GraFar - Repozitorijum Građevinskog fakulteta
Građevinski fakultet Univerziteta u Beogradu
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled zapisa 
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • Pregled zapisa
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • Pregled zapisa
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Techniques for Modelling Short Term Land-Use Change

Thumbnail
2017
863.pdf (6.685Mb)
Autori
Samardžić-Petrović, Mileva
Kovačević, Miloš
Bajat, Branislav
Dragićević, Suzana
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
The representation of land use change (LUC) is often achieved by using data-driven methods that include machine learning (ML) techniques. The main objectives of this research study are to implement three ML techniques, Decision Trees (DT), Neural Networks (NN), and Support Vector Machines (SVM) for LUC modeling, in order to compare these three ML techniques and to find the appropriate data representation. The ML techniques are applied on the case study of LUC in three municipalities of the City of Belgrade, the Republic of Serbia, using historical geospatial data sets and considering nine land use classes. The ML models were built and assessed using two different time intervals. The information gain ranking technique and the recursive attribute elimination procedure were implemented to find the most informative attributes that were related to LUC in the study area. The results indicate that all three ML techniques can be used effectively for short-term forecasting of LUC, but the SVM a...chieved the highest agreement of predicted changes.

Ključne reči:
land use change / spatial modelling / machine learning / neural networks / Decision Trees / Support Vector Machines
Izvor:
Isprs International Journal of Geo-Information, 2017, 6, 12
Izdavač:
  • MDPI AG
Finansiranje / projekti:
  • Uloga i implementacija državnog prostornog plana i regionalnih razvojnih dokumenata u obnovi strateškog istraživanja, mišljenja i upravljanja u Srbiji (RS-47014)
  • Natural Sciences and Engineering Research Council (NSERC) of Canada

DOI: 10.3390/ijgi6120387

ISSN: 2220-9964

WoS: 000419217200009

Scopus: 2-s2.0-85044600950
[ Google Scholar ]
URI
https://grafar.grf.bg.ac.rs/handle/123456789/865
Kolekcije
  • Radovi istraživača / Researcher's publications
  • Катедра за геодезију и геоинформатику
Institucija/grupa
GraFar

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu GraFar | Pošaljite zapažanja

OpenAIRERCUB
 

 

Kompletan repozitorijumGrupeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu GraFar | Pošaljite zapažanja

OpenAIRERCUB