observed and simulated (a) annual flow series of the Danube at Bratislava, (b) autocorrelation function, and (c) empirical 
cumulative probability distribution of the annual flows. The black square markers indicate the observed series and the box plots depict the 
distribution of the ensemble simulations: lower, middle and upper box lines represent the first (25%) quartile, the median (50%) and third 
quartile (75%), respectively, and the whiskers indicate the range of values in the ensemble. 
 

The ultimate stochastic model is given by summing all the 
components from Eq. (10). Figure 2 presents the results of the 
stochastic simulation of annual flows for the Bratislava station 
at the Danube River. The results from the ultimate stochastic 
model at the other stations are shown in the Figures 4, 5 and 6. 

The statistical characteristics of simulated and observed 
annual flows were compared, including autocorrelation function 
(ACF) and empirical cumulative probability (ECD). The results 
show that the simulated annual flows have appropriate 
statistical characteristics to the historical data at considered 
stations. 

For each station the ensembles of the correlation coefficient 
{CORR}B and the Nash–Sutcliffe coefficient {NSE}B were 
computed. It should be noted that these coefficients are general-
ly used to evaluate goodness-of-fit between historical and simu-
lated time series by comparing the corresponding values in 
time. In this study we use these coefficients as a measure of 
agreement between the historical series and the simulated en-
semble by Eq. (10) in statistical terms. Since the explained 

variance of annual flows by the simulated time series without 
the random component ranges from 67.2% to 80.6%, i.e. the 
random component represents a smaller part of the explained 
variance, the use of the CORR and NSE coefficients for the 
comparison between the stochastic ensemble and observed 
flows is justified.  

Distributions of the two performance measures from the 
ensemble of simulated annual flows generally show small 
variation in the inter-quartile range (Fig. 3), although the 
complete range may be wider. The smallest CORR and NSE 
values belong to simulations that possess the greatest departure 
from the observed annual flow series and the greatest values 
correspond to those simulations which resemble the most the 
observed time series. The median correlation coefficient values 
range from just below 0.7 up to 0.8 at different stations, and the 
median NSE values are all above 0.5, which could be 
considered satisfactory. The NSE values lower than 0.5 are 
obtained in a very limited number of simulations at four stations 
out of ten. 
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Fig. 3. Box plots of the ensembles of correlation coefficient CORR and the Nash–Sutcliffe coefficient NSE for simulated mean annual 
flows at the stations analysed in this paper. 
 

 
 
Fig. 4. Observed and simulated mean annual flows at stations: (a) Dacin, (b) Cologne, (c) Vlotho. 
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Fig. 5. Observed and simulated mean annual flows at stations: (d) Wasserburg, (e) Burghausen, (f) Orsova. 
 

Since behavior of the simulated time series was confirmed to 
be similar to the observed series, they could be used for 
alternative hydrological scenarios in the river basin. These 
scenarios can be a useful tool for integrated river basin 
planning, especially for the basins with limited observed data. 
 
CONCLUSION 
 

A new stochastic model for generating hydrological series in 
a river basin has been introduced for simulating mean annual 
flows at ten large European rivers with long observation period. 
This model consists of two parts: the first part is inferred from 
the historical time series of annual flows and the second part 
implies generating the random time series. The random time 
series represents the modelling error. The first part of the sto-
chastic model decomposes annual flows into the trend compo-
nent, periodic component and stochastic component. These 
components are modeled by well known techniques of linear 
regression, the Fourier transform and linear autoregressive 
models, respectively. The second part is modelled by the single 
bootstrap model (SBM) which is used for random resampling of 
the error term vector. In this way a stochastic ensemble of error 
terms is generated at a single hydrological station. The ultimate 
stochastic model aggregates the first and the second part at the 
same time step. This produces an ensemble of stochastic simu-

lations of annual flows at considered stations. The simulated 
annual flows have appropriate statistical characteristics of the 
observed flows. The autocorrelation function and empirical 
cumulative probability distribution are used for model verifica-
tion. Also, the correlation coefficient and the Nash–Sutcliffe 
coefficient are used to explore variation in the similarity of the 
simulated ensemble to the historical data. The conclusion is that 
stochastic simulated flows can be used for hydrological simula-
tions in a river basin.  

Water resources planning and management can be in general 
seen as stochastic problems. Integrated river basin planning and 
water management studies involve stochastic simulation of 
annual flows in a basin. In most cases hydrological observations 
are limited in length. It is necessary to develop stochastic simu-
lation models for solving issues such as reservoir sizing and 
defining operational rules for managing complex water infra-
structure. The purpose of the present stochastic model is to 
contribute to these issues. In addition, this stochastic model can 
be used to generate different hydrological scenarios in the river 
basin. The trend and periodic components are functions of time 
which could be extrapolated for the future time period in the 
21st century. This is an alternative approach in comparison to 
the hydrological projections based on the climate parameters 
under greenhouse gases emission scenarios. 
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(d) Observed and simulated annual flows for station Wasserburg at Inn river
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(e) Observed and simulated annual flows for station Burghausen at river Salzach  
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(f) Observed and simulated annual flows for station Orsava at Danube river
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Fig. 6. Observed and simulated mean annual flows at stations: (g) Tainionkoski, (h) Ust-Pinega, (i) Smalininkai. 
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