GraFar - Repository of the Faculty of Civil Engineering
Faculty of Civil Engineering of the University of Belgrade
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Techniques for Modelling Short Term Land-Use Change

Thumbnail
2017
863.pdf (6.685Mb)
Authors
Samardžić-Petrović, Mileva
Kovačević, Miloš
Bajat, Branislav
Dragićević, Suzana
Article (Published version)
Metadata
Show full item record
Abstract
The representation of land use change (LUC) is often achieved by using data-driven methods that include machine learning (ML) techniques. The main objectives of this research study are to implement three ML techniques, Decision Trees (DT), Neural Networks (NN), and Support Vector Machines (SVM) for LUC modeling, in order to compare these three ML techniques and to find the appropriate data representation. The ML techniques are applied on the case study of LUC in three municipalities of the City of Belgrade, the Republic of Serbia, using historical geospatial data sets and considering nine land use classes. The ML models were built and assessed using two different time intervals. The information gain ranking technique and the recursive attribute elimination procedure were implemented to find the most informative attributes that were related to LUC in the study area. The results indicate that all three ML techniques can be used effectively for short-term forecasting of LUC, but the SVM a...chieved the highest agreement of predicted changes.

Keywords:
land use change / spatial modelling / machine learning / neural networks / Decision Trees / Support Vector Machines
Source:
Isprs International Journal of Geo-Information, 2017, 6, 12
Publisher:
  • MDPI AG
Funding / projects:
  • The role and implementation of the national spatial plan and regional development documents in renewal of strategic research, thinking and governance in Serbia (RS-47014)
  • Natural Sciences and Engineering Research Council (NSERC) of Canada

DOI: 10.3390/ijgi6120387

ISSN: 2220-9964

WoS: 000419217200009

Scopus: 2-s2.0-85044600950
[ Google Scholar ]
30
24
URI
https://grafar.grf.bg.ac.rs/handle/123456789/865
Collections
  • Radovi istraživača / Researcher's publications
  • Катедра за геодезију и геоинформатику
Institution/Community
GraFar
TY  - JOUR
AU  - Samardžić-Petrović, Mileva
AU  - Kovačević, Miloš
AU  - Bajat, Branislav
AU  - Dragićević, Suzana
PY  - 2017
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/865
AB  - The representation of land use change (LUC) is often achieved by using data-driven methods that include machine learning (ML) techniques. The main objectives of this research study are to implement three ML techniques, Decision Trees (DT), Neural Networks (NN), and Support Vector Machines (SVM) for LUC modeling, in order to compare these three ML techniques and to find the appropriate data representation. The ML techniques are applied on the case study of LUC in three municipalities of the City of Belgrade, the Republic of Serbia, using historical geospatial data sets and considering nine land use classes. The ML models were built and assessed using two different time intervals. The information gain ranking technique and the recursive attribute elimination procedure were implemented to find the most informative attributes that were related to LUC in the study area. The results indicate that all three ML techniques can be used effectively for short-term forecasting of LUC, but the SVM achieved the highest agreement of predicted changes.
PB  - MDPI AG
T2  - Isprs International Journal of Geo-Information
T1  - Machine Learning Techniques for Modelling Short Term Land-Use Change
IS  - 12
VL  - 6
DO  - 10.3390/ijgi6120387
ER  - 
@article{
author = "Samardžić-Petrović, Mileva and Kovačević, Miloš and Bajat, Branislav and Dragićević, Suzana",
year = "2017",
abstract = "The representation of land use change (LUC) is often achieved by using data-driven methods that include machine learning (ML) techniques. The main objectives of this research study are to implement three ML techniques, Decision Trees (DT), Neural Networks (NN), and Support Vector Machines (SVM) for LUC modeling, in order to compare these three ML techniques and to find the appropriate data representation. The ML techniques are applied on the case study of LUC in three municipalities of the City of Belgrade, the Republic of Serbia, using historical geospatial data sets and considering nine land use classes. The ML models were built and assessed using two different time intervals. The information gain ranking technique and the recursive attribute elimination procedure were implemented to find the most informative attributes that were related to LUC in the study area. The results indicate that all three ML techniques can be used effectively for short-term forecasting of LUC, but the SVM achieved the highest agreement of predicted changes.",
publisher = "MDPI AG",
journal = "Isprs International Journal of Geo-Information",
title = "Machine Learning Techniques for Modelling Short Term Land-Use Change",
number = "12",
volume = "6",
doi = "10.3390/ijgi6120387"
}
Samardžić-Petrović, M., Kovačević, M., Bajat, B.,& Dragićević, S.. (2017). Machine Learning Techniques for Modelling Short Term Land-Use Change. in Isprs International Journal of Geo-Information
MDPI AG., 6(12).
https://doi.org/10.3390/ijgi6120387
Samardžić-Petrović M, Kovačević M, Bajat B, Dragićević S. Machine Learning Techniques for Modelling Short Term Land-Use Change. in Isprs International Journal of Geo-Information. 2017;6(12).
doi:10.3390/ijgi6120387 .
Samardžić-Petrović, Mileva, Kovačević, Miloš, Bajat, Branislav, Dragićević, Suzana, "Machine Learning Techniques for Modelling Short Term Land-Use Change" in Isprs International Journal of Geo-Information, 6, no. 12 (2017),
https://doi.org/10.3390/ijgi6120387 . .

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB