GraFar - Repository of the Faculty of Civil Engineering
Faculty of Civil Engineering of the University of Belgrade
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   GraFar
  • GraFar
  • Катедра за техничку механику и теорију конструкција
  • View Item
  •   GraFar
  • GraFar
  • Катедра за техничку механику и теорију конструкција
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Beam theory in spline parametric cooridinate. Part I

Teorija štapa u spline parametarskoj koordinati – deo I

Thumbnail
2014
1254.pdf (2.239Mb)
Authors
Radenković, Gligor
Conference object (Published version)
Metadata
Show full item record
Abstract
For defining geometry and displacement of arbitrary curved beam in Euclidean E3 space, using simple and rational basis spline, Bernoulli-Euler beam finite element is defined. Because geometry of line structures is exactly presented with rational basis spline and wanted continuity at the common points between adjacent segments is achieved (C>1), the generalized coordinates for izogeometric finite element are only displacements of control points. The stiffness matrix and equivalent control forces of isogeometric Bernoulli-Euler beam elements are defined under assumption that spline parametric coordinate (beam axis) and principal moments of inertia of cross section have convective character.
Source:
Međunarodna konferencija Savremena dostignuća u građevinarstvu 25, 2014, 30, 397-403
Publisher:
  • Građevinski fakultet, Subotica
Note:
  • Zbornik radova Građevinskog fakulteta

DOI: 10.14415/konferencijaGFS2014.054

[ Google Scholar ]
URI
https://grafar.grf.bg.ac.rs/handle/123456789/1256
Collections
  • Катедра за техничку механику и теорију конструкција
Institution/Community
GraFar
TY  - CONF
AU  - Radenković, Gligor
PY  - 2014
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/1256
AB  - For defining geometry and displacement of arbitrary curved beam in Euclidean E3 space, using simple and rational basis spline, Bernoulli-Euler beam finite element is defined. Because geometry of line structures is exactly presented with rational basis spline and wanted continuity at the common points between adjacent segments is achieved (C>1), the generalized coordinates for izogeometric finite element are only displacements of control points. The stiffness matrix and equivalent control forces of isogeometric Bernoulli-Euler beam elements are defined under assumption that spline parametric coordinate (beam axis) and principal moments of inertia of cross section have convective character.
PB  - Građevinski fakultet, Subotica
C3  - Međunarodna konferencija Savremena dostignuća u građevinarstvu 25
T1  - Beam theory in spline parametric cooridinate. Part I
T1  - Teorija štapa u spline parametarskoj koordinati – deo I
EP  - 403
SP  - 397
VL  - 30
DO  - 10.14415/konferencijaGFS2014.054
ER  - 
@conference{
author = "Radenković, Gligor",
year = "2014",
abstract = "For defining geometry and displacement of arbitrary curved beam in Euclidean E3 space, using simple and rational basis spline, Bernoulli-Euler beam finite element is defined. Because geometry of line structures is exactly presented with rational basis spline and wanted continuity at the common points between adjacent segments is achieved (C>1), the generalized coordinates for izogeometric finite element are only displacements of control points. The stiffness matrix and equivalent control forces of isogeometric Bernoulli-Euler beam elements are defined under assumption that spline parametric coordinate (beam axis) and principal moments of inertia of cross section have convective character.",
publisher = "Građevinski fakultet, Subotica",
journal = "Međunarodna konferencija Savremena dostignuća u građevinarstvu 25",
title = "Beam theory in spline parametric cooridinate. Part I, Teorija štapa u spline parametarskoj koordinati – deo I",
pages = "403-397",
volume = "30",
doi = "10.14415/konferencijaGFS2014.054"
}
Radenković, G.. (2014). Beam theory in spline parametric cooridinate. Part I. in Međunarodna konferencija Savremena dostignuća u građevinarstvu 25
Građevinski fakultet, Subotica., 30, 397-403.
https://doi.org/10.14415/konferencijaGFS2014.054
Radenković G. Beam theory in spline parametric cooridinate. Part I. in Međunarodna konferencija Savremena dostignuća u građevinarstvu 25. 2014;30:397-403.
doi:10.14415/konferencijaGFS2014.054 .
Radenković, Gligor, "Beam theory in spline parametric cooridinate. Part I" in Međunarodna konferencija Savremena dostignuća u građevinarstvu 25, 30 (2014):397-403,
https://doi.org/10.14415/konferencijaGFS2014.054 . .

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB