Show simple item record

Teorija štapa u spline parametarskoj koordinati – deo I

dc.creatorRadenković, Gligor
dc.date.accessioned2019-04-30T13:21:36Z
dc.date.available2019-04-30T13:21:36Z
dc.date.issued2014
dc.identifier.urihttp://grafar.grf.bg.ac.rs/handle/123456789/1256
dc.description.abstractFor defining geometry and displacement of arbitrary curved beam in Euclidean E3 space, using simple and rational basis spline, Bernoulli-Euler beam finite element is defined. Because geometry of line structures is exactly presented with rational basis spline and wanted continuity at the common points between adjacent segments is achieved (C>1), the generalized coordinates for izogeometric finite element are only displacements of control points. The stiffness matrix and equivalent control forces of isogeometric Bernoulli-Euler beam elements are defined under assumption that spline parametric coordinate (beam axis) and principal moments of inertia of cross section have convective character.en
dc.publisherGrađevinski fakultet, Subotica
dc.rightsopenAccess
dc.sourceMeđunarodna konferencija Savremena dostignuća u građevinarstvu 25en
dc.titleBeam theory in spline parametric cooridinate. Part Ien
dc.titleTeorija štapa u spline parametarskoj koordinati – deo Isr
dc.typeconferenceObject
dc.rights.licenseBY-SA
dc.citation.epage403
dc.citation.other30: 397-403
dc.citation.spage397
dc.citation.volume30
dc.description.otherZbornik radova Građevinskog fakultetaen
dc.identifier.doi10.14415/konferencijaGFS2014.054
dc.identifier.fulltexthttp://grafar.grf.bg.ac.rs//bitstream/id/3433/1254.pdf
dc.identifier.rcubconv_4388
dc.type.versionpublishedVersion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record