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1. INTRODUCTION

Paper Strips Driven Design —
Application on Doubly Curved Surfaces

In this paper, we address the challenge of overcoming the problem of
developing doubly curved surfaces in product design.

Product design uses two kinds of surfaces, developable surfaces and non-
developable surfaces, which are also called singly and doubly curved
surfaces, respectively. A developable surface has zero Gaussian curvature
at all points, while a non-developable surface has non-zero Gaussian
curvature at least in some region. Surfaces of many product design object
are commonly created as doubly curved shapes to meet requirements of
structure and aesthetic.

The problem of creating the planar development of 3D surfaces with
double curvature in the product design depends on the shape of the surface
and the material of the surface cover. Therefore, the method of deriving a
pattern is different when external forces are used in order to generate the
plane patterns such as paper strips from the case when the plane shape
can stretch or deform to fit on the 3D surface.

Given a three-dimensional object surface, the first step of the fabrication
process is flattening or planar development of this surface into a planar
shape so that the manufacturer can not only determine the initial shape of
the object but also estimate the strain distribution required to form the
shape depending on a material.

The paper is analysing and rationalizing doubly curved surface of a given
shape by multiple strips of paper glued onto a surface. Results are
addressing possibilities of achieving an overall smooth surface and
developing a model for the generation of curvature continuous surfaces
composed of paper strip surfaces, as well as generating alternative
solutions that are in the domain of contemporary product design. The
paper illustrates usability and different variations of the proposed design.
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Rotational surfaces are generated by rotating a
planar or spatial curve about an axis. It is recommended

There are several ways to generate smooth surfaces
which are continuous and each point has its tangential
plane. The basic division of the smooth surfaces is on
the developable and non-developable surfaces, which
are also called singly and doubly curved surfaces. The
difference between developable and non-developable
surfaces is that with the developable surfaces tangential
plane is touching the surface by line, and in non-
developable surfaces at every point of the surface there
is a special tangential plane. All doubly curved surfaces
are non-developable, and may be generated in different
ways.

Among doubly curved surfaces are rotational
surfaces. Special forms of rotational surfaces are seen
widely in architecture and design.

Spheres, cylinders, cones and torus are well-known
representatives of this surface class.
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that surfaces of revolution may be generated using
planar meridian curves rather than arbitrary spatial
curves. Meridian curves are symmetric to the rotational
axis. Every point of the generating curve describes a
circle whose supporting plane lies orthogonally to the
axis. Thus, every rotational surfaces carries a set of
circles in parallel planes which we call parallel circles
[1].

Planes that contain the axis of the rotational surface
intersect the surface along congruent planar curves, the
meridian curves. The supporting planes of the parallel
circles and the meridian planes of the meridian curves
are orthogonal. This implies that the meridian curves
and the parallel circles also intersect at right angles.
They form a net of orthogonal curves on the surface.

The principles of the generation of the rotational
surfaces have been used in design and architecture.
Smooth rotational surfaces can be frequently found in
modern design [2]. However, they are sometimes not
suitable for putting design ideas into practise. When
constructing actual physical object we often need
discrete or semi-discrete model that sufficiently
approximates the smooth surfaces that it is designed
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with CAD software. In some cases we have to replace
smooth surfaces with appropriate planar faces that may
be manufactured in a more convenient way. By
substituting the meridian curve with the polyline, one
obtains a surface formed by conical or cylindrical strips.
If the rotation is discretized it generates polyhedral
surface (discrete rotational surface). This surface can be
used as a suitable replacement for the original surface
whose basic elements can be developed in to the plane.

Doubly curved rotational surface is non-developable
surface and as such is unsuitable for coating its surface
with smooth straight stripes. In overcoming this specific
problem it is necessary to use the geodesic line of the
surface. Geodesic curves are the shortest line distances
between two points on the surface. Geodesic line is the
curve on the surface in which in each point the geodesic
curvature is zero.

1.1 Geometry of doubly curved anticlastic surfaces

The shape of the contours of surfaces can vary between
geometrically regular or irregular, polygonal or curved.
Form of the surface is related to the nature of its curves
and surfaces generation technique. Depending on the
sign of the Gaussian curvature that is defined by the
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the second main curvature at the specific point of the
surface, it is possible to carry out classification of
surfaces in the following manner:

Singly curved surfaces:
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when one of the radiuses is infinite
(ry=c0) (6)

which is why the Gaussian curvature is zero.
1. Doubly curved surfaces:
(a) Positive-synclastic (elliptic surfaces):
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where the centers of curvature of the two families of
curves are on the same side of the surfaces.

(b) Negative-anticlastic (hyperbolic surfaces):
1
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252 = VOL. 45, No 2, 2017

centers of curvature of one family of curves are located
on one side, and the second family of curves have
centers on the other side of surface.

Another important definition of the curve is the
average curvature given by:

Km=%(K1 +Ky) @®)

When the principal curvatures K1 and K2 are of
equal values but with different signs average curvature
is equal to zero, thus represents, a special case of
surface known as minimal surface.

J & Rotation
axis

Generatrix
(meridian)
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(circle)

Figure 1. : (a) Model of design artefact with generatrix
(meridian), parallel (circle) and rotation axis, (b) model with
net of meridians and parallels, (c) smooth 3D model

2. MATERIALS AND METHODES
2.1 Geometric analysis of the form of the surface

The paper is using the design artefact as a representative
of doubly curved surfaces. In this particular case of
doubly curved surface (design artefact) an analysis was
performed of its geometric shape and type of surface.
Researched doubly curved surface belongs to the type of
rotational surface with negative Gaussian curvature.
Parallels of the surface are circles of different radius
each, whose centers are located on the axis of the
surface. Geometric analysis showed that the meridians
of the surface are parts of the circle of regular torus
whose axis coincides with axis of the researched
surface.

Torus is generated by rotating a circle around an
arbitrary line. This straight line (rotational axis) has to
lie in the plane of the circle. The radius of the meridian
of the doubly curved surface is equal to meridian curve
radius of the torus. Thus, doubly curved surface is a part
of inner part of torus surface.

The main tangents at the point of doubly curved
rotational surface are mutually perpendicular tangents of
the meridian (curve) and parallel (circle). Two main
tangents form a tangential plane of the surface. The
main tangents at any point of the surfaces are normal to
each other. Normal surface passes through the point at
which intersect main tangent and normal to the
tangential plane. Normal is contained in the meridian
plane and intersects the axis of the surface. The
intersection point of the surface normal and the
rotational axis is the center of a sphere that contains the
surface point. The sphere and the rotational surface are
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tangent along the parallel circle. The main curves at a
point of doubly curved surfaces are located in planes of
normal cross section and are determined by the main
tangents and the normal of the observed point.

(b)

Figure 2. : (a) Design artefact as part of torus surface, (b)
3D model of design artefact as part of torus surface

The radius of one main curvature at the point of the
surface is equal to curvature radius of meridian of the
surface at the same point. The radius of other main
curvature of the surface is equal to the distance from the
surface point to the point of intersection of normal and
the axis of the surface (from Meusnier theorem (1776):
Center of the parallel’s circle through tangent at the
point of the circle must be the orthogonal projection of
the center of curvature of normal cross-section through
the same parallel’s tangent).

Geodesic and geodesic strip models were produced
in software Rhinocores and its plugin Grasshopper. The
software is using generative algorithms, and a graphical
algorithm editor tightly integrated with Rhino’s 3-D
modeling tools. The procces of creating geodesic on
doubly curved rotational surface is illustrated in Fig. 4.

3. RESULTS AND DISCUSSION
a. Paper strip models

Because developable surfaces have a number of
properties that are used in architecture and design, we
can reflect on the approximation of non-developable
surfaces by conjoining strips of developable surfaces. A
number of curves may be set on a specific surface that
can be conjoined by developable surfaces [6]. This
procces often results in model whose surface is not
smooth enough. Therefore, in procces of forming better
detailed model, several curves can be used on surfaces
which are close to (or coincide) with the main surface
curves.

The possibility to create a surface which is not
smooth enough is reduced, because of the position of
the strips that needs to be approximately orthogonal to
its edge curves, where the strips approximate tangential
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developable surface [4]. A special case of surface at
which this becomes evident is rotational surface. Within
rotational surface main curves are its circle curves and
meridian curves. Strips limited with circles lie on
rotational cones and strips with limited with meridian
curves lie on cylindrical surfaces.

b. Cylindrical strip models

Panels shaped as general cylinders, developable surfaces
where all rulings are parallel are used in product design
where a smooth surface can be approximated by a cylin—
drical model. Optimization for cylindrical models is not
difficult, since maintaining parallelity of edges automa-—
tically implies developability [5]. Cylindirical strips are
obtained by cross-section of pencil of planes passing thro—
ugh the axis of rotational doubly curved surface. Resulting
strips are mutually equal and are parts of the same cylinder.
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Figure 3. : Semi-discrete strip surface models (a) conical
strip model (b) cylindrical strip model

c. Conical strip models

A quad mesh is conical if all vertices have an associated
right circular cone which is tangent to the faces adjacent
to that vertex. When the surface is cross-sectioned with
planes normal to the axis of the doubly curved rotational
surface obtained strips are parts of cones of different
diameters and different inclination of generatrices to a
horizontal plane.

d. Geodesic strip models

Meridians and parallels of a doubly curved rotational
surface are geodesic curves. Geodesic (i.e., shortest)
curves in surfaces have been employed in architecture
and design, to a varying degree of success.

A geodesic curve on a surface is a (locally) the
shortest path on surface between two points, and
therefore it is also a geodesic on the researched surface.
The geodesic curve is mapped to a straight line in the
planar unfolding of strip of paper glued on to surface. If
we glue a straight paper strip onto a physical surface
model it follows along a geodesic and therefore
geodesics may guide the alignment of paper strips. A
geodesic curve on a smooth surface has osculating
planes orthogonal to surface.
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Figure 4. : Geodesics on doubly curved surface (a) four
geodesic lines on design artefact surface (b) two different
geodesic strips on design artefact model (c) scheme of
elements in Grasshopper in production of geodesics

In the semi-discrete case, we therefore define that a
D-strip model is a geodesic model, if the osculating
planes of edge curves bisect adjacent strips. Such
bisector planes are reasonable planes ‘“orthogonal” to
the strip model (which is itself not smooth), if the strip
model converges to a smooth surface, those planes
converge to exactly orthogonal planes.

It seems feasible to cut them (planar paper strips) out
of long rectangular panels. Typically a freeform surface
is covered not by one, but by several geodesic D-strip
models. In this case the surface can be covered by one
geodesic D-strip model, such as conical strip model, as
well as cylindrical strip model, but also may be covered
with differente families of geodesic strips [3].

Each edge curve of a geodesic model has oppositely
equal geodesic curvatures with respect to adjacent
strips. Consequently, developing these strips yields
oppositely congruent boundaries. The properties of
strips imply that the development of the single strip is
approximately straight [7].

4. CONCLUSION

In this paper, the problem of designing planar paper
strip that corresponds to a part of smooth doubly curved
surface has been addressed.

The paper, in the first part, analyzes the basic
geometry of the design artefact - doubly curved
rotational surface, after wich deals with geometrical
analysis of the given form and its generation as a part of
the surface of the torus.

The introduced method of dealing with the problem
of first stage is based on usage of elements of the
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geodesic and Gaussian curvature. Conical and
cylindrical strip models are introduced as an alternative
method for generating an initial planar development of
doubly curved surfaces.

The paper suggests geodesic strip model as a posible
solution for developing, but also skinning (covering
surface with glued paper strips) doubly curved
rotational surface.
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JU3AJHUPAILE ITAITUPHUM TPAKAMA -
INPUMEHA HA IBOCTPYKO 3AKPUB/bEHUM
HOBPIIUMA

OBaj paxg ce ©OaBm wmoryhHomhy mpeBasuiIakema
npobiemMa pa3BHjama y paBaH JABOCTPYKO 3aKPUBJHEHUX
HOBPIIH y TIPOIIECY MH3ajHUPAha TIPOM3BO/IA.

VY mporecy nu3ajHHpama MpOM3BOJa KOPHCTE CE IBE
BPCTE€ TOBPINK, pPa3BOjHE TOBPIIM U HEPa3BOjHE
MOBpIIIK, KOje ce, Takole, Ha3WBajy jENHOCTPYKO H
JIBOCTPYKO 3aKPHUBJHEHHUM MOBPIINMA.

laycoBa KpHBHHA Pa3BOjHUX TOBPIIH y CBAKOj TauKH
jeAHaKa je HyJ W, JOK je KOA HEepa3BOjHHX MOBPIIH
laycoBa KpHBHHA pAT3IHYMTA OJf HYyJIE Ma y HEKUM
JenoBuMa THoBpiiM ['aycoBa KpuMBHHA MOXe naa Oyne
MO3WTHBHA WM HeraThBHA. [[OBpIIMHE MHOTHX H3ajH-
MPOM3BO/Ia CY YECTO OCMHUILBEHE Kao JBOCTPYKO
3aKpHUBJbEHE TOBPIIN KaKO OH 3aI0BOJBUIIC CTPYKTYpPHE
U €CTETCKE 3aXTeBE.
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[IpoGnem pasBujama y paBaH ABOCTPYKO 3aKpHBJHEHE
TPOJMMEH3HOHANHE TOBPIIM Yy JAW3ajHY [POH3BOIA
3aBHCH Of 00JIMKA MOBPLIMHE U MaTepujajia MpOU3BOa.
Crora, MeTOJ MNpOHANAKECHA HAYMHA 32 pPa3BUjamke
JIBOCTPYKO 3aKpHBJECHE MOBPIIM y paBaH ce pasiuKyje,
KaJa ce CIOoJballllha CWJIa KOPHCTH Yy CTBapamwy
TOBPIIMHCKOT o0paciia Kao INTO je TPUCYTHO KOX
noBpIny (MaTepujaia) kKoje je moryhe medopmucaru, ox
cllydyaja pa3BHjamba MOBPIIM KPEHPAHUX O ManHpHUX
Tpaxa.

[Mocmarpajyhu MOBPIINHY TPOAUMEH3UOHAIHOT
o0jeKkTa, NpBH KOpaKk y TMpPOLECYy IPOU3BOAKE je
pa3BUjame AM3ajHUPAHOT MPOW3BOJAA y PaBaH Kako Ou
npou3Bohay Morao ga OApEAd HE CaMO HHHLUjaTHH
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o0nuk 00jekTa, Beh © Ja pAacmojelid Hampes3ame
norpebHo 3a (Qopmupame O0MMKa 3aBHCHO O
Marepujana.

VY pagy ce aHamM3Mpa M palHOHAIU3Yje IBOCTPYKO
3aKpUBJbEHA IIOBPII JaTtor OoONHKa KopuinhemeM
NaMUpHAX Tpaka 3allelUbCHUX Ha IOBPIUMHY IW3ajH-
npou3Bona.  Pesynratm  mcTpaxyjy — MoryhHOCTH
MOCTH3amha MPUOIIKHO TJAaTKe IMOBPIIMHE U pasBoja
MoOZieJla 3a TeHepHcame HENMPEKUJHE KpPUBE MOBPIIH
cacTaBJbeHE OJ TAMUPHHUX Tpaka, Kao M Kpeuparba
QITEPHATUBHUX pellekha YNOTPEOJbHMBUX Yy JOMEHY
caBpeMEHOI JM3ajHa TMpou3Boja. Pan wmiycrpyje
MoryhHocT  Kopummhewma pas3IM4uMTHX — BapHjanuja
MIPEJIOKEHOT U3ajHa.
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