GraFar - Repository of the Faculty of Civil Engineering
Faculty of Civil Engineering of the University of Belgrade
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of cracks on concrete carbonation resistance

Thumbnail
2020
bitstream_8794.pdf (844.0Kb)
Authors
Carević, Vedran
Ignjatović, Ivan
Conference object (Published version)
Metadata
Show full item record
Abstract
In reinforced concrete (RC) structures carbonation induced corrosion is one of the biggest durability issue. There are many factors that affect carbonation process (CO2 concentration, relative humidity, temperature, curing conditions and concrete porosity). Probably, the most important factor that affects carbonation process is the appearance of cracks on RC structures. With relatively low concrete tensile strength, cracks are almost inevitable. According to the current state of the art, the cracks have not yet been considered as a parameter in carbonation depth prediction model which is used for defining the service life of concrete structures. The main objective of this research is to analyse the influence of cracks on concrete carbonation resistance using own experimental results and the application of available prediction models regarding carbonation depth. For that purpose, prismatic RC samples without cracks and with different crack width (0.05 mm, 0.10 mm, 0.15 mm, 0.20 mm and 0....30 mm) were made and subjected to accelerated carbonation. The accelerated carbonation tests were performed during 28 days at a CO2 concentration of 2%, relative humidity (RH) of 65±5% and a temperature of 20±2°C. The conducted analysis showed that even with low crack widths (0.05 mm) the maximum carbonation depth was significantly higher compared with the uncracked samples. In all cases, the cracks behaved as an additional exposed surface through which the CO2 molecules were diffused perpendicularly to the crack wall. The crack impact area was approximately the same regardless of the crack width. Further than 10 mm, the carbonation depths remained constant. Also, with decreasing the length at which the average value of the carbonation depth was calculated (averaging length), the mean carbonation depth increased. Finaly, the ratio between the calculated carbonation depths (according to fib-Model Code 2010) of cracked and uncracked samples was up to three times.

Keywords:
Service life / Accelerated test / Carbonation / Durability / Cracks
Source:
The 7th international conference "Civil engineering - science and practice", 2020
Publisher:
  • University of Montenegro Faculty of Civil Engineering
Projects:
  • Utilization of by-products and recycled waste materials in concrete composites in the scope of sustainable construction development in Serbia: investigation and environmental assessment of possible applications (RS-36017)

ISBN: 9788682707325

[ Google Scholar ]
URI
https://grafar.grf.bg.ac.rs/handle/123456789/2178
Collections
  • Radovi istraživača / Researcher's publications
Institution
GraFar

DSpace software copyright © 2002-2015  DuraSpace
About GraFar - Repository of the Faculty of Civil Engineering | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About GraFar - Repository of the Faculty of Civil Engineering | Send Feedback

OpenAIRERCUB