GraFar - Repository of the Faculty of Civil Engineering
Faculty of Civil Engineering of the University of Belgrade
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse regression interaction models for spatial prediction of soil properties in 3D

Authorized Users Only
2018
Authors
Pejović, Milutin
Nikolić, Mladen
Heuvelink, Gerard B. M.
Hengl, Tomislav
Kilibarda, Milan
Bajat, Branislav
Article (Published version)
Metadata
Show full item record
Abstract
An approach for using lasso (Least Absolute Shrinkage and Selection Operator) regression in creating sparse 3D models of soil properties for spatial prediction at multiple depths is presented. Modeling soil properties in 3D benefits from interactions of spatial predictors with soil depth and its polynomial expansion, which yields a large number of model variables (and corresponding model parameters). Lasso is able to perform variable selection, hence reducing the number of model parameters and making the model more easily interpretable. This also prevents overfitting, which makes the model more accurate. The presented approach was tested using four variable selection approaches - none, stepwise, lasso and hierarchical lasso, on four kinds of models - standard linear model, linear model with polynomial expansion of depth, linear model with interactions of covariates with depth and linear model with interactions of covariates with depth and its polynomial expansion. This framework was us...ed to predict Soil Organic Carbon (SOC) in three contrasting study areas: Bor (Serbia), Edgeroi (Australia) and the Netherlands. Results show that lasso yields substantial improvements in accuracy over standard and stepwise regression - up to 50 % of total variance. It yields models which contain up to five times less nonzero parameters than the full models and that are usually more sparse than models obtained by stepwise regression, up to three times. Extension of the standard linear model by including interactions typically improves the accuracy of models produced by lasso, but is detrimental to standard and stepwise regression. Regarding computation time, it was demonstrated that lasso is several orders of magnitude more efficient than stepwise regression for models with tens or hundreds of variables (including interactions). Proper model evaluation is emphasized. Considering the fact that lasso requires meta-parameter tuning, standard cross-validation does not suffice for adequate model evaluation, hence a nested cross-validation was employed. The presented approach is implemented as publicly available sparsereg3D R package.

Keywords:
Spatial prediction / Lasso / Interactions / Nested cross-validation / Soil organic carbon / 3D
Source:
Computers & Geosciences, 2018, 118, 1-13
Publisher:
  • Elsevier Ltd
Funding / projects:
  • The role and implementation of the national spatial plan and regional development documents in renewal of strategic research, thinking and governance in Serbia (RS-47014)
  • Spatial, environmental, energy and social aspects of developing settlements and climate change - mutual impacts (RS-36035)
  • The application of GNSS and LIDAR technology for infrastructure facilities and terrain stability monitoring (RS-36009)
  • Automated Reasoning and Data Mining (RS-174021)

DOI: 10.1016/j.cageo.2018.05.008

ISSN: 0098-3004

WoS: 000441857000001

Scopus: 2-s2.0-85047098366
[ Google Scholar ]
13
10
URI
https://grafar.grf.bg.ac.rs/handle/123456789/943
Collections
  • Radovi istraživača / Researcher's publications
  • Катедра за геодезију и геоинформатику
Institution/Community
GraFar
TY  - JOUR
AU  - Pejović, Milutin
AU  - Nikolić, Mladen
AU  - Heuvelink, Gerard B. M.
AU  - Hengl, Tomislav
AU  - Kilibarda, Milan
AU  - Bajat, Branislav
PY  - 2018
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/943
AB  - An approach for using lasso (Least Absolute Shrinkage and Selection Operator) regression in creating sparse 3D models of soil properties for spatial prediction at multiple depths is presented. Modeling soil properties in 3D benefits from interactions of spatial predictors with soil depth and its polynomial expansion, which yields a large number of model variables (and corresponding model parameters). Lasso is able to perform variable selection, hence reducing the number of model parameters and making the model more easily interpretable. This also prevents overfitting, which makes the model more accurate. The presented approach was tested using four variable selection approaches - none, stepwise, lasso and hierarchical lasso, on four kinds of models - standard linear model, linear model with polynomial expansion of depth, linear model with interactions of covariates with depth and linear model with interactions of covariates with depth and its polynomial expansion. This framework was used to predict Soil Organic Carbon (SOC) in three contrasting study areas: Bor (Serbia), Edgeroi (Australia) and the Netherlands. Results show that lasso yields substantial improvements in accuracy over standard and stepwise regression - up to 50 % of total variance. It yields models which contain up to five times less nonzero parameters than the full models and that are usually more sparse than models obtained by stepwise regression, up to three times. Extension of the standard linear model by including interactions typically improves the accuracy of models produced by lasso, but is detrimental to standard and stepwise regression. Regarding computation time, it was demonstrated that lasso is several orders of magnitude more efficient than stepwise regression for models with tens or hundreds of variables (including interactions). Proper model evaluation is emphasized. Considering the fact that lasso requires meta-parameter tuning, standard cross-validation does not suffice for adequate model evaluation, hence a nested cross-validation was employed. The presented approach is implemented as publicly available sparsereg3D R package.
PB  - Elsevier Ltd
T2  - Computers & Geosciences
T1  - Sparse regression interaction models for spatial prediction of soil properties in 3D
EP  - 13
SP  - 1
VL  - 118
DO  - 10.1016/j.cageo.2018.05.008
ER  - 
@article{
author = "Pejović, Milutin and Nikolić, Mladen and Heuvelink, Gerard B. M. and Hengl, Tomislav and Kilibarda, Milan and Bajat, Branislav",
year = "2018",
abstract = "An approach for using lasso (Least Absolute Shrinkage and Selection Operator) regression in creating sparse 3D models of soil properties for spatial prediction at multiple depths is presented. Modeling soil properties in 3D benefits from interactions of spatial predictors with soil depth and its polynomial expansion, which yields a large number of model variables (and corresponding model parameters). Lasso is able to perform variable selection, hence reducing the number of model parameters and making the model more easily interpretable. This also prevents overfitting, which makes the model more accurate. The presented approach was tested using four variable selection approaches - none, stepwise, lasso and hierarchical lasso, on four kinds of models - standard linear model, linear model with polynomial expansion of depth, linear model with interactions of covariates with depth and linear model with interactions of covariates with depth and its polynomial expansion. This framework was used to predict Soil Organic Carbon (SOC) in three contrasting study areas: Bor (Serbia), Edgeroi (Australia) and the Netherlands. Results show that lasso yields substantial improvements in accuracy over standard and stepwise regression - up to 50 % of total variance. It yields models which contain up to five times less nonzero parameters than the full models and that are usually more sparse than models obtained by stepwise regression, up to three times. Extension of the standard linear model by including interactions typically improves the accuracy of models produced by lasso, but is detrimental to standard and stepwise regression. Regarding computation time, it was demonstrated that lasso is several orders of magnitude more efficient than stepwise regression for models with tens or hundreds of variables (including interactions). Proper model evaluation is emphasized. Considering the fact that lasso requires meta-parameter tuning, standard cross-validation does not suffice for adequate model evaluation, hence a nested cross-validation was employed. The presented approach is implemented as publicly available sparsereg3D R package.",
publisher = "Elsevier Ltd",
journal = "Computers & Geosciences",
title = "Sparse regression interaction models for spatial prediction of soil properties in 3D",
pages = "13-1",
volume = "118",
doi = "10.1016/j.cageo.2018.05.008"
}
Pejović, M., Nikolić, M., Heuvelink, G. B. M., Hengl, T., Kilibarda, M.,& Bajat, B.. (2018). Sparse regression interaction models for spatial prediction of soil properties in 3D. in Computers & Geosciences
Elsevier Ltd., 118, 1-13.
https://doi.org/10.1016/j.cageo.2018.05.008
Pejović M, Nikolić M, Heuvelink GBM, Hengl T, Kilibarda M, Bajat B. Sparse regression interaction models for spatial prediction of soil properties in 3D. in Computers & Geosciences. 2018;118:1-13.
doi:10.1016/j.cageo.2018.05.008 .
Pejović, Milutin, Nikolić, Mladen, Heuvelink, Gerard B. M., Hengl, Tomislav, Kilibarda, Milan, Bajat, Branislav, "Sparse regression interaction models for spatial prediction of soil properties in 3D" in Computers & Geosciences, 118 (2018):1-13,
https://doi.org/10.1016/j.cageo.2018.05.008 . .

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB