GraFar - Repository of the Faculty of Civil Engineering
Faculty of Civil Engineering of the University of Belgrade
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model za prognozu i procenu troškova izgradnje armirano-betonskih drumskih mostova

Model for Forecasting and Assessment of Construction Cost of Reinforced-Concrete Bridges

Thumbnail
2018
Disertacija.pdf (9.919Mb)
Authors
Kovačević, Miljan M.
Contributors
Ivanišević, Nenad
Ivković, Branislav
Knežević, Miloš
Doctoral thesis
Metadata
Show full item record
Abstract
U radu su predstavljene i analizirane najsavremenije tehnike mašinskog učenja koje se mogu primeniti kod procene troškova izgradnje armirano-betonskih drumskih mostova. Analizirana je primena veštačkih neuronskih mreža, ansambla regresionih stabala, modela zasnovanih na metodi potpornih vektora, Gausovih slučajnih procesa.Formirana baza podataka o troškovima izgradnje mostova zajedno sa njihovim projektnim karakteristikama predstavljala je osnovu za formiranje modela za procenu. Modeli su formirani na osnovu podataka za 181 armirano-betonski drumski most čija vrednost prevazilazi 100 miliona evra.Model zasnovan na metodi Gausovih procesa pokazao je najveću tačnost procene troškova izgradnje mostova. Istraživanje je ukazalo da primena ARD funkcija kovarijanse daje modele najveće tačnosti, a pored toga omogućava i sagledavanje značaja koje imaju pojedine ulazne promenljive na tačnost modela. Primenom modela sa ARD funkcijom kovarijanse formirani su i modeli za procenu utroška betona, vis...okovrednog i rebrastog čelika.Postignuta je tačnost modela kod procene ugovorenih troškova izgradnje izražena preko srednje apsolutne procentualne greške od 10,86%. Kod modela za procenu utroška ključnih materijala za izgradnju postignuta je tačnost modela čija je gornja granica 11,64% izražena preko srednje apsolutne procentualne greške.Sprovedeno istraživanje potvrđuje da je u ranim fazama razvoja projekta metodama baziranim na veštačkoj inteligenciji moguća brza i dovoljno precizna procena troškova izgradnje armirano-betonskih drumskih mostova i utroška ključnih materijala za njihovu gradnju.

Contemporary machine learning techniques for assessment of construction costs of reinforced-concrete bridges, including artificial neural networks, regression tree ensembles, support vector regression and Gaussian random processes, are proposed and analysed in this dissertation.The database of construction costs and project characteristics is created, that served as a basis for building the assessment model. Data for 181 reinforced-concrete bridges were used in the database with the total value of over 100 000 000 EUR.The model based on Gaussian processes has shown the best performance in forecasting the construction costs of bridges. The results have proved that using the Automatic Relevance Determination (ARD) covariance function leads to the best prediction model, and moreover, it enables the assessment of the influence of input variables on the model performance. Models for the assessment of costs of concrete, as well as ribbed steel, were analysed.The mean absolute percentage erro...r (MAPE) was used as the performance criterion. The best performing model gives MAPE equal to 10,86% for forecasting the contracted construction costs and MAPE equal to 11.64% for quantity estimation of the key construction materials.The research carried out in this dissertation confirms that the use of artificial intelligence based methods enables fast and accurate forecasting of construction costs of reinforced-concrete bridges, as well as the assessment of quantity estimation of the construction materials, even in early project phases.

