GraFar - Repository of the Faculty of Civil Engineering
Faculty of Civil Engineering of the University of Belgrade
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   GraFar
  • GraFar
  • Докторске дисертације / Doctoral dissertations
  • View Item
  •   GraFar
  • GraFar
  • Докторске дисертације / Doctoral dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting land use change with data-driven models

Predviđanje promena u korišćenju zemljišta primenom modela vođenih podacima (DATA-DRIVEN MODELS)

Thumbnail
2014
Disertacija4162.pdf (28.51Mb)
Samardzic_Mileva_referat_GF.pdf (676.7Kb)
Authors
Samardžić-Petrović, Mileva
Contributors
Bajat, Branislav
Kovačević, Miloš
Cvijetinović, Željko
Dragićević, Suzana
Đorđević, Dejan
Doctoral thesis
Metadata
Show full item record
Abstract
One of the main tasks of data-driven modelling methods is to induce arepresentative model of underlying spatial - temporal processes using past dataand data mining and machine learning approach. As relatively new methods,known to be capable of solving complex nonlinear problems, data-driven methodsare insufficiently researched in the field of land use. The main objective of thisdissertation is to develop a methodology for predictive urban land use changemodels using data-driven approach together with evaluation of the performance ofdifferent data-driven methods, which in the stage of finding patterns of land usechanges use three different machine learning techniques: Decision Trees, NeuralNetworks and Support Vector Machines. The proposed methodology of data-drivenmethods was presented and special attention was paid to different datarepresentation, data sampling and the selection of attributes by four methods (χ2,Info Gain, Gain Ratio and Correlation-based Feature Subset) that best des...cribe theprocess of land use change. Additionally, a sensitivity analysis of the SupportVector Machines -based models was performed with regards to attribute selectionand parameter changes. Development and evaluation of the methodology wasperformed using data on three Belgrade municipalities (Zemun, New Belgrade andSurčin), which are represented as 10×10 m grid cells in four different moments intime (2001, 2003, 2007 and 2010).The obtained results indicate that the proposed data-driven methodology providespredictive models which could be successfully used for creation of possiblescenarios of urban land use changes in the future. All three examined machinelearning techniques are suitable for modeling land use change. Accuracy andperformance of models can be improved using proposed balanced data sampling,including the information about neighbourhood and history in datarepresentations and relevant attribute selections. Additionally, using selectedsubset of attributes resulted in a simple model and with less possibility to beoverfitted with higher values of Support Vector Machines parameters.

Један од главних задатака моделирања метода вођених подацима (Data-driven methods) је проналажење репрезентативног модела испитивног просторно временског процеса, применом података из прошлости и Data Mining и Machine Learning приступа...
Keywords:
data-driven modeling / модели вођени подацима (data-driven methods) / data mining / machine learning / spatial-temporalmodeling / land use changes / Geographic Information Systems / машинско учење / просторно-временско моделирање / промена коришћења земљишта / географски информациони системи
Source:
Универзитет у Београду, 2014
Publisher:
  • Универзитет у Београду, Грађевински факултет
Funding / projects:
  • The role and implementation of the national spatial plan and regional development documents in renewal of strategic research, thinking and governance in Serbia (RS-47014)
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_6136
URI
http://eteze.bg.ac.rs/application/showtheses?thesesId=3529
https://fedorabg.bg.ac.rs/fedora/get/o:12234/bdef:Content/download
http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=46210831
http://nardus.mpn.gov.rs/123456789/6136
https://grafar.grf.bg.ac.rs/handle/123456789/1985
Collections
  • Докторске дисертације / Doctoral dissertations
  • Катедра за геодезију и геоинформатику
  • Radovi istraživača / Researcher's publications
Institution/Community
GraFar
TY  - THES
AU  - Samardžić-Petrović, Mileva
PY  - 2014
UR  - http://eteze.bg.ac.rs/application/showtheses?thesesId=3529
UR  - https://fedorabg.bg.ac.rs/fedora/get/o:12234/bdef:Content/download
UR  - http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=46210831
UR  - http://nardus.mpn.gov.rs/123456789/6136
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/1985
AB  - One of the main tasks of data-driven modelling methods is to induce arepresentative model of underlying spatial - temporal processes using past dataand data mining and machine learning approach. As relatively new methods,known to be capable of solving complex nonlinear problems, data-driven methodsare insufficiently researched in the field of land use. The main objective of thisdissertation is to develop a methodology for predictive urban land use changemodels using data-driven approach together with evaluation of the performance ofdifferent data-driven methods, which in the stage of finding patterns of land usechanges use three different machine learning techniques: Decision Trees, NeuralNetworks and Support Vector Machines. The proposed methodology of data-drivenmethods was presented and special attention was paid to different datarepresentation, data sampling and the selection of attributes by four methods (χ2,Info Gain, Gain Ratio and Correlation-based Feature Subset) that best describe theprocess of land use change. Additionally, a sensitivity analysis of the SupportVector Machines -based models was performed with regards to attribute selectionand parameter changes. Development and evaluation of the methodology wasperformed using data on three Belgrade municipalities (Zemun, New Belgrade andSurčin), which are represented as 10×10 m grid cells in four different moments intime (2001, 2003, 2007 and 2010).The obtained results indicate that the proposed data-driven methodology providespredictive models which could be successfully used for creation of possiblescenarios of urban land use changes in the future. All three examined machinelearning techniques are suitable for modeling land use change. Accuracy andperformance of models can be improved using proposed balanced data sampling,including the information about neighbourhood and history in datarepresentations and relevant attribute selections. Additionally, using selectedsubset of attributes resulted in a simple model and with less possibility to beoverfitted with higher values of Support Vector Machines parameters.
AB  - Један од главних задатака моделирања метода вођених подацима (Data-driven methods) је проналажење репрезентативног модела испитивног просторно временског процеса, применом података из прошлости и Data Mining и Machine Learning приступа...
PB  - Универзитет у Београду, Грађевински факултет
T2  - Универзитет у Београду
T1  - Predicting land use change with data-driven models
T1  - Predviđanje promena u korišćenju zemljišta primenom modela vođenih podacima (DATA-DRIVEN MODELS)
UR  - https://hdl.handle.net/21.15107/rcub_nardus_6136
ER  - 
@phdthesis{
author = "Samardžić-Petrović, Mileva",
year = "2014",
abstract = "One of the main tasks of data-driven modelling methods is to induce arepresentative model of underlying spatial - temporal processes using past dataand data mining and machine learning approach. As relatively new methods,known to be capable of solving complex nonlinear problems, data-driven methodsare insufficiently researched in the field of land use. The main objective of thisdissertation is to develop a methodology for predictive urban land use changemodels using data-driven approach together with evaluation of the performance ofdifferent data-driven methods, which in the stage of finding patterns of land usechanges use three different machine learning techniques: Decision Trees, NeuralNetworks and Support Vector Machines. The proposed methodology of data-drivenmethods was presented and special attention was paid to different datarepresentation, data sampling and the selection of attributes by four methods (χ2,Info Gain, Gain Ratio and Correlation-based Feature Subset) that best describe theprocess of land use change. Additionally, a sensitivity analysis of the SupportVector Machines -based models was performed with regards to attribute selectionand parameter changes. Development and evaluation of the methodology wasperformed using data on three Belgrade municipalities (Zemun, New Belgrade andSurčin), which are represented as 10×10 m grid cells in four different moments intime (2001, 2003, 2007 and 2010).The obtained results indicate that the proposed data-driven methodology providespredictive models which could be successfully used for creation of possiblescenarios of urban land use changes in the future. All three examined machinelearning techniques are suitable for modeling land use change. Accuracy andperformance of models can be improved using proposed balanced data sampling,including the information about neighbourhood and history in datarepresentations and relevant attribute selections. Additionally, using selectedsubset of attributes resulted in a simple model and with less possibility to beoverfitted with higher values of Support Vector Machines parameters., Један од главних задатака моделирања метода вођених подацима (Data-driven methods) је проналажење репрезентативног модела испитивног просторно временског процеса, применом података из прошлости и Data Mining и Machine Learning приступа...",
publisher = "Универзитет у Београду, Грађевински факултет",
journal = "Универзитет у Београду",
title = "Predicting land use change with data-driven models, Predviđanje promena u korišćenju zemljišta primenom modela vođenih podacima (DATA-DRIVEN MODELS)",
url = "https://hdl.handle.net/21.15107/rcub_nardus_6136"
}
Samardžić-Petrović, M.. (2014). Predicting land use change with data-driven models. in Универзитет у Београду
Универзитет у Београду, Грађевински факултет..
https://hdl.handle.net/21.15107/rcub_nardus_6136
Samardžić-Petrović M. Predicting land use change with data-driven models. in Универзитет у Београду. 2014;.
https://hdl.handle.net/21.15107/rcub_nardus_6136 .
Samardžić-Petrović, Mileva, "Predicting land use change with data-driven models" in Универзитет у Београду (2014),
https://hdl.handle.net/21.15107/rcub_nardus_6136 .

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB