GraFar - Repozitorijum Građevinskog fakulteta
Građevinski fakultet Univerziteta u Beogradu
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled zapisa 
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • Pregled zapisa
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • Pregled zapisa
JavaScript is disabled for your browser. Some features of this site may not work without it.

An application of Groebner bases to planarity of intersection of surfaces

Thumbnail
2009
232.pdf (646.6Kb)
Autori
Malešević, Branko
Obradović, Marija
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
In this paper we use Groebner bases theory in order to determine planarity of intersections of two algebraic surfaces in R3. We specially considered plane sections of certain type of conoid which has a cubic egg curve as one of the directrices. The paper investigates a possibility of conic plane sections of this type of conoid.
Ključne reči:
Groebner bases / egg curve based conoid / planar intersection
Izvor:
Filomat, 2009, 23, 2, 43-55
Izdavač:
  • Univerzitet u Nišu - Prirodno-matematički fakultet - Departmant za matematiku i informatiku, Niš
Finansiranje / projekti:
  • Analitičke i algebarske metode i primene u geometriji, topologiji i teoriji brojeva (RS-144020)

DOI: 10.2298/FIL0902043M

ISSN: 0354-5180

WoS: 000269888300005

[ Google Scholar ]
2
URI
https://grafar.grf.bg.ac.rs/handle/123456789/234
Kolekcije
  • Radovi istraživača / Researcher's publications
  • Катедра за математику, физику и нацртну геометрију
Institucija/grupa
GraFar
TY  - JOUR
AU  - Malešević, Branko
AU  - Obradović, Marija
PY  - 2009
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/234
AB  - In this paper we use Groebner bases theory in order to determine planarity of intersections of two algebraic surfaces in R3. We specially considered plane sections of certain type of conoid which has a cubic egg curve as one of the directrices. The paper investigates a possibility of conic plane sections of this type of conoid.
PB  - Univerzitet u Nišu - Prirodno-matematički fakultet - Departmant za matematiku i informatiku, Niš
T2  - Filomat
T1  - An application of Groebner bases to planarity of intersection of surfaces
EP  - 55
IS  - 2
SP  - 43
VL  - 23
DO  - 10.2298/FIL0902043M
ER  - 
@article{
author = "Malešević, Branko and Obradović, Marija",
year = "2009",
abstract = "In this paper we use Groebner bases theory in order to determine planarity of intersections of two algebraic surfaces in R3. We specially considered plane sections of certain type of conoid which has a cubic egg curve as one of the directrices. The paper investigates a possibility of conic plane sections of this type of conoid.",
publisher = "Univerzitet u Nišu - Prirodno-matematički fakultet - Departmant za matematiku i informatiku, Niš",
journal = "Filomat",
title = "An application of Groebner bases to planarity of intersection of surfaces",
pages = "55-43",
number = "2",
volume = "23",
doi = "10.2298/FIL0902043M"
}
Malešević, B.,& Obradović, M.. (2009). An application of Groebner bases to planarity of intersection of surfaces. in Filomat
Univerzitet u Nišu - Prirodno-matematički fakultet - Departmant za matematiku i informatiku, Niš., 23(2), 43-55.
https://doi.org/10.2298/FIL0902043M
Malešević B, Obradović M. An application of Groebner bases to planarity of intersection of surfaces. in Filomat. 2009;23(2):43-55.
doi:10.2298/FIL0902043M .
Malešević, Branko, Obradović, Marija, "An application of Groebner bases to planarity of intersection of surfaces" in Filomat, 23, no. 2 (2009):43-55,
https://doi.org/10.2298/FIL0902043M . .

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu GraFar | Pošaljite zapažanja

OpenAIRERCUB
 

 

Kompletan repozitorijumGrupeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu GraFar | Pošaljite zapažanja

OpenAIRERCUB