GraFar - Repository of the Faculty of Civil Engineering
Faculty of Civil Engineering of the University of Belgrade
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improved real-time data anomaly detection using context classification

Thumbnail
2011
361.pdf (1.061Mb)
Authors
Branisavljević, Nemanja
Kapelan, Zoran
Prodanović, Dušan
Article (Published version)
Metadata
Show full item record
Abstract
The number of automated measuring and reporting systems used in water distribution and sewer systems is dramatically increasing and, as a consequence, so is the volume of data acquired. Since real-time data is likely to contain a certain amount of anomalous values and data acquisition equipment is not perfect, it is essential to equip the SCADA (Supervisory Control and Data Acquisition) system with automatic procedures that can detect the related problems and assist the user in monitoring and managing the incoming data. A number of different anomaly detection techniques and methods exist and can be used with varying success. To improve the performance, these methods must be fine tuned according to crucial aspects of the process monitored and the contexts in which the data are classified. The aim of this paper is to explore if the data context classification and pre-processing techniques can be used to improve the anomaly detection methods, especially in fully automated systems. The met...hodology developed is tested on sets of real-life data, using different standard and experimental anomaly detection procedures including statistical, model-based and data-mining approaches. The results obtained clearly demonstrate the effectiveness of the suggested anomaly detection methodology.

Keywords:
anomaly detection / context-classification-based detection / data pre-processing / sewer data
Source:
Journal of Hydroinformatics, 2011, 13, 3, 307-323
Publisher:
  • IWA Publishing

DOI: 10.2166/hydro.2011.042

ISSN: 1464-7141

WoS: 000292538300002

Scopus: 2-s2.0-79959797644
[ Google Scholar ]
20
16
URI
http://grafar.grf.bg.ac.rs/handle/123456789/363
Collections
  • Radovi istraživača / Researcher's publications
  • Катедра за хидротехнику и водно-еколошко инжењерство
Institution
GraFar

DSpace software copyright © 2002-2015  DuraSpace
About GraFar - Repository of the Faculty of Civil Engineering | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About GraFar - Repository of the Faculty of Civil Engineering | Send Feedback

OpenAIRERCUB