GraFar - Repozitorijum Građevinskog fakulteta
Građevinski fakultet Univerziteta u Beogradu
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled zapisa 
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • Pregled zapisa
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • Pregled zapisa
JavaScript is disabled for your browser. Some features of this site may not work without it.

Landslide susceptibility assessment with machine learning algorithms

Nema prikaza
Autori
Marjanović, Miloš
Bajat, Branislav
Kovačević, Miloš
Konferencijski prilog (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
Case study addresses NW slopes of Fruska Gora Mountain, Serbia. Landslide activity is quite notorious in this region, especially along the Danube's right river bank, and recently intensified seismicity coupled with atmospheric precipitation might be critical for triggering new landslide occurrences. Hence, it is not a moment too soon for serious landslide susceptibility assessment in this region. State-of-the-art approaches had been taken into consideration, cutting down to the Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) algorithms, trained upon expert based model of landslide susceptibility (a multi-criteria analysis). The latter involved Analytical Hierarchy Process (AHP) for weighting influences of different input parameters. These included elevation, slope angle, aspect, distance from flows, vegetation cover, lithology, and rainfall, to represent the natural factors of the slope stability. Processed in a GIS environment (as discrete or float raster layers) trough AHP..., those parameters yielded susceptibility pattern, classified by the entropy model into four classes. Subsequently the susceptibility pattern has been featured as training set in SVM and k-NN algorithms. Detailed fitting involved several cases, among which SVM with Gaussian kernel over geo-dataset (coordinates and input parameters) reached the highest accuracy (88%) outperforming other considered cases by far.

Ključne reči:
AHP / k-NN / Landslide susceptibility / SVM
Izvor:
2009 International Conference On Intelligent Networking and Collaborative Systems (Incos 2009), 2009, 273-

DOI: 10.1109/INCOS.2009.25

WoS: 000289914800048

Scopus: 2-s2.0-77649277889
[ Google Scholar ]
URI
https://grafar.grf.bg.ac.rs/handle/123456789/233
Kolekcije
  • Radovi istraživača / Researcher's publications
  • Катедра за грађевинску геотехнику
  • Катедра за геодезију и геоинформатику
Institucija/grupa
GraFar

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu GraFar | Pošaljite zapažanja

OpenAIRERCUB
 

 

Kompletan repozitorijumGrupeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu GraFar | Pošaljite zapažanja

OpenAIRERCUB