GraFar - Repository of the Faculty of Civil Engineering
Faculty of Civil Engineering of the University of Belgrade
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Primena mašinskog učenja za procenu cena i količina radova pri izgradnji stambenih i stambeno-poslovnih objekata

Thumbnail
2021
bitstream_10146.pdf (391.6Kb)
Authors
Simić, Nevena
Devedžić, Aleksandar
Ivanović, Marija
Petronijević, Predrag
Article (Published version)
Metadata
Show full item record
Abstract
Ovaj rad se bavi problemom procena potrebnih količina radova, kao i koštanja izgradnje stambenih i stambeno-poslovnih objekata korišćenjem algoritama mašinskog učenja. Osnovni cilj je analiza mogućnosti primene mašinskog učenja za razvoj modela koji će za kratko vreme pružiti dovoljno preciznu preliminarnu procenu potrebnih količina i cena glavnih radova na osnovu malog broja poznatih parametara. Istraživanje je sprovedeno na osnovu podataka o realizovanim projektima izgradnje višeporodičnih stambenih i stambeno-poslovnih objekata koji su izgrađeni u periodu od 2012. do 2020. godine na teritoriji Republike Srbije. U radu je predloženo nekoliko modela za procenu količina i cena pojedinih vrsta radova, kao i ukupne cene građevinskih radova. Rezultati analize su pokazali da se veća tačnost može postići predikcijom količina nego cena pojedinih radova. Razvijeni modeli mogu biti korisni u procesu planiranja troškova i količina potrebnog materijala u ranim fazama razvoja projekta.
This paper deals with the problem of estimating the required quantities of works, as well as the cost of construction of residential and residential-commercial buildings using machine learning algorithms.The main goal is to analyze the possibility of applying machine learning for the development of a model that will in a short time provide a sufficiently precise preliminary estimate of the required quantities and cost of major works based on a small number of known parameters.The research was conducted on the basis of data on realized projects of the construction of multi-family residential and residential-commercialbuildings that were constructed in the period from 2012 to 2020 on the territory of the Republic of Serbia.The paper proposes several models for estimating the quantities and cost of individual types of works, as well as the total price of construction works.The results of the analysis showed that greater accuracy can be achieved by predicting quantities than the cost of in...dividual works.The developed models can be useful in the process of planning the cost and quantities of required material in the early stages of project development.

Keywords:
procena troškova / procena količina / mašinsko učenje / veštačke neuronske mreže / cost estimation / quantities estimation / machine learning / artificial neural networks
Source:
Izgradnja, 2021, 124-132, 5-8
Publisher:
  • Udruženje inženjera građevinarstva, geotehnike, arhitekture i urbanista "Izgradnja"
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200092 (University of Belgrade, Faculty of Civil Engineering) (RS-200092)

