Control theory-based update of water levels in 1D hydrodynamic models
Abstract
Model-driven forecasting used for flood risk assessment or river hydropower
systems management, can produce bad results due to many model uncertainties. False inflow
and lateral inflow data and/or poor estimation of initial conditions are some of the uncertainty
sources. To improve model-driven forecasting, data assimilation methods are used for updating
model (e.g., water levels) according to measurements. Widespread data assimilation
methods (EnKF, Particle Filter) often increase computational time, which creates difficulties
in everyday application of these methods in hydraulic modelling. This paper presents novel
approach based on indirect model update adding correction flows at observation locations.
This novel, tailor-made, assimilation approach uses proportional-integrative-derivative controller’s
theory as algorithm for correction flow calculation. Using indirect approach for
model update has justification in models where multiple inflows, including lateral inflows, a...re
bad estimated or even neglected. This novel approach is tested on 170km long section of
Danube model in Serbia, showing good performance.
Keywords:
PID control / 1D river / data assimilation / correction flowSource:
River Flow 2020, 2020Publisher:
- CRC Press/Balkema