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Abstract. This paper deals with closed-form solution for static analysis of simply
supported composite plate, based on generalized laminate plate theory (GLPT). The
mathematical model assumes piece-wise linear variation of in-plane displacement
components and a constant transverse displacement through the thickness. It also
include discrete transverse shear effect into the assumed displacement field, thus
providing accurate prediction of transverse shear stresses. Namely, transverse stresses
satisfy Hook's law, 3D equilibrium equations and traction free boundary conditions.
With assumed displacement field, linear strain-displacement relation, and constitutive
equations of the lamina, equilibrium equations are derived using principle of virtual
displacements. Navier-type closed form solution of GLPT, is derived for simply
supported plate, made of orthotropic laminae, loaded by harmonic and uniform
distribution of transverse pressure. Results are compared with 3D elasticity solutions
and excellent agreement is found.

1. INTRODUCTION

In the last decades, scientists have made considerable progress in understanding
behavior of composite laminates. It is noticed that anisotropic multilayered structures
posses transverse discontinuous mechanical properties and higher transverse shear and
transverse normal stress deformability. In order to model such material behavior, two
different approaches have arise, that is equivalent single-layer theories (ESL) and
layerwise theories (LWT).

In single-layer theories one single expression is used through entire thickness to
explain the displacement field of the plate. By this, deformation of multilayer plate is
described by equivalent single layer, thus reducing 3D problem to 2D problem. In order
to include transverse shear deformation, classical (CLPT) and shear deformation theories
have been developed. Namely, CLPT based on Kirchhoff's hypothesis, ignores the effect
of transverse shear deformation. On the other hand, FSDT based on Raissner and
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Mindlin, assume constant transverse shear stresses in the thickness direction, giving a
need for shear correction factors to adjust for unrealistic variation of the shear
strain/stress. In order to overcome the limitations of CLPT and FSDT, Higher-order
Shear Deformation Theories (HSDT) which involve higher-order terms in Taylor's
expansion of the displacements in the thickness coordinate were developed.
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Fig. 1. Displacement and shear stress distribution across the plate thickness
for isotropic and anisotropic plates

In wish of obtaining the accurate prediction of stress distribution and precisely model
kinematics of laminated composites, three-dimensional state of stresses have to be ana-
lyzed. Despite conventional 3D elasticity theory, new family of layerwise theories (LWT)
have been developed. Naimely, in LWT displacement field is defined for each layer, thus
including discrete material and discrete shear effects into the assumed displacement field.
Also, it is noticed that LWT models have some analyze advantages over the conventional
3D models. First, as LWT model allows independent in-plane and through the thickness
interpolation, the element stiffness matrix can be computed much faster. Second, even the
volume of input data is reduced, LWT are capable of achieving the same level of solution
accuracy as a conventional 3D models.

This paper deals with displacement based on layerwise theory of Reddy (1987), so
called Generalized Laminated Plate Theory (GLPT). The theory is based on piece-wise
linear variation of in-plane displacement components and constant transverse displace-
ment through the thickness. The Navier-type closed form solution is presented for simply
supported plate loaded by harmonic and uniform distribution of transverse pressure. The
main objective is to compare results of the mentioned theory to 2D and 3D theories, and
to develop mathematical model that will be more efficient than conventional 3D model.
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2. GENERALIZED LAYERWISE PLATE THEORY
2.1 Assumptions

The following assumptions are used in the analysis of plate model:

1. Material follows Hooke's Law and each layer is made of orthotropic material.

2. Strain-displacement relation is linear, i.e. geometrical linearity.

3. Displacement and stress distributions over the z thickness plate direction is
determined by Lagrangian linear interpolation functions.

4. The inextensibility of normal is imposed.

2.2 Displacement field

Fig. 2. Multilayer composite plate

Consider a laminated plate (Fig. 2) composed of n orthotropic laminae. The integer £,
denotes the layer number that starts from the plate bottom. Plate middle surface
coordinates are (x, y, z), while layer coordinates are (x;, ), z;). Plate and layer thickness
are denoted as 4 and /i, respectively.

The displacements components (u;, uy, u3) at a point (x,y,z) can be written as:

ul(x7y7z) =u(‘x7y)+U(x5y7Z)
uz(x7yiz):V(‘x7y)+V(‘x5yJZ) (l)
us(x,y,2) = w(x, y)

where (u, v, w) are the displacements of a point (x, y, 0) on the reference plane of the
laminate, and U,V are functions which vanish on the reference plane:

U(x,»,0)=V(x,5,0)=0 2

Let now reduce 3-D model to 2D format, by the following approximations:

U(x:ysz) :ZUI(x:y)'q)I(Z)
I;l 3)
V()C,y,Z) :ZVI(xay)'q)[(Z)

1=1

where U’ and 7 are undetermined coefficients, and @’ (z) are layerwise continuous func-
tions of the thickness coordinate. In the view of finite element approximation, the func-
tions @’ (z) are the one-dimensional (linear, quadratic or cubic) Lagrange interpolation
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functions of the thickness coordinates (Fig. 3), and (UI, VI) are the values of (u;, u,) at the
I-th plane.

Fig. 3. Local and global linear and quadratic Lagrangian interpolation functions

If we assume linear interpolation of in-plane displacement components through the
thickness, linear Lagrangian interpolation functions will have the form:

O'(2) =" (2) z,<z<z,

pyy <z<
®'(2)=1 2, @ Za<Es3 o5 N-) 4)
Y (2) z;2z<z,,
oV (2)=¥™M(2) Zy 1 <z<zy
where: go =1-Z po == 0<z<h,
k hk

Since the displacement field of GLPT is represented as linear combination of product
of functions of in-plane coordinates and functions of thickness coordinates, independent
in-plane and through the thickness discretization of the plate may be achieved. Also, as
the thickness variation of displacement components is defined in terms of piecewise La-
grangian interpolation functions, the in-plane displacement components will be continu-
ous through the laminate thickness.

u,(u,)

Fig. 4. Displacement field through the laminate thickness



Analytical Solution for Multilayer Plates Using General Layerwise Plate Theory 125

2.3 Strain-displacement relations of the laminae

The linear strain-displacement relations are given as:

N 1
snza—u+zai<b[
’ Oox =1 Ox
N I
e, =2 200
oy 1o Oy
N I 1
yxyzﬁ—u+@+z v +6V o} (5)
oy ox T\ Oy ox
N I
T.=2U' a0
1=l dz
N do’
L=V
Ty IZ; 7

From the assumed displacement and deformation field we conclude that in-plane defor-
mation components (€., €, Yx,) Will be continuous through the plate thickness. while the
transverse strains (7., 7,.) need not to be continuous.

2.4 Constitutive equations of laminae

Laminated plate is made of laminae having a
fibers oriented at an angle 0, measured from the
material X to global x axis (Fig. 5). The stress strain

relations of the laminae is therefore defined in Fig. 5. Global and local
material coordinate system as: coordinate system of laminae
o) [c, ¢, o o 079"
o, C, C, 0 0 O g,
Tia =10 0 CG; 0 0 Y12 (6)
Ti3 0 0 0 ¢, O Y13
T3 | 0 0 0 0 Ci] (v
where:

¢ ={c, o, 1, T; T,5J% stress components of k-th laminae
in material coordinates

eV =l & Y, V5 ¥ut®  strain components of k-th laminae
in material coordinates

C'" matrix of material elastic coefficients for k-th laminae, given as:
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A=1=V;,Vy = Vy3Vy =V Vi3 —2V3V5 Vay,

C, = Ed _Z23V32) ’ C, = Ezl_AVﬂVls , Ch=C, = E,(vy Zvuvzs) ’
Cs; =Gy, Cu =Gy, Css = Gy
where:
E .E,,E, Young's moduli in 1, 2 and 3 directions, respectively
P Poisson's ratio-defined as ratio of transverse strain in j-direction to axial

ij
strain in i-direction (i,j=1,2,3)
G,,,G,;,G,; shear moduli in the 1-2, 2-3 and 1-3 planes, respectively

Along with following relations:

Vij _ Vi .

B E, (.j=123) @
Since all quantities should be referred to a single coordinate system, we need to establish
transformation relations among stresses and strains in global system to the corresponding
quantities in material (local) coordinate system. The constitutive matrix in global
coordinate system will than be of the form:

ij(k) _ T’ICij(k)T (®)
where:
cos’ 0 sin® 0 2sinHcos O 0 0 |
sin’ 0 cos’®  —2sinBcosO 0 0
T=|-sinOcosO sinBcos® cos’O-sin’0 0 0 9
0 0 0 cosO sin6
i 0 0 0 —sin® cos0 |
The Hooke's law for the £-th laminae in the global coordinate system is now:
GXX (k) _Qll QIZ Q13 0 O 17 SXX ©
S O, O 0Oy 0 0 €y
Ty = Q13 Q23 Q33 0 0 X Ty (10)
Tz 0 0 0 Ou O Y
Ty 0 0 0 Oy O] V)

where:

6" ={c,. o

xx w

) _
e ={e, ¢,

T T

Xy Xz

Y Xy Yz

T . . .
T, } 97 stress components of A-th laminae in global coordinates

Y2 }(k)T strain components of &-th laminae in global coordinates
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Fig. 6. Assumed deformation and stress field in laminated composite plate

From equation (9) and already mentioned distribution of strain field through the plate
thickness, we conclude (Fig. 6) that in-plane stresses will be discontinuous at dissimilar
material layers, leaving the possibility for transverse stresses to be continuous through the
plate thickness. This transverse stresses are the one that satisfy constitutive relations, 3D
equilibrium equations and traction free boundary conditions.

2.5 Equilibrium equations

Fig. 7. Geometry and load of a plate with curved boundary

The equilibrium equations are derived using the principle of virtual displacements:
0=03U +dV (11)

where dU is virtual strain energy, 6V is virtual work done by applied forces, which are
given as:

h/2
U = | { [ [0, 8¢, +0,, 88, +1, 8y, +1,. 8y, +71,. 8yyz]dz} dedy  (12)

Q (-h/2

h h h h
oV = _E_[ |:qb(x: ya_Ej SWO(xayJ_Ej + qt(x: y75] SWO(XJ y:Ej:| dXdy -

hl2
$ { [16,, du, +6,, du,, +5,, 5wl dz} ds
T

—h/2

(12),
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In the following text, we assume that distributed load acts in the middle surface and the
stress resultants are given as:

1
Nx"' hi2 Oy N xx hi2 (S
_ 1 _ I
N,t= [ 4o, tdz. iN'yt= [ {o, @ dz,
—h/2 1 —h/2
N, Ty Ny T,
hl2 1 hl2 1
Qx ze Q X ze ch
= J. dz, = J. dz,
O I O] (O] dz
Nnn hi2 S
an = _.' Gns dZ * (13)
-h/2 6

If we substitute (13) into (12),(11) we will get the following 2N + 3 partial differential
equations in 2N + 3 variables (u,v,w,U", V"), (I =1,...N):

ou=0: Nxx,x+Nx}’a.":O
ov=0: ny,x +N,vy’.v =0
dw=0: 0. +0,,+q=0 o

SUI =0: N[)oc,x + ley,y _le =0

s s s I=1..N
SVI:(): ny,x"l‘N)yy_Qy:O
with appropriate geometric boundary conditions:
(uavawaUlaVI) (15)1
and force boundary conditions:
N n N n N ~
N, +>N'w-N, =0, N, +>N'w-N,=0,0,+>0.-0,=0 (15),
1=l I1=1 1=l
where:
Nnnszxnx—'rnyny NlnnZNIxxi’lx"rN]xyi’ly
NnSZnyi’lx"rNyyi’ly NlnszNIxynx"eryyi’ly

O =0x ”x""Qy ny, Oln =01« ”x+Q1y ny
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2.6 Constitutive equations of laminate
The constitutive equations of laminate are given as:

{N% =[A]{8°}+Z[BI]{SI}

(N} =[BI]{8°}+Z [D" e’} (16)
where:

0 T . .
{(N'}={N, N, N, O 0,} forcecomponents inthe middle surface
1 I 1 I I INT :
{N'}={N, N, N, O 0} forcecomponents in/-th plane

T
') = Ou v u + v w ow strain components in the middle surface
ox dy Oy Ox Ox Oy

S ou’ orvt ou' ov'
{e'}= +
Ox oy oy ox

T
u' v’ } strain components in /-th plane

Constitutive matrixes of the laminate are given as:

n ks

[A]=[4,,]1= Z} ZJ;[qu(k)]dz, p.g=12345

[B]=[B., 1= ginqu‘k)] »'ds, g =123
qu] = an;ZIl pq(k) d p.q=45

[D]=[D;,]1= ZZII[QM(“] O’ dz, pq=123

* dq> do’
rq ]

dz, ,q=4)5
dz P-4

[D]= pq ,[
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3. NAVIER-TYPE CLOSED FORM SOLUTION

Simply
supported edges

| .
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Fig. 8. Geometry and boundary conditions of multilayer plate

For a rectangular (axb) simply supported cross-ply laminated plate (Fig. 8), composed
of n-layers, the following constitutive coefficients become zero:

A13:A23:A45:Bls:Bz3:§45:D13:D23:545:0 (17)
The reduced governing equations (14) become:

N
All u,xx + AIZ v,xy + A33 (u,yy + v,xy) + Z [BIII U,frx + BIIZ V,){y + Bi} (U,{w + V,){v)] =0

1=1

N
AIZ u,xy + A22 v,yy + A33 (u‘xy + V,xx) + Z[B112 Uiv + BZI2 V,{V + B313 (Ufcv + V){x)] = O

1=1

N
Ayw, + Ass W, + Z [34{4 U‘Ix + BSIS V;] +g=0

I=1
a 1 1 1 1
Z[Bll u,xx + B12 v,xy +B33 (u,yy + v,xy)_B44 W,x]
I=1

+ i (D UL +DL VL +D4 (UL, +Vi)-DjU1=0
N . —
z [Bll2 u,, + lez v, + B313 (u’xy + v’m)— 3515 w.]
. J=1,...N (18)
=

+ Y [DLUL +DL V] + Dy (UL, +V])-Dg V'] =0

The closed form solution that satisfy the boundary conditions

v=w=V'=N_=N'u=0, x=0,a; I=1,...N

19
u=w=U'"=N, =N',=0; y=0,b; I=1..N (19)
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and differential equations (18) can be found by assuming the following harmonic form for
the unknown variables:

o0 o0 o0
u=>Y X, cosoxsinPx, v=>y Y, sinoxcospy, w=)y W,
m,n

m,n

sin oux sin B,

n
m,n

i i (20),
U'=Y R'wcosoxsinBx, V' => 8" sinax cosfy
and applied loadings
f(»)=2q,,sinaxsin By . (20,

m,n

If we substitute (20);, (20), into the system of 2N + 3equations (18) for each of the
Fourier modes (m,n), we will get the following algebraic equations in matrix form:

{[k] [kf]} {{AI}}z {{f}} o
T k7] ALY ({0

for unknowns (X,,,Y, W, ,R'w,S m) ,

where:

by = Ap0® + APk, = (A + Ao =k ks, = 4B + A0,
kyy = A440‘2 + A55B2,k13 =ky =ky =k;, =0;

k111 = 31110‘2 + B313[32,k112 = (3112 + 3313 yop = k211’

k212 = B3130.2 +lezﬁzsk3[1 = Bi4a,k312 = les >

kil =Dijo + DB’ + Diy kiy = (D + Dig)aB = ksi ks = Diga’ + Dy + Dy

A1 = {an Ymn Wmi1}T5A2 = {le” Slm”}Tﬁ {f} = {0 0 _qmn}T'

Once the coefficients (X,,,,Y,.sW,,.»R mn,S’ ) are obtained, the in-plane stresses are
computed from the constitutive equations (6) as:

(k)
N I
a_u+z_6U q)l
() *) ox 15 ox
S O, O, 0 5 1;,1 o'
v
(S =10, O» O —+y—0 (22)

. 0 0 O A

v 3 ou ov XL(oUu' ov').,

Yy =—*—+) + )

S 0oy ox O\ oy ox
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Fig. 9. Shear stresses satisfying 3D equilibrium equations

Shear stresses can be computed by assuming quadratic variation of shear stresses within
k) ()
T

xz ? Vyz

is the number of layers. These equations can be obtained from the following conditions:

each layer (Fig. 8). This require 3n equations for each of shear stresses (t ), where n

(1) satisfying traction free boundary conditions at the bottom and top surface of the plate
(2 equations):
WE=0=1t"(z=h,) (23);

(2) providing the continuity of stresses along interfaces (n—1 equations):
" Vz=h_)=1"(E=0), (23),

(3) assuming the average shear stresses from the constitutive equations (n equations) :
hy,

[9@) dz =1 (23)

1
5 const. >
hk 0

(k) T(k)

(4) and computing the jump in (t,;. 7)) at each interface utilizing the first two

equations of equilibrium in terms of stresses (n—1 equations):
o' VE=h,) "M (EZ=0) _ o, oy
0z 0z 0z 0z

(23)4

4. NUMERICAL EXAMPLES

We considered cross-ply laminated plate, in which each lamina is made of material:

E/E, =25 G,/E,=G,/E,=0.5, G,;/E, =02, v,=v;=Vv, =025
The results are presented in the following normalized form:

E,1004°

W:
4
q,a

_ - AY 1 o m 1
Ws(Gxx’ny’Txy =(_j _(GXXJG,V}”TX)’) ’(TXZ’T.VZ) =(;j_(rxz7ryz)

aj 4y 0

where / is plate thickness, a,b are plate dimensions in x,y directions, respectively.
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The transverse deflection and stresses are computed at the following locations:

W= w(ﬁ,é,oj,aw =Em(£,2 iﬁj,aw =E,,(£,2,iﬁj T, =Em(0,o,iﬁj
227 ) 27277 2) T 272 e 2

?xz :%xz(gﬂo70j’ ?vz =%*z(05270j
2 ’ ? 2

Results are obtained using program CS_GLPT coded in MATLAB.

4.1 Example | Cross-ply plate loaded by bi-harmonic distribution of transverse pressure
A cross-ply plate is loaded by bi-harmonic distribution of transverse pressure:

4(x,y) =g, sin = xsin—y
a b

shown on Fig. 10.

as

1y ALY
AT
LT AT AT
o "l""“lle‘\“:"“r.\t‘\‘?"l““..\\‘\‘u-
“,“;‘\:““‘u\nl [
L

Fig. 10. Example I: bi-harmonic distribution of transverse pressure

Square, symmetrically laminated plate made of nine layers 0°/90%0%90°/0°/90°/0°/90%0°
is analyzed. Results are shown in Table 1. and Fig. 11.

Table 1. Example I: Comparison between 3D and GLPT

alh | Solution w G, G, T, T, T,
3 — 0.684 | 0.628 | 0.0337 | 0.2134 | 0.223
4 1.797 | 0.671 | 0.618 | 0.0346 0.232
12]
GLPT | g . p 0.223 e
3 — 0.551 | 0.477 | 0.0235 0.247 | 0.226
10 @ | 0.657 | 0552 | 0.471 | 0.0237 | 0.2118 | 0.261
GLPT 6 1 7 5 1 1
10 3 — 0.539 | 0431 | 0.0213 | 0.219 | 0.259
o | cLpT® 0.4;33 0.5838 0.119 0.01213 0.2015 0%75
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Fig. 11. Normalized stresses for square plate (a/h = 10) made of nine layers , loaded with
bi-harmonic transverse pressure

4.2 Example 11 Cross-ply plate loaded by transverse distribution of constant pressure
A cross-ply plate is loaded transverse distribution of constant pressure:

q(x,¥)=q,

shown on Fig. 12.
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Fig. 12. Example II: transverse distribution of constant pressure

Square, symmetrically laminated plate made of three layers 0°/90%0° is analyzed.
Results are shown in Table 2.

Table 2. Example II: Comparison between GLPT and 3D, 2D

alh SOll;thIl W 5. 5, T, T 7,
GLpT? 3'%79 1'1715 0'180 0.1094 | 0.4552 | 0.5214
cch 3'344 1'1317 - 0'0273 0.4435 | 0.4956

4

2334 | 0.667 0.0692 | 0.6466 | 0.5312
s 4 6 - 3 9 5
0.658 | 0.804 0.0418 | 0.7211 | 0.3842
CLPT 8 0 - 9 6 6
GLPT? 1.11 56 0.2;72 0.3759 0.07611 0.6305 | 04087
cch 1'1154 0'8870 - 0'0:97 0.6279 | 0.4017
10 rsp | 0954 | 0773 _ 0.0494 | 0.7060 | 0.4150
6 3 3 0 7
0.658 | 0.804 0.0418 | 0.7211 | 0.3842
CLPT 8 0 - 9 6 |6
GLPT? 0.6371 0.2;08 0.1593 0.0;128 07201 | 03854
0.671 | 0.808 0.0428
131 —_

0| cc 3 3 s 0.7201 | 0.3852

0 0.661 | 0.803 0.0420 | 0.7209 | 0.3845
s 8 7 - P 6 7

0.658 | 0.804 0.0418 | 0.7211 | 0.3842
CLPT 8 0 - 9 6 6
" pagano N.J.

' CS_GLPT - MATLAB program

Bl g Carrera, A. Ciuffreda

CLPT - Classical Laminate Plate Theory
FSDT - First-order Shear Deformation Theory
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5. CONCLUSION

The proposed mathematical model can be used for analysis of thick, as well as thin
plates. It is shown that differences among 2D and 3D theories are greater for transverse shear
stresses, than for in-plane stresses. Also, differences among theories vanish by increasing
a/h. Finally, as GLPT model is capable to achieve the same solution accuracy as
conventional 3D elasticity model, it can be used as test model of approximation models.
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ANALITICKO RESENJE VISESLOJNIH PLOCA
ZASNOVANO NA OPSTOJ LAMINATNOJ TEORIJI PLOCA

Porde Vuksanovi¢, Marina Cetkovic¢

U ovom radu prikazano je anliticko reSenje staticke anlize slobodno oslonjene kompzitne
ploce, zasnovano na opstoj laminatnij teoriji ploca (GLPT). Matematicki model pretpostavlja deo
po deo linearnu raspodelu komponenata pomeranja uyu, i konstantnu promenu komponente
pomeranja us po debljini ploce. Pomenuti model u obzir uzima i uticaj smicuce deforamcije unutar
svakog sloja, ¢ime se dobija realna procena smicanja po debljini ploce. Naime, smicuci naponi
zadovoljavaju Hook-ov zakon, 3D uslove ravnoteze i granicne uslove po naponima. Koristeci
pretpostavijeno polje pomeranja, linearne veze deformacija i pomeranja i konstitutivne jednacine
lamine, primenom principa virtualnih pomeranja izvedeni su uslovi ravnoteze. Navier-ovo resenje
GLPT prikazano je za slobodno oslonjenu plocu, sacinjenu od ortotropnih lamina, opterec¢enu bi-
harmonijskom i konstantnom raspodelom poprecnog opterecenja. Dobijeno je izvrsno slaganje sa
3D resenjem elasticne teorije.



