Приказ основних података о документу

dc.creatorGovedarica, Ognjen
dc.creatorAškrabić, Marina
dc.creatorHadnađev-Kostić, Milica
dc.creatorVulić, Tatjana
dc.creatorLekić, Branislava
dc.creatorRajaković-Ognjanović, Vladana
dc.creatorZakić, Dimitrije
dc.date.accessioned2022-08-26T07:33:20Z
dc.date.available2022-08-26T07:33:20Z
dc.date.issued2022
dc.identifier.issn1996-1944
dc.identifier.urihttps://grafar.grf.bg.ac.rs/handle/123456789/2697
dc.description.abstractWaste and recycled materials have recently been used in the construction industry to comply with the principles of circular economy and sustainable development. The aim of this paper is to examine the potentials of solidified wastewater treatment sludge (SWWTS) as a supplementary cementitious material (SCM) in the production of lightweight pervious concrete pavers (LWPCP) suitable for pedestrian trails and rooftops (green) that comply with EU standards. Detailed characterization of SWWTS was performed, in order to understand its properties related to application as SCM, which led to the conclusion that it may be applied only as a filler, having 89.5% of Ca(OH)2. After thorough characterization, LWPCP samples were prepared and testing of physical and mechanical properties was conducted. The research showed that partial replacement of cement with SWWTS led to the decrease of all mechanical properties, ranging between 3.91 and 5.81 MPa for compressive strength and 0.97 to 1.23 MPa for flexural strength. However, all of the investigated mixtures showed a value higher than 3.5 MPa, which was defined as the lowest compressive strength in the range of pervious concrete properties. The addition of SWWTS led to a slight decrease in bulk density of the mixtures and an increase in water absorption. This could be explained by the reduction in hydration products that would fill in the micropores of the matrix, since SWWTS showed no pozzolanic reactivity. Pore sizes that prevail in the tested binder matrices are in accordance with the results measured on ordinary pervious concrete (the largest fraction of pores had a diameter between 0.02 and 0.2 μm). Low thermal conductivity nominates produced pavers as potential rooftop elements.sr
dc.language.isoensr
dc.publisherMDPIsr
dc.relationinfo:eu-repo/grantAgreement/ScienceFundRS/Ideje/7737365/RS//sr
dc.rightsopenAccesssr
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceMaterials 2022, The Special Issue Industrial Symbiosis and Development of New Materials or Products in Building Sectorsr
dc.subjectwastewater treatment sludgesr
dc.subjectsolidificationsr
dc.subjectpervious pavement concretesr
dc.subjectsupplementary cementitious materialssr
dc.subjectlightweight concretesr
dc.titleEvaluation of Solidified Wastewater Treatment Sludge as a Potential SCM in Pervious Concrete Pavementssr
dc.typearticlesr
dc.rights.licenseBY-NC-NDsr
dc.citation.issue14
dc.citation.rankM21~
dc.citation.volume15
dc.identifier.doihttps://doi.org/10.3390/ma15144919
dc.identifier.fulltexthttp://grafar.grf.bg.ac.rs/bitstream/id/10419/2207_M22_Materials_OGovedarica.pdf
dc.type.versionpublishedVersionsr


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу