Show simple item record

Konačni element višeslojne laminatne ploče

dc.creatorVuksanović, Đorđe
dc.creatorĆetković, Marina
dc.date.accessioned2020-04-05T16:55:51Z
dc.date.available2020-04-05T16:55:51Z
dc.date.issued2009
dc.identifier.isbn978-86-7518-074-6
dc.identifier.urihttps://grafar.grf.bg.ac.rs/handle/123456789/1873
dc.description.abstractUnder the manufacturing and service conditions, laminated composites are exposed to various damage modes, on the local or ply level. As 2D plate models are capable only to determine global behaviour of laminated composites, new familly of theories based on 3D kinematics is formulated. Wishing to develop model that will be computationally more efficient than conventional 3D elasticity model, and to include specific anizotropic plate costitution, Reddy formulated Generalized Laminated Plate Theory (GLPT). Within the mentioned theory, displacement field is defined at ply level, in the form which allow independent in plane and through the thickness interpolation. This seems to be the most significant in finite element formulation, to be presented in this paper. Namely, the in-plane 2D mesh and the transverse 1D mesh can be refined independently, without having to reconstruct a 3D finite element mesh. Basic element equations are derived using displacement-based finite element formulation, in the case of statically loaded generally laminated plate. The obtained results have shown excellent agreement with closed form solution of GLPT.en
dc.description.abstractU uslovima proizvodnje i eksploatacije kompozitni materijali su izloženi različitim oblicima oštećenja do kojih dolazi na lokalnom nivou, odnosno na nivou sloja. Kako su 2D modeli ploča u stanju da pruže samo odgovor na globalno ponašanje kompozitnih materijala, formulisana je nova grupa teorija zasnovana na 3D kinematici deformacije poprečnog preseka. Sa željom da smanji veliki računski obim posla, koji to zahteva uobičajeni 3D model teorije elastičnosti, ali i da u obzir uzmu specifičnosti anizotropne građe same ploče, Reddy je formulisao Opštu laminatnu teoriju ploča. U okviru pomenute teorije, polje pomeranja se pretpostavlja za svaki od slojeva po debljini, u obliku koji dopušta nezavisnu interpolaciju u ravni i po debljini ploče. Ovo se čini naročito značajnim pri formulisanju konačnog elementa, koji će biti i prikazan u ovom radu. Naime, 2D mreža u ravni i 1D mreža po debljini mogu se nezavisno progušćavati bez potrebe za definisanjem 3D mreže konačnih elemenata. Osnovne jednačine konačnog elementa formulisane su po metodi deformacije, za slučaj statički opterećene ploče proizvoljne šeme laminacije. Dobijena rešenja pokazala su izuzetno slaganje sa tačnim rešenjem opšte laminatne teorije ploča.sr
dc.language.isosrsr
dc.publisherFaculty of Civil Engineering of the University of Belgrade─Chair for Technical Mechanics and Theory of structuressr
dc.publisherGrađevinski fakultet Univerziteta u Beogradu─Katedra za Tehničku mehaniku i teoriju konstrukcijasr
dc.relationContemporary problems of mechanics of deformable bodies/ IO 1749//RSsr
dc.rightsopenAccesssr
dc.sourceTheory of Structures─Monograph dedicated to the memory of late Academician Professor dr Milan Đurićsr
dc.subjectcomposite platessr
dc.subjectlayerwise plate theorysr
dc.subjectfinite elementsr
dc.subjectMATLAB programsr
dc.titleMultilayer Plate Finite Elementsr
dc.titleKonačni element višeslojne laminatne pločesr
dc.typebookPartsr
dc.rights.licenseARRsr
dc.citation.epage116
dc.citation.spage109
dc.identifier.fulltexthttps://grafar.grf.bg.ac.rs/bitstream/id/7197/Grafar_Cetkovic_1_M.pdf
dc.type.versionpublishedVersionsr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record