ISSN: 0350-5421

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_grafar_2620
URI
https://grafar.grf.bg.ac.rs/handle/123456789/2620
Collections
  • Radovi istraživača / Researcher's publications
  • Катедра за управљање пројектима у грађевинарству
Institution/Community
GraFar
TY  - JOUR
AU  - Simić, Nevena
AU  - Devedžić, Aleksandar
AU  - Ivanović, Marija
AU  - Petronijević, Predrag
PY  - 2021
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2620
AB  - Ovaj rad se bavi problemom procena potrebnih količina radova, kao i koštanja izgradnje stambenih i stambeno-poslovnih objekata korišćenjem algoritama mašinskog učenja. Osnovni cilj je analiza mogućnosti primene mašinskog učenja za razvoj modela koji će za kratko vreme pružiti dovoljno preciznu preliminarnu procenu potrebnih količina i cena glavnih radova na osnovu malog broja poznatih parametara. Istraživanje je sprovedeno na osnovu podataka o realizovanim projektima izgradnje višeporodičnih stambenih i stambeno-poslovnih objekata koji su izgrađeni u periodu od 2012. do 2020. godine na teritoriji Republike Srbije. U radu je predloženo nekoliko modela za procenu količina i cena pojedinih vrsta radova, kao i ukupne cene građevinskih radova. Rezultati analize su pokazali da se veća tačnost može postići predikcijom količina nego cena pojedinih radova. Razvijeni modeli mogu biti korisni u procesu planiranja troškova i količina potrebnog materijala u ranim fazama razvoja projekta.
AB  - This paper deals with the problem of estimating the required quantities of works, as well as the cost of construction of residential and residential-commercial buildings using machine learning algorithms.The main goal is to analyze the possibility of applying machine learning for the development of a model that will in a short time provide a sufficiently precise preliminary estimate of the required quantities and cost of major works based on a small number of known parameters.The research was conducted on the basis of data on realized projects of the construction of multi-family residential and residential-commercialbuildings that were constructed in the period from 2012 to 2020 on the territory of the Republic of Serbia.The paper proposes several models for estimating the quantities and cost of individual types of works, as well as the total price of construction works.The results of the analysis showed that greater accuracy can be achieved by predicting quantities than the cost of individual works.The developed models can be useful in the process of planning the cost and quantities of required material in the early stages of project development.
PB  - Udruženje inženjera građevinarstva, geotehnike, arhitekture i urbanista "Izgradnja"
T2  - Izgradnja
T1  - Primena mašinskog učenja za procenu cena i količina radova pri izgradnji stambenih i stambeno-poslovnih objekata
IS  - 5-8
VL  - 124-132
UR  - https://hdl.handle.net/21.15107/rcub_grafar_2620
ER  - 
@article{
author = "Simić, Nevena and Devedžić, Aleksandar and Ivanović, Marija and Petronijević, Predrag",
year = "2021",
abstract = "Ovaj rad se bavi problemom procena potrebnih količina radova, kao i koštanja izgradnje stambenih i stambeno-poslovnih objekata korišćenjem algoritama mašinskog učenja. Osnovni cilj je analiza mogućnosti primene mašinskog učenja za razvoj modela koji će za kratko vreme pružiti dovoljno preciznu preliminarnu procenu potrebnih količina i cena glavnih radova na osnovu malog broja poznatih parametara. Istraživanje je sprovedeno na osnovu podataka o realizovanim projektima izgradnje višeporodičnih stambenih i stambeno-poslovnih objekata koji su izgrađeni u periodu od 2012. do 2020. godine na teritoriji Republike Srbije. U radu je predloženo nekoliko modela za procenu količina i cena pojedinih vrsta radova, kao i ukupne cene građevinskih radova. Rezultati analize su pokazali da se veća tačnost može postići predikcijom količina nego cena pojedinih radova. Razvijeni modeli mogu biti korisni u procesu planiranja troškova i količina potrebnog materijala u ranim fazama razvoja projekta., This paper deals with the problem of estimating the required quantities of works, as well as the cost of construction of residential and residential-commercial buildings using machine learning algorithms.The main goal is to analyze the possibility of applying machine learning for the development of a model that will in a short time provide a sufficiently precise preliminary estimate of the required quantities and cost of major works based on a small number of known parameters.The research was conducted on the basis of data on realized projects of the construction of multi-family residential and residential-commercialbuildings that were constructed in the period from 2012 to 2020 on the territory of the Republic of Serbia.The paper proposes several models for estimating the quantities and cost of individual types of works, as well as the total price of construction works.The results of the analysis showed that greater accuracy can be achieved by predicting quantities than the cost of individual works.The developed models can be useful in the process of planning the cost and quantities of required material in the early stages of project development.",
publisher = "Udruženje inženjera građevinarstva, geotehnike, arhitekture i urbanista "Izgradnja"",
journal = "Izgradnja",
title = "Primena mašinskog učenja za procenu cena i količina radova pri izgradnji stambenih i stambeno-poslovnih objekata",
number = "5-8",
volume = "124-132",
url = "https://hdl.handle.net/21.15107/rcub_grafar_2620"
}
Simić, N., Devedžić, A., Ivanović, M.,& Petronijević, P.. (2021). Primena mašinskog učenja za procenu cena i količina radova pri izgradnji stambenih i stambeno-poslovnih objekata. in Izgradnja
Udruženje inženjera građevinarstva, geotehnike, arhitekture i urbanista "Izgradnja"., 124-132(5-8).
https://hdl.handle.net/21.15107/rcub_grafar_2620
Simić N, Devedžić A, Ivanović M, Petronijević P. Primena mašinskog učenja za procenu cena i količina radova pri izgradnji stambenih i stambeno-poslovnih objekata. in Izgradnja. 2021;124-132(5-8).
https://hdl.handle.net/21.15107/rcub_grafar_2620 .
Simić, Nevena, Devedžić, Aleksandar, Ivanović, Marija, Petronijević, Predrag, "Primena mašinskog učenja za procenu cena i količina radova pri izgradnji stambenih i stambeno-poslovnih objekata" in Izgradnja, 124-132, no. 5-8 (2021),
https://hdl.handle.net/21.15107/rcub_grafar_2620 .

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB