ГраФар - Репозиторијум Грађевинског факултета
Грађевински факултет Универзитета у Београду
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ГраФар - репозиторијум Грађевинског факултета
  • GraFar
  • Radovi istraživača / Researcher's publications
  • Преглед записа
  •   ГраФар - репозиторијум Грађевинског факултета
  • GraFar
  • Radovi istraživača / Researcher's publications
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Concave Deltahedral Rings Based on the Geometry of Concave Antiprisms of the Second Sort

Само за регистроване кориснике
2022
Аутори
Obradović, Marija
Mišić, Slobodan
Остала ауторства
Viana, Vera
Matos, Helena Mena
Xavier, João Pedro
Поглавље у монографији (Објављена верзија)
,
Springer Nature Switzerland AG
Метаподаци
Приказ свих података о документу
Апстракт
Finding a possibility to create unique polyhedral surfaces with such specific geometric regularities as the congruence of faces, a high level of symmetry and the ability to describe an infinite polyhedron, served as a starting point for the explorations in this study. Such surfaces can be obtained through a single element, the equilateral triangle, given that they are deltahedral. Here, we will focus on deltahedral rings composed of fragments of the concave antiprisms of the second sort, type major, that we identify as CA-II-n.M. This paper shows not only that it is possible to close a full ring using fragments of selected CA-II-n.M, but also that we can predict the shape of the ring depending on the number of sides of the base-polygon {n} within the chosen CA-II-n.M. The number of solutions obtained for each CA-II-n.M’s representative depends on n and can vary from 1 to 5, out of 8 possible solutions.
Кључне речи:
Antiprism / Deltahedron / Concave / Ring
Извор:
Polyhedra and Beyond, 2022, 53-68
Издавач:
  • Birkhäuser, Cham, 2022
Финансирање / пројекти:
  • Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 200092 (Универзитет у Београду, Грађевински факултет) (RS-200092)
Напомена:
  • https://link.springer.com/chapter/10.1007/978-3-030-99116-6_4#citeas

DOI: 10.1007/978-3-030-99116-6_4

ISBN: Online: 978-3-030-99116-6

[ Google Scholar ]
URI
https://grafar.grf.bg.ac.rs/handle/123456789/2698
Колекције
  • Radovi istraživača / Researcher's publications
  • Катедра за математику, физику и нацртну геометрију
Институција/група
GraFar
TY  - CHAP
AU  - Obradović, Marija
AU  - Mišić, Slobodan
PY  - 2022
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2698
AB  - Finding a possibility to create unique polyhedral surfaces with such specific geometric regularities as the congruence of faces, a high level of symmetry and the ability to describe an infinite polyhedron, served as a starting point for the explorations in this study. Such surfaces can be obtained through a single element, the equilateral triangle, given that they are deltahedral. Here, we will focus on deltahedral rings composed of fragments of the concave antiprisms of the second sort, type major, that we identify as CA-II-n.M. This paper shows not only that it is possible to close a full ring using fragments of selected CA-II-n.M, but also that we can predict the shape of the ring depending on the number of sides of the base-polygon {n} within the chosen CA-II-n.M. The number of solutions obtained for each CA-II-n.M’s representative depends on n and can vary from 1 to 5, out of 8 possible solutions.
PB  - Birkhäuser, Cham, 2022
T2  - Polyhedra and Beyond
T1  - Concave Deltahedral Rings Based on the Geometry of Concave Antiprisms of the Second Sort
EP  - 68
SP  - 53
DO  - 10.1007/978-3-030-99116-6_4
ER  - 
@inbook{
author = "Obradović, Marija and Mišić, Slobodan",
year = "2022",
abstract = "Finding a possibility to create unique polyhedral surfaces with such specific geometric regularities as the congruence of faces, a high level of symmetry and the ability to describe an infinite polyhedron, served as a starting point for the explorations in this study. Such surfaces can be obtained through a single element, the equilateral triangle, given that they are deltahedral. Here, we will focus on deltahedral rings composed of fragments of the concave antiprisms of the second sort, type major, that we identify as CA-II-n.M. This paper shows not only that it is possible to close a full ring using fragments of selected CA-II-n.M, but also that we can predict the shape of the ring depending on the number of sides of the base-polygon {n} within the chosen CA-II-n.M. The number of solutions obtained for each CA-II-n.M’s representative depends on n and can vary from 1 to 5, out of 8 possible solutions.",
publisher = "Birkhäuser, Cham, 2022",
journal = "Polyhedra and Beyond",
booktitle = "Concave Deltahedral Rings Based on the Geometry of Concave Antiprisms of the Second Sort",
pages = "68-53",
doi = "10.1007/978-3-030-99116-6_4"
}
Obradović, M.,& Mišić, S.. (2022). Concave Deltahedral Rings Based on the Geometry of Concave Antiprisms of the Second Sort. in Polyhedra and Beyond
Birkhäuser, Cham, 2022., 53-68.
https://doi.org/10.1007/978-3-030-99116-6_4
Obradović M, Mišić S. Concave Deltahedral Rings Based on the Geometry of Concave Antiprisms of the Second Sort. in Polyhedra and Beyond. 2022;:53-68.
doi:10.1007/978-3-030-99116-6_4 .
Obradović, Marija, Mišić, Slobodan, "Concave Deltahedral Rings Based on the Geometry of Concave Antiprisms of the Second Sort" in Polyhedra and Beyond (2022):53-68,
https://doi.org/10.1007/978-3-030-99116-6_4 . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ГраФар | Пошаљите запажања

OpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ГраФар | Пошаљите запажања

OpenAIRERCUB