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ABSTRACT  
Stochastic structure of extreme hydrological events can be analyzed using characteristic 
flood values from partial hydrographs obtained by introducing base flow cut values. The 
process encompasses detection of a discrete probability distribution of a number of events 
in a chosen time interval and continuous distribution of the exceedance values (peaks). 
This article presents a stochastic model for the analysis of the base flow exceedance 
volumes and accompanied cycle times between the ends of sucessive events. The model is 
recurrent in nature, based on Markov’s discrete model principles and the assumptions 
about the form of the process intensity functions. The number of occurrence discrete 
distributions are discussed according to chosen forms of the time and volume intensity 
functions. The continuous distributions of the exceedance characteristic values are 
modelled for the base series of values and recurrently for their aggregation. The 
distribution of the maximum exceedance volume in chosen time interval is formulated. The 
article presents an application of the suggested procedures on the mean daily flows 
hydrographs from the Bezdan gauging station on the Danube river. 
 
1. INTRODUCTION   

 
There are number of factors that influence flood occurrence. Most of them are inter-

dependent. Due to their random nature, floods are usually analysed using stochastic 
models. The most widespread approach in their estimation is based on annual maximum 
series (AMS) of flood discharges. A value of an interest is usually a peak discharge value, 
but it may also be a volume of flood wave or its duration. Another approach is the peak 
over threshold method (POT). As there might be a number of flood occurrences within a 
year, only those ones whose peaks exceed a given threshold level are used to define flood 
characteristics in the POT. These floods form a partial duration series. 

The work presented in this article uses the theoretical background of the POT method to 
explore characteristics of parts of the flood waves which exceed certain threshold i.e. over 
threshold flood hydrohraphs or partial duration series. Datasets of flood characteristics are 
derived from the daily mean flow data. In addition to the basic datasets (single or raw 
values) of the considered flood characteristic (a peak discharge, a flood duration, a flood 
volume, a number of flood occurrences within a specified interval, a time duration 
between the two floods, etc.), datasets derived through the aggregation of two or more 
consecutive members of the basic series are also considered. Members of the derived data-
sets are also random variables. Together with the corresponding raw data they are termed 
the flood characteristics. 

The main hypothesis of this work is that all relevant information about the floods and 
their structure are inherent in the values of the flood characteristics that exceed a given 
threshold, i.e. in the partial duration series of the flood characteristics. The analysed flood 
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characteristics are excess flood volumes and cycle durations (the time between completion 
of the two consecutive excess volumes) along with the associated event times (the 
interruptions). 

The methodological approach to stochastic modelling of the flood characteristic 
includes the following analyses: 

a) a number of occurrences in a time interval, 
b) a cycle duration or a time between two, three or more consecutive events, 
c) a number of occurrences in an interval measured in the units of the characteristic 

variable, 
d) the value of the flood characteristic in a single event or its cumulative value in two, 

three or more consecutive events, 
e) the maximum flood characteristic value in a time interval. 
The proposed recurrent models for distributions of the flood characteristics and their 

aggregates rest on Markov’s discrete stochastic processes theory both for the time and 
characteristic value intermissions, as well as on the assumption that the two types of 
intermittence are independent. The models are based on the occurrence intensity function 
with the shape corresponding to the Weibull distribution for the starting over threshold 
value series and the parameter of the distribution for the number of their occurrences.  

Basic theories that are used in preparation of this investigations are from ex-
Yugoslavian researchers P. Todorovic and E. Zelenhasic (Todorovic 1970, 1978; 
Todorovic and Zelenhasic, 1970). On the same basis Vukmirovic (1975) studied the river 
bed load movement, Despotovic (1996) explored heavy rains and Plavsic (2004) analysed 
the flood risk. Theoretical  prerequisites and examples can be found in various text books 
about andvanced statistical aproaches in hydrology. For this work we used publications in 
Serbian (Vukmirovic, 1990; Zelenhasic, 1997; Zelenhasic and Ruski, 1991). Works about a 
over threshold flood volumes as random processes are rare. The methodlogy presented 
here is a part of the PhD thesis of Pavlovic (2013) where detailed references can be found. 

The data used to check the validity of the posed hypothesis and the applied 
methodology are the mean daily flow series for the Bezdan gauging station on the Danube 
River in Serbia. These data refer to a 79-years long period, from 1931 to 2009. 

 
2. OVER THRESHOLD FLOOD CHARACTERISTICS  
 

As stated in the introduction, the work presented in the article explore characteristics of  
the parts of the flood waves which exceed a certain threshold i.e. characteristic values 
which represent over threshold parts of hydrographs during flood events. Establishing a 
proper threshold (base flow) one can assume that characteristic values are inter-
independent and can represent extreme events (following the POT theory). A datasets of 
flood characteristics are derived from the daily mean flow data/hydrographs as they are 
commonly available from hydrometheorological services. Figure 1 depicts the origin of 
the characteristics values and their meaning.  

The datasets of this primary values form the basic series. But if one is interested in 
behaviour of mulitiple consecutive values (i.e. the volume of two or more neighbouring 
over threshold flood events) the series of aggregates are formed. One of the possible 
methods, used in this work, is displayed in Figure 2. A distribution of both basic and series 
of aggregates of over thereshold flood volumes and corresponding cycle durations are the 
objects of the investigation. 
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Figure 1. Origin of the characteristic values and their meaning. From top left to top right – a 
complete hydrograph transformed by a threshold base flow to a partial hydrograph. Bottom –  

over threshold flood characteristics values described in the picture and by symbol and meaning. 
 

3. STOCHASTIC MODEL BASICS 
 
The main hypothesis applied in the stochastic model presented is that all relevant 

informations about the nature of floods and their structure are inherent in the values of the 
flood characteristics that exceed a given threshold, i.e. in the partial duration series. The 
analysed flood characteristics are the excess flood volumes V and the flood cycle durations 
τ  (the time between the completion of the two consecutive excess volumes) along with 
the associated event times te (the interruptions) (see Fig.1). This informations lead to 
conclusions about  probability distributions of exceedance characteristics, both for the 
base series and for series of aggregates. 

The methodological approach supposes that a random process for over threshold flood 
characteristics has to be defined as follows in Equation 1 and in Fig.3: 

 

 
(1)
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Figure 2. Graphical review of series of aggregated flood characteristics values creation. 

 

 
Figure 3. Graphical representation of random process of over threshold flood characteristics 

values – example for the over threshold flood volumes. 

 
The time of interruption ti is the instant of the realisation of the complete single 

overthreshold flood volume.  The cycle time τi is the period between two successive 
interrptions. For the aggregates, the interruption is the instant of the completion of the last 
flood volume in the group which forms the aggregate.  

The proposed stochastic model which describes over threshold values (here the flood 
volumes and the cycle durations) rests on Markov’s discrete stochastic processes theory 
both for the time and characteristic value interruptions (Vukmirovic, 1975, 1990), 
respectively represented by its dicrete distribution mass function pν(t) and pn(x); the index 
is the number of interuptions and the argument is the domain – time or volume. There are 
two key postulates about the both two types of the interruptions; the only possible events 
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are that none or only one interruption can be achived in dt, the time increment. An 
additional assumption is that two previosly mentioned types of interruptions (in time and 
volume domain) are  independent.  

The result of the preassumptions is of essential importance of the two process 
functions: time and volume process intensity functions, respectively labeled λ(t,ν) and 
κ(x,n). The symbol ν stands for the number of interuptions in the time interval t, and  
symbol n for the interruptions in the volume domain x. The process intensity functions are 
the limit values of the probability of occurence of one event (process interruption) in the 
time increment dt. The process has the general form (2) with the initial conditions (3) 1  

 

(2)

 
(3)

For a solution of the system (2) the next events and their probabilities have to be studied: 

a) ηt, the ν number of interruptions in t time interval, and its discrete distribution pν(t), 
calculated for base series, 

b) τι cycle duration or a time between two (i=1), or three or more consecutive 
interruptions/events in time (i=2,...) and its continuous distribution G(τi), 

c) μx, the n number of interruptions in x volume value domain intervals and discrete 
distribution pn(x), calculated for base series, 

d) Xi over threshold flood volumes in single event (i=1) or its cumulative value over one, 
two, three or more consecutive events (i=2,3,...) and continuous distribution H(xi).  

e) Ft(x), the distribution of the maximum flood characteristic value in a time interval t. 
Basic datasets/series of over threshold cycle durations and flood volumes are labeled with 
τ  or τ1 and x or x1 respectively, aggregates of sequences of two consecutive base dataset 
members are τ2 i x2,  and aggregates of i members with τi and xi.  

Figure 4 depicts a graphichal scheme of analysed events and its distributions and 
releations between them which follows from stochastic process and that will be explained. 
Dot-outlined rectangles encompasses the essence of the outcomes of the contents of this 
work about overthreshold flood cycle times and volumes. Bold arrows ephasise how a 
classic POT method employs part of the steps which has to be conducted to give the 
answer about Ft=1(x), the distribution function of maximum value of random variable X 
over the time t equals 1 year. 

In following section the specific solutions of system (2) will be presented in the form 
for the interrupts in time domain; the solutions for number of interrupts in the volume 
domain is equivalent, only different symbols have to be used. In the following section, the 
distribution of over threshold flood volumes is elaborated in its reccurent form, starting 
from a basic series and a reccurently for a series of aggregates.  

                                                 
1 The system is written for time domain interrupts. Changing ν to n, and t to x, emerges the system which is valid for 
overthreshold volumes. 
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Figure 4. The graphical scheme of the analysis of the single and aggregated over threshold flood 

characteristic values – t cycle durations and ξ characteristic values. 

 
4. ANALYSIS OF DISTRIBUTION OF NUMBER OF EVENTS IN TIME AND VOLUME DOMAIN  

 
The solution of the system (2) depends of the form of the process intensity functions 

λ(t,ν) and κ(x,n). The chosen forms of these functions leads to a solution in a discrete probability 
mass functions pν(t) – the probability that there are n process interrupts (or events) in the 
time interval t and pn(x) – the probability that there are n interrupts over the interval x 
measured in the volume domain.  

Figure 5. presents a graphical scheme how the number of interrupts can be analysed 
from the observed datasets regardless of the nature of the over threshold flood 
characteristic value. Essentialy, the cumulative sum of the value has to be made, and the 
cumulative sum of the appropriate discretisation step is used as “the counting sieve”.  

To fit a empirical distribution, from the experiences in the application of the POT 
method, several models for the intensity functions are presumed, as presented in Table 1. 

 
 

 
Figure 5. The graphical scheme of the empirical analysis of discrete mass 

distribution function from the observed datasets. 
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Table 1. The models of the process intensity functions (expressed for the time intensity). 
ty

pe
 process 

intensity 
function 

 
discrete distribution  (d.d.) 

 

name of d.d. 
pν(t) 

1 
 

     

Poisson 
distribution  with 

constant parameter

2 
 

          

Poisson 
distribution  with 

variable parameter

3 
 

negative Binomial
distribution 

4 
 

Binomial 
distribution 

 
It is obvious that the chosen models are simple in the form, with disjunct influence of the 
time t and the number of interrupts ν (for the ease of solving the general system (2)). This 
means that the form λ(t,ν) is transformed to λ(t,ν)= λ(t) λ∗(ν). Types 1 and 2 are 
independent of the number of  the interrupts while types 3 and 4 are dependent. Value Λ(t) 
is the integral of time dependent part of intensity function over the time interval [0,t], i.e. 

and further on will be used as a convenient representation of the intensity 
function (as intensity function will not be directly modelled from datasets). 

∫=Λ t dsst 0 )()( λ

For the analysis of the number of interrupts over volume domain pn(x), the process 
intensity function has label κ(x,n). The hypothesis are the same as for λ(t,ν).  Table 1 will be 
valid, only the changes in the labels has to be done; κ(x), t and  instead of 
λ(t), ν and Λ(t) respectively (the x is the volume interval in which the number of interrupts 
in the volume domain is observed). 

∫= x dssxK 0 )()( κ

 
5. ANALYSIS OF DISTRIBUTIONS OF OVER THRESHOLD FLOOD VOLUMES AND CYCLE 

TIMES FOR BASE AND AGGREGATS SERIES  
 
The distribution function of the over threshold flood volumes of n consecutive events 

can be defined in form: 

 (4)
and its conection with the discrete distribution of n the number of interrupts in the  volume 
domain: 

 (5)
According to the equation (5) (Todorovic, 1970; Vukmirovic, 1990; Pavlovic, 2013), the 
distribution function of n consecutive over threshold flood volumes and according density 
function are: 

      (6)
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For the singe over threshold event (n=1, or for base series), formula (6) gives, 

(7)

From Equation (7 om the last column of 

 the distribution function Hn(x) of n consecutive over 
thr

old flood volumes 

type 

 

) and the forms of the discrete distributions fr
Table 1 a conclusion can be derived that the distribution function for the over threshold 
volumes of base series is independent of the type of discrete distribution of the interrupts - 
pn(x). The form of H1 is similar to the form of several continuous distribution functions. 
For modelling of H1, a single parameter exponential and two parameters Weibull and 
Pareto distributions are chosen. Modelling H1 is the implicit way to describe the volume 
dependent part κ (x) of the process intensity function via K(x) (its integral over the interval 
x). It is assumed that the intensity function consists of two independent parts κ (x,n) =  
κ (x) κ∗(n), as shown in Table 1.  

In Table 2, different forms of
eshold flood volumes are shown as a function assumed form of the process volume 

intensity function κ (x,n). Due to nature of H1,  the Hn(x) is given in recurent form (see the 
similarity in eq. (7) and 2nd column of Table 2.). Note that in last two types of Hn(x), 
which corresponds to negative binomial and binomial discrete distributions of interrupts in 
volume domain, participates the discrete distribution parameters a and b. This is the 
principal result of the assumed nature of  the very stochastic process. 

Table 2. The Hn(x), distribution functions of n consecutive over thresh
 as a function of the form of the process volume intensity function κ (x,n). 

  Hn(x)         [H1(x) always according to eq. (7)] 

 
1 

  

   
2 

   
3 

   
4 

The same form results are fo H, 

 
. DISTRIBUTIONS OF MAXIMUM OVER THRESHOLD FLOOD VOLUMES AND CYCLE 

 
Distribution function of the maximum over threshold flood volumes in time interval t 

(i.

(8)

r the cycle time durations. In all the expressions labels 
κ(x,n), κ (x), κ∗(n) and K(x) has to be replaced with G, λ(t,ν), λ(t), λ∗(ν) and Λ(t). 

6
TIMES FOR BASE SERIES  

e. (0,t]), using the process definition (1), is given as eq. (8) 
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The elements of the equation are discrete distribution of number of interrupts in the time 
domain pν(t) and the distribution function of the base series of the over threshold flood 
volumes H(x)=H1(x) (defined by pn(x) discrete distribution of number of interrupts in the 
volume domain). The classic POT method (that results in matches AMF method for 
analysis of maximum annual river flows) assumes that t=1 year which means that pν(t) is 
discrete distribution of number of  over threshold flow peaks in one year. 

The same form (8) is valid for the over threshold cycle durations changing label H with 
G, while x is not the volumes but cycle times i.e. X≡τ  and x equals specific time value. 
The G is the distribution function of the over threshold cycle durations for its base series. 
 
7. TESTING THE METHODOLOGY FOR STOCHASTIC MODEL 

 
The methodology for stochastic modelling of series of single and aggregated over 

threshold flood characteristics values was tested against mean daily flow data from 
the Bezdan gauging station on the entrance of the Danube River to the north of 
Serbia. The data refer to a 79-years long record, from 1931 to 2009. The analysed 
flood characteristics are: over threshold discharge flood volumes and cycle durations. 

Analyses are conducted for the numerous base flows (or thresholds) ranging from 
2500 m3/s to 5500 m3/s. Treshold limit is posed by the minimum number of 25 over 
threshold flood waves, supposed to be the smallest reasonable data sample for 
statistical analysis. Figure 6 presents the modelled Hn (x) and empirical distribution 
function of base and aggregate (aggregation levels 2 and 3) series for the base flow 
of 5100 m3/s (top) and pn(x), discrete distribution functions for the number of 
interrupts in volume domain of base series (bottom). Base dataset (n=1) is 
modelled by Weibull distribution function which outperforms other two functions 
(exponential and Pareto) for majority of base flows). Form of Hn={2,3}(x) is according 
to the use of the Poisson distribution for pn(x), the number of the interrupts in volume 
domain for base series (type 2 in Table 2). Base and level 2 aggregates passed the 
Kolmogorov-Smirnov goodness of fit test (p values are 87% and 11%) while aggregates of 
level 3 didn’t pass (p=2%). One common problem is noticed regarding the huge range of 
over threshold flood volumes values which leads to high assymetry in data. Here no 
attempts are made to correct it somehow and datasets are used as they are. 

A discrete function of the number of time interrupts pν(t) follows the negative 
binomial distribution, but not with the constant parameter a value over different 

time steps. The distribution function G(τ) for the cycle durations of base series also 
follows the Weibull distribution for the majority of base flows. Figure 7 is similar to 
fig.6 except it shows appropriate diagrams for G fammily (Gn={1,2,3}(t)). The base flow 
is again 5100 m3/s. Due to the inconstant parameter a, the assumption of its 
constancy introdouced in solving the system (1) is compromised and consequently 
assumed ease of the use of the model. A modified method is used to solve the 
problem; appropriate value for parameter a of the discrete function if obtained by 
fitting  G2 to empirical distribution in way that the Cramer-von Mises goodness of 
fit test gives the best possible p value. For some threshold values, an abnormaly 
high values of parameter a (couple of tens of thousands) was calculated by previous 
procedure. This behaviour may have mathematical legitimacy, but it physical 
meaning is doubtful, as it has to represents the value expressed in days. 
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Figure 6. Base flow 5100 m3/s. (Top) Distribution functions Hn={1,2,3}(x) - lines 

theoretical by stochastic model, markers – empirical. (Bottom) discrete distributions of the 
number of process interrupts in volume domain pn(x) – for various volume steps and 

corresponding dispersion index as theoretical distribution type indicator. 
The previously displayed results and the experience gained through research, lead to the 

conclusion that stochastic model that is shown has some imperfections but can be used, 
having in mind its limitations and possible drawbacks.  

 
8. CONCLUSIONS 
 

The article presents a stochastic model for the analysis of the base flow exceedance 
volumes and accompanied cycle times between the ends of the sucessive exceedence 
events. Substantialy it is Markov’s discrete stochastic processe both for the time and 
characteristic value intermissions/interrupts, with the assumption that the two types of 
intermittence are independent. The solution of the model’s equation system depends on 
the shape of the process intensity functions, time intensity λ(t,ν) and volume intensity κ(x,n).  
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Figure 7. Base flow 5100 m3/s. (Top) Distribution functions Gν=(1,2,3)(x) - lines 
theoretical by stochastic model, markers – empirical. Fit p-values are 57%, 50% 94% 

respectively. (Bottom) Discrete distributions of the number of process interrupts in time 
domain pν(t) – for various time steps and corresponding dispersion index as theoretical 

distribution type indicator. 
Their assumed shape imply the shape of a discrete distribution of the number of occurr-

ences (process iterruptions) – binomial, Poisson or negative binomial. The previous distri-
bution leads to the continuous distributions of flood volumes Hn(x) and cycle times Gν(t).  

One of main conclusions is that the distributions of the base series, G1(t) and H1(x), are 
independent of the discrete distribution of process interuptions – their shape can fit to 
exponential, Weibull or Pareto distributions. The continuous distributions of the aggre-
gated flood characteristics (ν,n=2,3,...) are expressed in recurrent form to G1(t) and H1(x).  

The stochastic recurrent model is applied on mean daily hydrographs data from the 
gauging station Bezdan, the Danube River entrance in Serbia, on numerous threshold 
values-base flows. The results are that the number of process interruptions follows a 
negative binomial discrete distribution and that over threshold base cycle times and 
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volumes can be suitably described by a Weibull distribution.  
The methodology for calculation of recurrence distribution model for aggregated 

overthreshold values is modified due to the impossibility for the direct application of 
theoretical hyphothesis for the setup of Gν(t) and Hn(x) – that the discrete distribution 
parameter can be directly used as the parameter of the recurrence continuous distribution 
model for over threshold values. This modification is convenient for good goodness of fit 
of aggregated values to model, but can compromise the methodology in the part of the fit 
in discrete distribution in process interuptions (both in time and overthreshold value 
domain). Substantially, that can lead to doubts about the true nature of the process 
intensity functions. Although the model is imperfect, the conclusion is that it can be used 
having in mind its limitations. 
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