GraFar - Repository of the Faculty of Civil Engineering
Faculty of Civil Engineering of the University of Belgrade
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
  •   GraFar
  • GraFar
  • Radovi istraživača / Researcher's publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Note on Strongly Nil Clean Elements in Rings

Authorized Users Only
2019
Authors
Kostić, Aleksandra
Petrović, Zoran Z.
Pucanović, Zoran
Roslavcev, Maja
Article (Published version)
Metadata
Show full item record
Abstract
Let R be an associative unital ring and let a R be a strongly nil clean element. We introduce a new idea for examining the properties of these elements. This approach allows us to generalize some results on nil clean and strongly nil clean rings. Also, using this technique many previous proofs can be significantly shortened. Some shorter proofs concerning nil clean elements in rings in general, and in matrix rings in particular, are presented, together with some generalizations of these results.
Keywords:
nilpotent element / nil clean element
Source:
Czechoslovak Mathematical Journal, 2019, 69, 1, 87-92
Publisher:
  • Springer New York LLC
Funding / projects:
  • Analysis and algebra with applications (RS-174032)

DOI: 10.21136/CMJ.2018.0167-17

ISSN: 0011-4642

WoS: 000461365800008

Scopus: 2-s2.0-85051439095
[ Google Scholar ]
1
1
URI
https://grafar.grf.bg.ac.rs/handle/123456789/997
Collections
  • Radovi istraživača / Researcher's publications
  • Катедра за математику, физику и нацртну геометрију
Institution/Community
GraFar
TY  - JOUR
AU  - Kostić, Aleksandra
AU  - Petrović, Zoran Z.
AU  - Pucanović, Zoran
AU  - Roslavcev, Maja
PY  - 2019
UR  - https://grafar.grf.bg.ac.rs/handle/123456789/997
AB  - Let R be an associative unital ring and let a R be a strongly nil clean element. We introduce a new idea for examining the properties of these elements. This approach allows us to generalize some results on nil clean and strongly nil clean rings. Also, using this technique many previous proofs can be significantly shortened. Some shorter proofs concerning nil clean elements in rings in general, and in matrix rings in particular, are presented, together with some generalizations of these results.
PB  - Springer New York LLC
T2  - Czechoslovak Mathematical Journal
T1  - Note on Strongly Nil Clean Elements in Rings
EP  - 92
IS  - 1
SP  - 87
VL  - 69
DO  - 10.21136/CMJ.2018.0167-17
ER  - 
@article{
author = "Kostić, Aleksandra and Petrović, Zoran Z. and Pucanović, Zoran and Roslavcev, Maja",
year = "2019",
abstract = "Let R be an associative unital ring and let a R be a strongly nil clean element. We introduce a new idea for examining the properties of these elements. This approach allows us to generalize some results on nil clean and strongly nil clean rings. Also, using this technique many previous proofs can be significantly shortened. Some shorter proofs concerning nil clean elements in rings in general, and in matrix rings in particular, are presented, together with some generalizations of these results.",
publisher = "Springer New York LLC",
journal = "Czechoslovak Mathematical Journal",
title = "Note on Strongly Nil Clean Elements in Rings",
pages = "92-87",
number = "1",
volume = "69",
doi = "10.21136/CMJ.2018.0167-17"
}
Kostić, A., Petrović, Z. Z., Pucanović, Z.,& Roslavcev, M.. (2019). Note on Strongly Nil Clean Elements in Rings. in Czechoslovak Mathematical Journal
Springer New York LLC., 69(1), 87-92.
https://doi.org/10.21136/CMJ.2018.0167-17
Kostić A, Petrović ZZ, Pucanović Z, Roslavcev M. Note on Strongly Nil Clean Elements in Rings. in Czechoslovak Mathematical Journal. 2019;69(1):87-92.
doi:10.21136/CMJ.2018.0167-17 .
Kostić, Aleksandra, Petrović, Zoran Z., Pucanović, Zoran, Roslavcev, Maja, "Note on Strongly Nil Clean Elements in Rings" in Czechoslovak Mathematical Journal, 69, no. 1 (2019):87-92,
https://doi.org/10.21136/CMJ.2018.0167-17 . .

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the GraFar Repository | Send Feedback

OpenAIRERCUB