GraFar - Repository of the Faculty of Civil Engineering
Faculty of Civil Engineering of the University of Belgrade
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating the Performance of Random Forest versus Multiple Regression for Predicting Prices of the Apartments

Thumbnail
2018
957.pdf (3.174Mb)
Authors
Ceh, Marjan
Kilibarda, Milan
Lisec, Anka
Bajat, Branislav
Article (Published version)
Metadata
Show full item record
Abstract
The goal of this study is to analyse the predictive performance of the random forest machine learning technique in comparison to commonly used hedonic models based on multiple regression for the prediction of apartment prices. A data set that includes 7407 records of apartment transactions referring to real estate sales from 2008-2013 in the city of Ljubljana, the capital of Slovenia, was used in order to test and compare the predictive performances of both models. Apparent challenges faced during modelling included (1) the non-linear nature of the prediction assignment task; (2) input data being based on transactions occurring over a period of great price changes in Ljubljana whereby a 28% decline was noted in six consecutive testing years; and (3) the complex urban form of the case study area. Available explanatory variables, organised as a Geographic Information Systems (GIS) ready dataset, including the structural and age characteristics of the apartments as well as environmental a...nd neighbourhood information were considered in the modelling procedure. All performance measures (R-2 values, sales ratios, mean average percentage error (MAPE), coefficient of dispersion (COD)) revealed significantly better results for predictions obtained by the random forest method, which confirms the prospective of this machine learning technique on apartment price prediction.

Keywords:
random forest / OLS / hedonic price model / PCA / Ljubljana
Source:
Isprs International Journal of Geo-Information, 2018, 7, 5
Publisher:
  • MDPI AG
Projects:
  • Slovenian-Serbian bilateral research project 451-03-3095/2014-09/34

DOI: 10.3390/ijgi7050168

ISSN: 2220-9964

WoS: 000435194700008

Scopus: 2-s2.0-85047141908
[ Google Scholar ]
28
20
URI
http://grafar.grf.bg.ac.rs/handle/123456789/959
Collections
  • Radovi istraživača / Researcher's publications
  • Катедра за геодезију и геоинформатику
Institution
GraFar

DSpace software copyright © 2002-2015  DuraSpace
About GraFar - Repository of the Faculty of Civil Engineering | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About GraFar - Repository of the Faculty of Civil Engineering | Send Feedback

OpenAIRERCUB