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Abstract. We discuss the extension of inequalig > grb+ grc to the plane of triangleNABC.
Based on the obtained extension, in regard to all threecesriof the triangle, we get the exten-
sion of Erdds-Mordell inequality, and some inequalitiéEolos-Mordell type.

1. Introduction

Let triangle AABC be given in Euclidean plane. Denote By, Rs and Rc the
distances from the arbitrary poiM in the interior of AABC to the verticesA, B and
C respectively, and denote by, r, andr; the distances from the poii to the sides
BC, CA and AB respectively (Figure 1).

B(p,0) C(q0)
Figure 1: Erdds-Mordell inequality

Then Erdds-Mordell inequality is true:

Ra+Re+Rc>2(ra+rp+rc) (1)

whereat equality holds if and only if triangl&BC is equilateral andM s its center.
This inequality was conjectured by P. Erdds as Amer. Matloniily Problem 3740
in 1935. [9], after his experimental conjecture in 1932.][1® was proved by L.J.
Mordell in 1935. (in Hungarian, according {0 |13]), and as folution of the Problem
3740in 1937.[[22].
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Considering the Erdds-Mordell inequalifyl (1) the goal leistresearch is to de-
termine areas in the plane of the triangle, where the foligvthree inequalities are
valid:

c b
> = =
Ra > LR 2
C a
Rs > Bra+ Brc (3)
b a
> = =
Rec > clatch 4)

wherea= |BC|,b=|CA|, c=|AB]|.
In this paper we determine a set of poiktéor which
RA+RB+RC><%+g>ra+<§+%)rb+<%+g)rc (5)
is valid. It is known that the triangular area 6fABC is contained in the sé [3], [4],
[11], [23], [14], [26]. Here we show that the sEtis greater than the triangl& ABC,
and we give a geometric interpretation of the et

The proofs of Erdos-Mordell inequality are often based ifeent proofs of in-
equality [2), as given ir J4][16]/17]/111]/112]/123]/-[46 N. Derigades in[[8] proved
the inequality [[(b) valid in the whole plane of the trianglehave ry, r, andr, are
signed distances. A similar result was given by B. Male3{20], [21].

Note that V. Pambuccian [24] recently proved that the Esdiasdell inequality
is equivalent to non-positive curvature. Overview of reaa@sults on Erdos-Mordell
inequalities and related inequalities is givenlin [1])- [&], [8], [10], [13] - [21], [24],
[25], [27] - [30] .

2. The Main Results

In this section we analyze only the inequalify (2). L&ABC be a triangle with
verticesA(0,r), B(p,0),C(q,0), p# g,r # 0. Without diminishing generality, let
p < q. We denote byM (x,y) an arbitrary point in the plane of the triangleABC.
The distance from the poiMl to the pointA, and the distance from the poikt to the
straight lines andc are given by functions:

Ra=1/%+(y—r)? (6)

— ‘_qy_ rx+qr\ (7)
V2

— ‘py+ X— pl" (8)
VIr2+p?

respectively. Consider the inequalify (2) related to thaexeA. The analytical notation

of this inequality is:

Sty rEs VPEP lay-mxcrar V7 fpy+x—pr ©)
~ ola-pl 242 la—pl 24 p2

Iy

lc




ja-ply/r2+ pz\/r2+q2\/x2+(y—r)2 = (+p)[—ay—rx+arl g
+(r?+0?) [py+rx—pr|.
Lety=kx+r, k € R, then the inequality(10) reads as follows:
X Ie— Pl y/r2+ P2y /r2-+ay /142 > x| (r2-+ p) [—ak—r |+ (r2+P) |pketr] ) (1)

For x =0, the previous inequality is reduced to an equality whidtsmn is the
point A(O,r). For x # 0 we obtain inequality by a single variabte

A pl /124 2\ /r2+02 /14K > (24 7) |-kt |+ (1P 4+ ) [pker]. (12)

Solution of the inequality.(12) reduces to four cases peampaterk:

@) {_PTTZ0 13)
@) {_PETTSS (14)
o) {_PTTZ0 15)
@) { B rso @

Note that the valud corresponds to the pointx,y) € R? located on the straight
line y = kx+r. With its values, the mentioned parameter of the lne kx+r decom-
posesR? on four corner areas. Inquiring the existence of parameige. the pencil
of lines y = kx+r through the vertexA) depending on the signs of paramet@sy
andr, we provide the following table of existing corner ardas) — (a4):

p q r (1) | (a2) | (a3) | (aa)
1. >0 >0 >0 + + + -
2. | <0 >0 >0 + - + +
3. | <0 <0 >0 - + + +
4. >0 >0 <0 - + + +
5| <0 >0 <0 + + - +
6. <0 <0 <0 + + + -
7.1 =0 >0 >0 + - + -
8. =0 >0 <0 - + - +
9. <0 =0 >0 - - + +
10.| <O =0 <0 + + - -

Table 1: The existence of the corner area depending on thenpaters p, g and r



The corner areaéa;) and (aa) are always in the interior offBAC and its cross
angle, while the areaéa,) and (a3) are in the interior of its supplementary angle
(Figure 2).
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Figure 2: Existence of the corner area for the vertex A (Cdses 6. in the Table 1)

Let us consider the equation:

(@ ) /124 P2\ /12462 14K2 = (24 p2) |~ak— |+ (rP+62) [pk+r]. (17)

[) Letk fulfill (a1) or (as). Then the previous equation can be rewritten in a way
that follows, with positive sign+) in the case of areéa;) and negative sign-j in the
case of areday)

(@ p) /124 P2 /r2 G2\ [14K2 = £((—ak— 1) (P4 p?) + (k1) (P+6P)) (18)

i.e.

(@-p) \/r2+p2\/r2+q2\/1+k2 =x(a-p)(r(at+p)+k(pa-r?)) (19

abbreviated written as



A l—i—kZ:iniy:{ Plty, ke (o) (20)

—Bk—y, ke (aq)
where at:
A=(gq—p)\/r2+p%/re+g¢2 and A >0 (21)
B = (pa—r?) (a—p) (22)
y=r(q*—p°. (23)
As p < q, the equation(19) can be divided gy~ p # 0 and then squared:
(r2+p%) (P+?) (1+K2) = (r (a+ p) +k (pg—r?))? (24)
which transforms into 5
(r(p+9k—(pg—r?))°=0. (25)
Based on the above equation, we conclude that there exéstsithue solution:
pq—r?
= 26
' r(p+a) (26)
only if, for k=kj:
+Bkty>0 (27)

is valid.

Hence, the straight ling = kyx+r is in the interior of<BAC and its cross angle,
or it doesn't exist. The cases where vallkesrom the formulal(Zb) does not meet the
condition [27) are presented in tiable 1with:

in the case 1k;> —r/q <= p(g?+r2) >0 ;
in the case 3k > —r/p <= (—q) (p>+r?) >0;
in the case 4k < —r/q <= p(g?+r2) >0 ;
in the case 6k;< —r/p <= (—q) (p>+r?) >0.

LEMMA 1. For ke (a1) U(ay) inequality(I3)is valid, where equality holds for
k =kq if (Z32)is fulfilled.

Proof. (I2) < (r (p+a)k— (pg—r?) )2 >0.0

COROLLARY 1. Inequality(@2)is valid for linesb andc.

II) Let k fulfill (a2) or (a3). Then equation{17) can be rewritten in a way that
follows, with negative sign) in the case of areéa;) and positive sign¥) in the case
of area(as)

(A P) (/122 /2462 14K2 = & ((ak+1) (F24-p%) + (pk+1) (1P +6P))  (28)



or abbreviated written as

ok+¢e, ke (a3z)
A/1+k2=+0kte= (29)
—o0k—¢, ke (az)

with parameters:

A:(q—p)mm and A >0
&= (r*+pg) (a+p) (30)
e=r(2r’+?+p?). (31)
The equation(29) is considered under the following cooditi
+8k+e>0. (32)
By squaring the equatioph (R9) we obtain
P(k) = A2 (1+K?) — (+0k+¢)® = (A2~ 8%) K> — 25ek+ (A2 —€?) =0.  (33)

For the square trinomial

P(k)=AK?+Bk+C (34)
coefficientsA, B, C are determined by:
A=A%= &= (q— p)2(rP+p?) (rP+?) — (r*+ pa)*(a+ p)? (35)
B=—25e=—2r (r?+ pa)(q+p) (2r2+ ¢ + p?) (36)
C=A2—e2=(r?+pa) ((pa—r?) (a— p)*— 2?22+ ?+p?).  (37)
Let us consider the equation:
A = —4par* + (p*+d*—4paP—4p%a—2p%e?)r? — 4p%® = 0. (38)

It has real solutions for in the following form:

2
”24\F< i\/q p)* — 16p2q >>0

(39)
r3,4:_W ((q—p)2 + \/(q—p)4—16p2q2 ) <0
iff
(pZO/\qZ(3+2\/§)p) vV (p<0/\q§(3—2\/§)p). (40)

REMARK 1. Whenp < 0 andq > 0 thenA = 4|p|qr® + (qz—p2)2r2+4|p|q
(P> +?)r?+4|pq® > 0 is valid. Note that the equatioA = 0 is not considered
forp=0o0orq=0 (because we obtain the contradictionqs= 0, q # O: A= r2qt =
0=r=0;ie.p#0,q=0:A=r’p*=0=r=0).



We distinguish the cases:

a)letr= ri forsomej=1,2 3,4, thenA = 0. In this casep #0, because? +
pg=# 0 andq+ p#0 (in the case of equilateral triangle, there will be valid p=0
and thenr = +pi, i = v~1). Therefore, by solving the linear equati@k+C =0
we find that:

T A= (@@-pf(rP+p) (PP (2P p?)°

ko = = . (41
2 B 20¢ 2r (q+p) (2r2+ 2+ p?) (41)

For p < 0 andqg > O the casen) is not considerec(because& >0). Letus
examine when the valule meet the conditiod (32). It is valid that:

A2 _g2 A2+ g2
+0kp >0 < £ (Okp+¢) i<6 25e +s> i( 25 )0

Based ore =r (2r?+ ¢+ p?) we conclude:

if r >0 thendk,+ € > 0 is fulfilled, wherebyk, fulfills condition (32) andk; € (a3);
if r <0 then—3k, — & >0 is fulfilled, wherebyk; fulfills condition (32) andk; € (a2).
In this case, the ling = kox+r is in the exterior of<BAC and its cross angle.

b) Let r #r; for eachj = 1,2,3,4, thenA # 0 and in this case, by solving the
quadratic equation (83), we find the values:

_3e+/A2(52+£2-72)
ko 3= 5232
r(p+a)(r>+ pa)(q?+ p?+2r2) £ 2(r2+p?) (r24+9?) (g—p) \/r?+ pq
(a—p)? (r2+p2) (r2+2) — (r2+ pa)® (q+p)? '

(42)

If r>+ pg> 0 then existsko3 € R. Incidence ofky3 € R to the area(as), as to
the area(ay) is determined by the inequalitl (32). The expressiia s + € exists
for 0 # +A, whereby the expressiodk, 3 + € is either positive or negative (because
Okoz+e=0=0==A).

Based on the Corollary 1, the straight limgs- kex+r, (s= 2, 3) are in the exterior of
<BAC and its cross angld={gure 3).

Consider the limiting case fd 3 whenr — rj. Note thatA = A2 — 62r—r> 0 is valid,
=]

whereat from
—€ 62_/\2
kng= —— ——- Aly/1
23= G 6T A <5¢| W1+ 2 )
follows .
Imko=-——-— A |lim kg =0,

=] (0+A) 1=
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Figure 3: The existence of the linesayksx+r, (s=2,3)
depending on the parametér

Related to theqBAC we distinguish the cases:

1. «<BAC< m/2 <= r?+pg> 0 and if A = 0 then there are two real and different
values ofk, andks. In this case, the following lemma is valid:

LEMMA 2. For <BAC< m/2, ke (a2) U (as3) the inequality(I2)is valid, just in
the cases:

1. A>0 A ke [—o, ko] Ulks, +0] \ (1) U(aa));
2. A=0 A ke[~ ko] \((a1)U(aa));
3. A<0AKE [k, k3] \((a1)U(aa));

where the equality holds for k, or k= Kks.

2. If <BAC= /2 <= r2+ pq=0 thenA = —qp(q—p)*, B=0 andC =0, ac-
cording to the equatiof (#2) thiag 3 = 0. Hence is valid:

LEMMA 3. For <BAC= m/2 and ke (a2) U (a3) the inequality(12) is valid.
The equality is valid only for k 0.

Proof. (I2)«<= Ak?®+Bk+C>0+= —qp(q—p)*k®>0.0



3. <BAC> 1/2 <= r2+ pq< 0. In this case, forr2 < —pqand for the coefficiena:
A > a8+ (p*+ g r2+ 4 (PP + @) r* — 2r® + 4p?g?r?
— 28+ 4(P2 4+ @)t + (P4 o + 4p262) 12 > 0
is valid. Sincekp 3 € C andA > 0 the inequality[(IR) is valid, which proves the claim:

LEMMA 4. For <BAC> r1/2 and ke (a2) U (as) the inequality(Id) is valid in
the strict form.

Based on the previous consideration$)iandll) , follows:
STATEMENT 1. The inequality{I2) holds in following cases:
ke (a1)U(aa)
or
ke (a2)U(a3) for <BAC> 11/2

€ [, ko] Uks, +oo] \ ((a1) U(aa)) A A>0
€ [~oo, ko] \ ((a ) ( 2)) NA=0
k€ [ke, ka]\ ((a1)U(aa)) A A <O,
for <BAC< 11/2.

3. Conclusion
For the vertexA, let us define

c b
Ea= {(va) |RA > arb‘f' 5rC}7
and for the vertice® andC, let us define

Eg= {(X,y) |Rs > Era+ grc},

b
EC: {(Xay) ‘RCE Era—" %rb}a

respectively. Based on the analysis of the inequalitles{®)and[(4), the inequality5)
is valid in the intersection of the areas:

E=EaNEsNEc. (43)
Therefore follows
STATEMENT 2. Erdds-Mordell inequality is valid in the are& .

Let us define the sa¥ by the intersection of the corner areas formed frem
Eg andEc, containing the initial triangle. Then the set of poilsis quadrilateral or
hexagonal shape, and is contained the &d&igure 4).



B(p,0) C(g0)" B(PO) C(q0)” B(p0) ~~ T (90
0 < «BAC <m/2 IBAC =1/2 m/2 <4BAC <m
Figure 4: Extension of the triangle ABC to the arbhC E

Let us define Erdos-Mordell curve in the plane of triangkethe following equa-
tion:

where
RA: \V X2+(y_r)2a RB: (X_ p)2+y2a RC: (X_q)2+y27
fo ly(@—p)| _ iy, o= IfQ(yfr)erI7 fo = |=p(y—r)—rx|
Q- p’ 2+ 2 2+ p?

The curve[(44) is a union of parts of algebraic curves of oedlgnt (Figure 5).

ABAC = 1/2

0 < 4BAC <m/2

¥BAC = ¥ABC = <ACB =m/3

Figure 5: Erdds-Mordell curve and the arek
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Let us denote by’ the part of the planék? bounded by the Erdds-Mordell’s
curve and consisting the triangl@ ABC. Thus, according to the fact that inequality
(@) is valid in the area of the triangl&@ ABC, and based on continuity, it follows that
inequality [®) is valid in the are®’. Remark that the are& allows us to precise when,
except for the inequality{5), some of the inequalitlds (@),and/or[(#) are true. For
example, in the areéE’\Ea) NEg N Ec the inequalitied(5)[{4)[{3) are true afd (2) is
not true. At end of this section let us emphasize that thevotig statement is true.

STATEMENT 3. All geometric inequalities based on the inequalit@s (3) and
(@) can be extended from the triangle interior to the atea

ExAMPLE 1. Inthe aredE, the inequality of Child([7] is valid:
Ra-Rg-Rc >8:Ta Iy rc (45)

because, based on inequality between arithmetic and gdommetan, follows:
a-Ra>b-rc+c-rp>2vb-cry-re (46)

b-Rg>c-rag+a-rc>2v/c-a-re-ra 47)

c-Re>a-rp+b-rg>2ya-b-rg-rp. (48)

Hence, by multiplying the left and right sides of inequakti{46) - [4B), we get the
inequality [4%) in the are&. O

At the end of this paper, let us set up an open problem (prapleg@anonymous
reviewer): prove or disprove that there exist a positive benz such that the area of
E’ is bigger than 1% times the area of the triangle for every triangle. Thus, wease
conjecture: for the finite area &' the valuee is determined in the case of equilateral
triangle.

ACKNOWLEDGMENT. The authors would like to thank anonymous reviewer for
his/her valuable comments and suggestions, which weréeipmproving the paper.

REFERENCES

[1] C. ALsiNA, R. B. NELSEN, A Visual Proof of the Erdds-Mordell InequalitfForum Geom.7
(2007), 99-102.

[2] C. ALsiINA, R.B. NELSEN, When Less is MoreVisualizing Basic InequalitiedMath. Association of
America, Ch. 7 (pp. 93-99.), 2009.

[3] A.AvVEz, A Short Proof of a Theorem of Erdds and Mordélimer. Math. Monthly100, 1 (1993), 60-
62.

[4] L. BANKOFF, An elementary proof of the Erdos-Mordell theoreimer. Math. Monthly 65
(1958), 521.

[5] M. BoMBARDELLI, S.H. WU, Reverse inequalities of Erdos-Mordell typdath. Inequal. Appl.,
12,2 (2009), 403-411.

[6] O. BOTTEMA, R.Z. DJORDJEVE, R.R. ANIC, D.S. MITRINOVIC, P.M. VASIC, Geometric In-
equalities Wolters-Noordhoff, Groningen 1969.

[7] J.M. CHILD, Inequalities Connected with a Triangl€he Math. Gazett@3, No. 254 (1939), 138-143.

11



(8]

El
[10]
[11]
[12]
[13]
[14]
(18]

[16]
[17]

(18]

[19]
[20]

[21]

[22]
(23]

[24]
[25]

[26]
[27]

(28]
[29]

(30]

N. DERGIADES, Signed distances and the Erdds-Mordell inequakgrum Geom4 (2004), 67-68.

P. ERDOS, Problem 3740Amer. Math. Monthly42 (1935), 396.

W. JaNous, Further Inequalities of Erdos-Mordell TypEorum Geom4 (2004), 203-206.

D.K. KAZARINOFF, A simple proof of the Erdds-Mordell inequality for triamgl Michigan Mathe-
matical Journa#t (1957), 97-98.

N.D. KAZARINOFF, Geometric inequalitiesNew Math. Library, Vol .4, Yale 1961, (pp. 78-79, 86).
V. KOMORNIK, A short proof of the Erdos-Mordell theoremer. Math. Monthly104(1997), 57-60.
H. LEeE, Another Proof of the Erdds-Mordell theorefforum Geometricorurit (2001), 7-8.

J. Liu, A Weighted Erdds-Mordell Inequation and Its Applicatidourn. f Luoyang Norm. Univs

(2002), doi: CNKI:SUN:LSZB.0.2002-05-005

J. Liu, ZH.-H. ZHANG, An Erdbds-Mordell Type Inequality on the TriangRGMIA 7 (1), 2004.

J. Liu, A new proof of the Erdos-Mordell inequalitynternational Electronic Journal of Geometry

4,2 (2011), 114-119.
J. Liu, Some new inequalities for an interior point of a triangleurnal of Mathematical Inequalities,
Volume 6, Number 2 (2012), 195-204.

Z. Lu, Erdos-Mordell type inequalitieElemente der Mathemat#3, 1 (2008), 23-24.

B. MALESEVIC, Erdos theorem in the plane of the triangRroceedinngs of X1 and XII Meeting of
Mathematical Faculty Students of Yugoslavia 1985, 245-2&@e alsd [21] (1988), pp. 318-320.)
D.S.MITRINOVIC, J.E. FECARIC, V. VOLENEC, Recent Advances in Geometric Inequalitiékiwer
Academic Publishers, Dordrecht-Boston-London 1988.

L.J. MORDELL, Solution of Problem 374mer. Math. Monthly44, 4 (1937), 252-254.

A. OPPENHEIM Some inequalities for a spherical triangle and an internalrp, Pub. Elektrotehn.
Fak. Ser. Mat. et Phys., Univ. of Belgrade, N0©3(1967), 13-16.

V. PAMBUCCIAN, The Erdds-Mordell inequality is equivalent to non-paaticurvature Journal of
Geometry88, (2008), 134-139.

R.A. SATNOIANU, Erdods-Mordell Type Inequalities in a Trianglémer. Math. Monthly110, 8
(2003), 727-729.

G.R. VELDKAMP, The Erdds-Mordell InequalityNieuw Tijdschr.Wisk45 (1957/58), 193-196.

J. WARENDORFF Erdds-Mordell inequality WOLFRAM Demonstraction Project 2012.
http://demonstrations.wolfram.com/TheErdoesMordellInequality/

Y-D. Wu, A New Proff of a Weighted Erdos-Mordell Type Inequaljtiésrum Geom8 (2008), 163-
166.

Y-D. Wu, C-L. Yu, Z-H. ZHANG, A Geometric Inequality of the Generalized Erdds-Mordgpg
J. Inequal. Pure and Appl. Math0, 4 (2009).

Y-D. Wu, L. ZHou, Some New Weighted Erdos-Mordell Type Inequalitias J. Open Problems
Compt. Math4 (2), June 2011.

Branko MaleSevif{ CORRESPONDING AUTHOR )

Faculty of Electrical Engineering, University of Belgrade
Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia
e-mail:malesevic@etf.rs

Maja Petrovi (CORRESPONDING AUTHOR )

Faculty of Transport and Traffic Engineering, UniversityB#lgrade,
Vojvode Stepe 305, 11000 Belgrade, Serbia

e-mail: majapet@sf.bg.ac.rs

Marija Obradovit,

Faculty of Civil Engineering, University of Belgrade,
Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia
e-mail: marijao@grt.bg.ac.rs

12


http://demonstrations.wolfram.com/TheErdoesMordellInequality/

Branislav Popkonstantinovi¢,

Faculty of Mechanical Engineering, University of Belgrade
Kraljice Marije 16, 11000 Belgrade, Serbia

Faculty of Technical Sciences, University of Novi Sad,

Trg D. Obradovita 16, 21000 Novi Sad, Serbia

e-mail: dr.branislav.pop@gmail . com

13



	1 Introduction
	2 The Main Results
	3 Conclusion

