GraFar - Repository of the Faculty of Civil Engineering
Faculty of Civil Engineering of the University of Belgrade
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the radius and the relation between the total graph of a commutative ring and its extensions

Thumbnail
2011
393.pdf (149.4Kb)
Authors
Pucanović, Zoran
Petrović, Zoran Z.
Article (Published version)
Metadata
Show full item record
Abstract
We discuss the determination of the radius of the total graph of a commutative ring R in the case when this graph is connected. Typical extensions such as polynomial rings, formal power series, idealization of the R-module M and relations between the total graph of the ring R and its extensions are also dealt with.
Keywords:
commutative rings / zero-divisors / total graph
Source:
Publications de l'Institut Mathematique, 2011, 89, 103, 1-9
Publisher:
  • Srpska akademija nauka i umetnosti SANU - Matematički institut, Beograd
Projects:
  • Analysis and algebra with applications (RS-174032)

DOI: 10.2298/PIM1103001P

ISSN: 0350-1302

WoS: 000306804800001

Scopus: 2-s2.0-84856207633
[ Google Scholar ]
8
9
URI
http://grafar.grf.bg.ac.rs/handle/123456789/395
Collections
  • Radovi istraživača / Researcher's publications
  • Катедра за математику, физику и нацртну геометрију
Institution
GraFar

DSpace software copyright © 2002-2015  DuraSpace
About GraFar - Repository of the Faculty of Civil Engineering | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About GraFar - Repository of the Faculty of Civil Engineering | Send Feedback

OpenAIRERCUB