Keywords:
Upravljanje projektima / Project Management / Cost Assesment / Artificial Inteligency / Machine Learning / Bridges / procena troškova / veštačka inteligencija / mašinsko učenje / mostovi
Source:
Универзитет у Београду, 28-09-2018
Publisher:
  • Универзитет у Београду, Грађевински факултет
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_10553
URI
http://eteze.bg.ac.rs/application/showtheses?thesesId=6415
https://nardus.mpn.gov.rs/handle/123456789/10553
https://fedorabg.bg.ac.rs/fedora/get/o:19116/bdef:Content/download
http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=513803666
https://grafar.grf.bg.ac.rs/handle/123456789/2750
Collections
  • Radovi istraživača / Researcher's publications
  • Докторске дисертације / Doctoral dissertations
Institution/Community
GraFar
TY  - THES
AU  - Kovačević, Miljan M.
PY  - 2018-09-28
UR  - http://eteze.bg.ac.rs/application/showtheses?thesesId=6415
UR  - https://nardus.mpn.gov.rs/handle/123456789/10553
UR  - https://fedorabg.bg.ac.rs/fedora/get/o:19116/bdef:Content/download
UR  - http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=513803666
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/2750
AB  - U radu su predstavljene i analizirane najsavremenije tehnike mašinskog učenja koje se mogu primeniti kod procene troškova izgradnje armirano-betonskih drumskih mostova. Analizirana je primena veštačkih neuronskih mreža, ansambla regresionih stabala, modela zasnovanih na metodi potpornih vektora, Gausovih slučajnih procesa.Formirana baza podataka o troškovima izgradnje mostova zajedno sa njihovim projektnim karakteristikama predstavljala je osnovu za formiranje modela za procenu. Modeli su formirani na osnovu podataka za 181 armirano-betonski drumski most čija vrednost prevazilazi 100 miliona evra.Model zasnovan na metodi Gausovih procesa pokazao je najveću tačnost procene troškova izgradnje mostova. Istraživanje je ukazalo da primena ARD funkcija kovarijanse daje modele najveće tačnosti, a pored toga omogućava i sagledavanje značaja koje imaju pojedine ulazne promenljive na tačnost modela. Primenom modela sa ARD funkcijom kovarijanse formirani su i modeli za procenu utroška betona, visokovrednog i rebrastog čelika.Postignuta je tačnost modela kod procene ugovorenih troškova izgradnje izražena preko srednje apsolutne procentualne greške od 10,86%. Kod modela za procenu utroška ključnih materijala za izgradnju postignuta je tačnost modela čija je gornja granica 11,64% izražena preko srednje apsolutne procentualne greške.Sprovedeno istraživanje potvrđuje da je u ranim fazama razvoja projekta metodama baziranim na veštačkoj inteligenciji moguća brza i dovoljno precizna procena troškova izgradnje armirano-betonskih drumskih mostova i utroška ključnih materijala za njihovu gradnju.
AB  - Contemporary machine learning techniques for assessment of construction costs of reinforced-concrete bridges, including artificial neural networks, regression tree ensembles, support vector regression and Gaussian random processes, are proposed and analysed in this dissertation.The database of construction costs and project characteristics is created, that served as a basis for building the assessment model. Data for 181 reinforced-concrete bridges were used in the database with the total value of over 100 000 000 EUR.The model based on Gaussian processes has shown the best performance in forecasting the construction costs of bridges. The results have proved that using the Automatic Relevance Determination (ARD) covariance function leads to the best prediction model, and moreover, it enables the assessment of the influence of input variables on the model performance. Models for the assessment of costs of concrete, as well as ribbed steel, were analysed.The mean absolute percentage error (MAPE) was used as the performance criterion. The best performing model gives MAPE equal to 10,86% for forecasting the contracted construction costs and MAPE equal to 11.64% for quantity estimation of the key construction materials.The research carried out in this dissertation confirms that the use of artificial intelligence based methods enables fast and accurate forecasting of construction costs of reinforced-concrete bridges, as well as the assessment of quantity estimation of the construction materials, even in early project phases.
PB  - Универзитет у Београду, Грађевински факултет
T2  - Универзитет у Београду
T1  - Model za prognozu i procenu troškova izgradnje armirano-betonskih drumskih mostova
UR  - https://hdl.handle.net/21.15107/rcub_nardus_10553
ER  - 
@phdthesis{
author = "Kovačević, Miljan M.",
year = "2018-09-28",
abstract = "U radu su predstavljene i analizirane najsavremenije tehnike mašinskog učenja koje se mogu primeniti kod procene troškova izgradnje armirano-betonskih drumskih mostova. Analizirana je primena veštačkih neuronskih mreža, ansambla regresionih stabala, modela zasnovanih na metodi potpornih vektora, Gausovih slučajnih procesa.Formirana baza podataka o troškovima izgradnje mostova zajedno sa njihovim projektnim karakteristikama predstavljala je osnovu za formiranje modela za procenu. Modeli su formirani na osnovu podataka za 181 armirano-betonski drumski most čija vrednost prevazilazi 100 miliona evra.Model zasnovan na metodi Gausovih procesa pokazao je najveću tačnost procene troškova izgradnje mostova. Istraživanje je ukazalo da primena ARD funkcija kovarijanse daje modele najveće tačnosti, a pored toga omogućava i sagledavanje značaja koje imaju pojedine ulazne promenljive na tačnost modela. Primenom modela sa ARD funkcijom kovarijanse formirani su i modeli za procenu utroška betona, visokovrednog i rebrastog čelika.Postignuta je tačnost modela kod procene ugovorenih troškova izgradnje izražena preko srednje apsolutne procentualne greške od 10,86%. Kod modela za procenu utroška ključnih materijala za izgradnju postignuta je tačnost modela čija je gornja granica 11,64% izražena preko srednje apsolutne procentualne greške.Sprovedeno istraživanje potvrđuje da je u ranim fazama razvoja projekta metodama baziranim na veštačkoj inteligenciji moguća brza i dovoljno precizna procena troškova izgradnje armirano-betonskih drumskih mostova i utroška ključnih materijala za njihovu gradnju., Contemporary machine learning techniques for assessment of construction costs of reinforced-concrete bridges, including artificial neural networks, regression tree ensembles, support vector regression and Gaussian random processes, are proposed and analysed in this dissertation.The database of construction costs and project characteristics is created, that served as a basis for building the assessment model. Data for 181 reinforced-concrete bridges were used in the database with the total value of over 100 000 000 EUR.The model based on Gaussian processes has shown the best performance in forecasting the construction costs of bridges. The results have proved that using the Automatic Relevance Determination (ARD) covariance function leads to the best prediction model, and moreover, it enables the assessment of the influence of input variables on the model performance. Models for the assessment of costs of concrete, as well as ribbed steel, were analysed.The mean absolute percentage error (MAPE) was used as the performance criterion. The best performing model gives MAPE equal to 10,86% for forecasting the contracted construction costs and MAPE equal to 11.64% for quantity estimation of the key construction materials.The research carried out in this dissertation confirms that the use of artificial intelligence based methods enables fast and accurate forecasting of construction costs of reinforced-concrete bridges, as well as the assessment of quantity estimation of the construction materials, even in early project phases.",
publisher = "Универзитет у Београду, Грађевински факултет",
journal = "Универзитет у Београду",
title = "Model za prognozu i procenu troškova izgradnje armirano-betonskih drumskih mostova",
url = "https://hdl.handle.net/21.15107/rcub_nardus_10553"
}
Kovačević, M. M.. (2018-09-28). Model za prognozu i procenu troškova izgradnje armirano-betonskih drumskih mostova. in Универзитет у Београду
Универзитет у Београду, Грађевински факултет..
https://hdl.handle.net/21.15107/rcub_nardus_10553
Kovačević MM. Model za prognozu i procenu troškova izgradnje armirano-betonskih drumskih mostova. in Универзитет у Београду. 2018;.
https://hdl.handle.net/21.15107/rcub_nardus_10553 .
Kovačević, Miljan M., "Model za prognozu i procenu troškova izgradnje armirano-betonskih drumskih mostova" in Универзитет у Београду (2018-09-28),
https://hdl.handle.net/21.15107/rcub_nardus_10553 .

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB