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POLYNOMIAL INTERPOLATION PROBLEM

FOR SKEW POLYNOMIALS

Aleksandra Lj. Erić

Let R = K[x; σ] be a skew polynomial ring over a division ring K. We intro-
duce the notion of derivatives of skew polynomial at scalars. An analogous
definition of derivatives of commutative polynomials from K[x] as a function
of K[x] → K[x] is not possible in a non-commutative case. This is the reason
why we have to define the derivative of a skew polynomial at a scalar. Our
definition is based on properties of skew polynomial rings, and it makes pos-
sible some useful theorems about them. The main result of this paper is a
generalization of polynomial interpolation problem for skew polynomials. We
present conditions under which there exists a unique polynomial of a degree
less then n which takes prescribed values at given points xi ∈ K (1 ≤ n). We
also discuss some kind of Silvester-Lagrange skew polynomial.

1. INTRODUCTION

Let K be a division ring, and let σ be a monomorphism of K. For an indeter-
minate x over K, we write K[x; σ] for the ring of skew polynomials over K. By this,
we mean that K[x; σ] is the set of all left polynomials

∑

i

cix
i which are added in the

usual way, and multiplied by using the distributive law together with the rule that
xc = cσx for any c ∈ K ( by cσ we will denote σ-image of c). Thus, the coefficients
need not commute with the variable x. The fact that (ab)σ = aσbσ guarantees the
associative law for polynomial multiplications, so K[x; σ] is a ring. This so-called
skew polynomial ring is a basic object of study in noncommutative ring theory [1].
As it is easily seen,the usual division algorithm stays in R = K[x; σ]: For f(x) ∈ R
and g(x) ∈ R \ {0}, we can uniquely define f(x) = h(x)g(x) + r(x), where r(x) = 0

2000 Mathematics Subject Classification. 16S36,16U30,15A03.
Key Words and Phrases. Interpolation, skew polynomials.

403



404 Aleksandra Lj. Erić

or deg r(x) < deg g(x). In particular, R is a left PID (principal ideal domain) i.e.
any nonzero left ideal I has the form Rg; here, g is any polynomial in I of the
smallest degree [2].

To define evaluation of the left polynomials at scalar, it suffices to recall some
of its main properties as follows.

• The remainder Theorem [3]: f(x) = q(x)(x−a)+f(a) where q(x) is uniquely
determined by f and by a. From this it follows that f is divisible by x− a iff
f(a) = 0. In this case, we say that a is right root of f .

• The Product Formula [3] for evaluating f = gh at any d ∈ K:

f(d) =

{

0 if h(d) = 0,

g(dh(d))h(d) if h(d) 6= 0.

Here, ac is the σ-conjugate of a by c, and it is defined by ac = σ(c)ac−1, for
any c ∈ K∗.

• The evaluating formula [3]: if f(x) =
∑

i

aix
i, then f(a) =

∑

i

aiNi(a) for all

a ∈ K where N0(a) = 1, and Nn(a) = σn−1(a) . . . σ(a)a.

2. EVALUATING DERIVATIVES OF SKEW POLYNOMIALS AT

SCALAR

Let f(x) ∈ R = K[x; σ]. By dividing f(x) by polynomial (x − d)2 = x2 −
(d + dσ)x + d2 we get the remainder cx + r.

We can define the first derivative of polynomial f(x) at scalar d : f ′(d) to be
c. We will denote by Mn(d) the first derivative of polynomial xn at scalar d. For
example:

x2 = (x − d)2 + (d + dσ)x − d2.

So, M2(d) = d + dσ. Also from

x3 = (x + dσ + dσ2

)(x − d)2 + (dσ2

dσ + dσ2

d + dσd)x − (dσ + dσ2

)d2

we get

M3(d) = dσ2

dσ + dσ2

d + dσd.

Definition 1. Let f(x) =
∑

i

cix
i ∈ R. Then f ′(d) =

∑

i

ciMi(d), where M0(d) = 0,

M1(d) = 1 and

Mi(d) =
∑

i−1≥k1>k2>···>ki−1≥0

dσk1

· · · dσ
ki−1

.
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Note that, if σ = 1, then Mi(d) = idi−1. So f ′(d) is the usual evaluation of
derivative of f .

Example. Let R = C[x; ¯ ]. Then

M2(d) = d + d, M3(d) = d
2 + 2|d|2, M4(d) = 2|d|2(d + d).

If f(x) = ix2 + (2 + i)x − 3, then f ′(2 − i) = 2 + 5i.

If f(x) = x3 − (1 + i)x2 − x + 1 + i = (x− 1− i)(x − i)2, then, f ′(i) = 0, f(i) = 0.

If f(x) = x4 − 20x, then f ′(1 + 2i) = 0 and f(1 + 2i) = 5 − 40i.

Example. Let R = R(t)[x;σ], σ : f(t) 7→ f(t2). Then

M2(f(t)) = f(t) + f(t2), M3(f(t)) = f(t4)f(t2) + f(t4)f(t) + f(t2)f(t).

If p(x) = (x + t)(x − t)2 = x3 + (t − t2 − t4)x2 + (t4 − t3 − t2)x + t3, then

p(t) = t
7 + (t − t

2 − t
4)t3 + (t4 − t

3 − t
2)t + t

3 = 0,

p
′(t) = (t6 + t

5 + t
3) + (t − t

2 − t
4)(t + t

2) + (t4 − t
3 − t

2) = 0.

Proposition 2.1. Let f(x), g(x) ∈ R = K[x; σ] and d ∈ K. Then

(f + g)′(d) = f ′(d) + g′(d).

Proof. For f(x) =
∑

i

aix
i and g(x) =

∑

i

bix
i (we can assume that the polynomials

are of the same degree) (f + g)(x) =
∑

i

(ai + bi)x
i, so

(f + g)′(d) =
∑

i

(ai + bi)Mi(d) =
∑

i

aiMi(d) +
∑

i

biMi(d) = f ′(d) + g′(d).

Proposition 2.2. Mi+j(d) = Nj(d)σi

Mi(d) + Mj(d)σi

Ni(d).

Proof. Mi+1(d) = dσi

Mi(d) + Ni(d) because of

Mi+1(d) =
∑

i≥k1>k2>···>ki≥0

dσk1

· · · dσki

= dσi ∑

i−1≥k2>k3>···>ki≥0

dσk2

· · · dσki

+
∑

i−1≥k1>k2>···>ki≥0

dσk1

· · · dσki

= dσi

Mi(d) + dσi−1

. . . d = dσi

Mi(d) + Ni(d).

We proceed by induction on j. The case j = 1 follows from the first expression.
Now, suppose that the proposition is true for some j, i. e.

Mi+j+1(d) = dσi+j

Mi+j(d) + Ni+j(d).

Then

Mi+j+1(d) = dσi+j

Nj(d)σi

Mi(d) + dσi+j

Mj(d)σi

Ni(d) + Ni+j(d).
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Applying

(dσj

Nj(d))σi

= (Nj+1(d))σi

,

Ni+j(d) = Nj(d)σi

Ni(d),

dσi+j

Mj(d)σi

+ Nj(d)σi

= Mj+1(d)σi

,

we get

Mi+j+1(d) = Nj+1(d)σi

Mi(d) + Mj+1(d)σi

Ni(d). �

Proposition 2.3. Let f(x) = g(x)h(x) ∈ R = K[x; σ], g(x) =
∑

i

bix
i and h(x) =

∑

j

cjx
j . Then

f ′(d) =
∑

i

bia
σi

Mi(d) + g(eσde−1)e,

where a = h(d), e = h′(d) and e 6= 0.

Proof. Since f(x) =
∑

i,j

bic
σi

j xi+j , we have

f ′(d) =
∑

bic
σi

j Mi+j(d)

=
∑

i,j

bic
σi

j Nj(d)σi

Mi(d) +
∑

i,j

bic
σi

j Mj(d
σi

)Ni(d)

=
∑

i,j

bi(cjNj(d))σi

Mi(d) +
∑

i,j

bi(cjMj(d))σi

Ni(d)

=
∑

i

bia
σi

Mi(d) +
∑

i

bie
σi

Ni(d).

Therefore,

∑

i,j

bie
σi

Ni(d) =
∑

i,j

biNi(e
σde−1)e = g(eσde−1)e. �

If σ = 1, then f ′(d) = g′(d)h(d) + g(d)h′(d), which is the usual formula for a
derivative of product.

Theorem 2.4. Let f(x) ∈ R = K[x; σ] and d ∈ K. Then

f(x) = g(x)(x − d)2

for some g(x) ∈ R = K[x; σ] iff f(d) = f ′(d) = 0.

The proof is easy and thus omitted.
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3. EVALUATING DERIVATIVES OF THE HIGHER ORDER

OF SKEW POLYNOMIALS AT SCALAR

The derivative of order n of polynomial xi at d ∈ K for 1 < i < n is

Mn
i (d) = n!

∑

i−1≥k1>k2>···>ki−n≥0

dσk1
· · · dσ

ki−n
, Mn

n (d) = n! and Mn
i (d) = 0 for

n > i.
We get it as n!An where An is from

xi = q(x)(x − d)n+1 + Anxn + . . . + A0.

For example,

(x − d)3 = x3 − (dσ2

+ dσ + d)x2 + ((dσ)2 + d2 + ddσ)x − d3,

x3 = (x − d)3 + (dσ2

+ dσ + d)x2 − ((dσ)2 + d2 + ddσ)x + d3.

and so, M2
3 (d) = 2(dσ2

+ dσ + d).

Example. Let R = C[x; ¯ ] and f(x) = x3 + (1 + i)x2 − x − (1 + i) from R. Then

M2
3 (d) = 2(d + d + d) = 2(2d + d). Here we have f(1 + i) = 0, f ′(1 + i) = 5 + 3i,

f ′′(1+ i) = 8+4i. For f(x) = x3− ix2−x+ i = (x− i)3 we have f(i) = f ′(i) = f ′′(i) = 0.

Definition 2. The n-th derivative of polynomial f(x) ∈ R = K[x; σ], f(x) =
∑

i

cix
i at d ∈ K is

f (n)(d) =
∑

i

ciM
n
i (d).

Note that Mn
i (d) = 0 if n > i.

Proposition 3.1. For d ∈ K, n > 1, we have

(1) Mn
i+1(d) = dσi

Mn
i (d) + nMn−1

i (d).

(2) Mn
i+j(d) =

n
∑

k=0

(n
k

)

Mk
j (dσi

)Mn−k
i (d).

Proof. (1)

Mn
i+1(d) = n!

∑

i≥k1>k2>···>ki−n+1≥0

dσk1

· · · dσ
ki−n+1

= n!

(

dσi Mn
i (d)

n!
+

Mn−1
i (d)

(n − 1)!

)

= dσi

Mn
i (d) + nMn−1

i (d).

(2) We proceed by induction. In case j = 1 it is (1).

Mn
i+j+1(d) = dσi+j

Mn
i+j(d) + nMn−1

i+j (d)

=

n
∑

k=0

(n
k

)

dσi+j

Mk
j (dσi

)Mn−k
i (d)

+ n

n−1
∑

k=0

(n − 1
k

)

Mk
j (dσi

)Mn−k−1
i (d).
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From (1), Mk
j+1(d

σi

) = dσi+j

Mk
j (dσi

) + kMk−1
j (dσi

), so

Mn
i+j+1(d) =

n
∑

k=0

(

n
k

)

Mk
j+1(d

σi

)Mn−k
i (d) −

n
∑

k=0

(

n
k

)

kMk−1
j (dσi

)Mn−k
i (d)

+ n

n−1
∑

k=0

(n − 1
k

)

Mk
j (dσi

)Mn−k−1
i (d)

n

n−1
∑

k=0

(n − 1
k

)

Mk
j (dσi

)Mn−k−1
i (d) = n

n
∑

k=1

(n − 1
k − 1

)

Mk−1
j (dσi

)Mn−k
i (d)

=
n

∑

k=1

(

n
k

)

kMk−1
j (dσi

)Mn−k
i (d).

So, Mn
i+j+1(d) =

n
∑

k=0

(n
k

)

Mk
j+1(d

σi

)Mn−k
i (d). If f(x) = g(x)h(x) =

∑

i,j

bic
σi

j xi+j ,

then

f (n)(d) =
∑

i,j

bic
σi

j Mn
i+j(d) =

∑

i,j,k

(n
k

)

bic
σi

j Mk
j (dσi

)Mn−k
i (d)

=
∑

i,j,k

(n
k

)

bi(cjM
k
j (d))σi

Mn−k
i (d) =

∑

i,k

nkbia
σi

k Mn−k
i (d),

where ak = g(k)(d). �

Proposition 3.2. Let g(x) = (x − d)n. Then g(d) = · · · = g(n−1)(d) = 0.

Proof. We prove the proposition by induction. In case n = 1 it is easy verified.
Suppose that Proposition is true for any k < n. Let g(x) = (x− d)n+1 = p(x)q(x),
where p(x) = (x − d) and q(x) = (x − d)n. Then, for 0 ≤ ` ≤ n − 1

g(`)(d) =
∑

(

`
k

)

bia
σi

k M `−k
i (d),

where ak = qk(d), so ak = 0 for 0 ≤ k ≤ n − 1.

Then g(i)(d) = 0 for 0 ≤ i ≤ n − 1. We still need to prove g(n)(d) = 0.

g(x) = (x − d)n+1 = xn+1 − (d + dσ + · · · + dσn

)xn + · · · ,

g(n)(d) = Mn
n+1 − (d + dσ + · · · + dσn

)Mn
n (d),

Mn
n (d) = n!,

Mn
n+1(d) = n!(d + dσ + · · · + dσn

).

So, gn(d) = 0. �

Theorem 3.3. Let f(x) ∈ K[x; σ] and d ∈ K. Then

f(x) = g(x)(x − d)n for some g(x)
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iff f(d) = f ′(d) = · · · = fn−1(d) = 0.

Proof. Assume f(d) = f ′(d) = · · · = fn−1(d) = 0.Then

f(x) = g(x)(x − d)n + a0 + a1x + · · · + an−1x
n−1 (ai ∈ K)

For G(x) = g(x)(x − d)n we have

Gk(d) =
∑

i

bia
σi

k Mn−1
i (d),

where bi are coefficients of polynomial g(x) and ak is the k-th derivative of poly-
nomial (x − d)n. So ak = 0, then Gk(d) = 0 0 ≤ k ≤ n − 1

0 = f(d) = an−1Nn−1(d) + . . . + a1N1(d) + a0,

0 = f ′(d) = an−1Mn−1(d) + . . . + a1M1(d),

0 = f ′′(d) = an−1M
2
n−1(d) + . . . + a2M

2
2 (d),

...

0 = fn(d) = an−1M
n−1
n−1 (d),

Mn
n (d) = (n− 1)! implies an−1 = 0 and by solving the system, we get ai = 0 for all

i i.e. f(x) = g(x)(x − d)n. The converse is easy to verify from Proposition 3.2 and
properties of derivatives. �

Theorem 3.4. Let f(x) ∈ K[x; σ] and deg f = n. Then

(∗) f(x) = f(d) +
f ′(d)

1!
(x − d) +

f ′′(d)

2!
(x − d)2 + · · · +

f (n)(d)

n!
(x − d)n.

Proof. We proceed by induction on the degree of f . Let deg f = 1. Then
f(x) = A(x − d) + f(d) and f ′(d) = A, so

f(x) = f(d) +
f ′(d)

1!
(x − d).

Assume that (∗) holds, for any polynomial f with deg f = n.

Let f(x) be a polynomial with deg f = n+1. Then f(x) = g(x)(x−d)+f(d)
for some g(x) and deg g = n. Then

f (m)(d) = (g(x)(x − d))(m)(d).

Using the product formula, we obtain

(g(x)(x − d))(m+1)(d) =
∑

i,k

(m + 1
k

)

bia
σi

k Mm+1−k
i (d),

where bi are coefficients of g and ak value of k-th derivative of polynomial (x − d)

at d. So a1 = 1 and ai = 0 for i > 1, which implies:
(

g(x)(x − d)
)(m+1)

(d) =
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(m + 1)
∑

i

biM
m
i (d) = (m + 1)g(m)(d). So, (m + 1)g(m+1)(d) = f (m+1)(d) and

finally, we get (∗) for n replace with n + 1. �

4. POLYNOMIAL INTERPOLATION FOR SKEW POLYNOMIALS

For a field K, it is well known that for x0, . . . , xn−1, xn being different ele-
ments of K and y0, . . . , yn−1, yn ∈ K, there exists the unique polynomial f ∈ K[x]
such that f(xi) = yi and deg f ≤ n. However, the condition xi 6= xj is not sufficient
for existence of such a polynomial in a non-commutative case.

Let us first mention some facts about skew polynomials.

Proposition 4.1. Let ∆ = {x0, . . . , xn} and xi ∈ K, where K is a division ring.

Then

(1) There exists the nonzero polynomial f ∈ K[x; σ] such that f(xi) = 0.

(2) The set I of polynomials vanishing on ∆ form a left ideal in K[x; σ].

(3) If f∆ is monic polynomial of the smallest degree in I, then I = Rf∆,
where R = K[x; σ]. We will call f∆ minimal polynomial of ∆.

Proof. (1) Let ∆ be doubleton i.e. ∆ = {a, b}. Then, a polynomial f vanishing
on ∆ is

f(x) =
(

x − σ(b − a)b(b − a)−1)
(

x − a),

which follows from Product and Remainder Theorem.

If g is a polynomial vanishing on Γ = {x0, . . . , xn−1}, then a polynomial f
vanishing on ∆ = Γ ∪ {xn} is

f(x) =
(

x − σ(g(xn)
)

xng(xn)−1)g(x).

(2) If f, g ∈ I, then f(d) = g(d) = 0 for all d ∈ ∆. So, (f + g)(d) =
f(d) + g(d) = 0. Also, for α ∈ R (αf)(d) = α

(

σ(f(d))df(d)−1
)

f(d) = 0 (from
Product formula). Then I is the left ideal in left PID, so it is principal.

(3) If f ∈ I, then f(xi) = 0 for all xi ∈ ∆. f = qf∆ + r where f∆ is
a polynomial of minimal degree in I, q, r ∈ K[x; σ] and deg r < deg f∆. From
f(xi) = r(xi) = 0 it follows r ≡ 0. The conclusion is that f ∈ Rf∆. �

Theorem 4.2. Let ∆ = {x0, . . . , xn} and xi ∈ K where K is a division ring. For

any y0, . . . , yn ∈ K there exists a unique polynomial f ∈ R such that f(xi) = yi

and deg f ≤ n if and only if deg f∆ = n + 1 where f∆ is the minimal polynomial of

the set ∆.

Proof. Let Φ : R = K[x; σ] → Kn+1 be a K-linear function of the left K-spaces
such that

f 7→
(

f(x0), . . . , f(xn)
)

.

The kernel of the homomorphism Φ consists of all polynomials f such that f(xi) = 0
for all i. So, KerΦ = Rf∆, where f∆ is the minimal polynomial of the set ∆. Then
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ImΦ ∼= R/KerΦ ([4], Th. 2.1).

dim ImΦ = dimR/KerΦ = dimR/Rf∆ = deg f∆

dimR/Rf∆ = deg f∆ because for m = deg f∆, {1, x, . . . , xm−1} is a base of the left
K-space R/Rf∆. Indeed, g = qf∆ + r and deg r < m.

The homomorphism Φ is surjective iff dim ImΦ = n + 1, which means that
deg f∆ = n + 1. Then, the interpolation polynomial for such a set ∆ is

f(x) =
n
∑

i=0

yiLi(xi)
−1Li(x),

where Li(x) is the monic polynomial such that Li(xj) = 0 for i 6= j. The degree of
the polynomial f is ≤ n. If there is another polynomial g, deg g ≤ n and g(xi) = yi,
then (f − g)(xi) = 0 implies f − g ∈ Rf∆, so deg ≥ n + 1 and this is impossible.�

Example. Let R = C[x; ¯ ] and ∆ = {1, i,−1}. Then, the minimal polynomial of ∆
is f∆ = x2 − 1 of degree 2. It means that for this set, Theorem 4.2 does not hold. For
example, there is no polynomial f such that f(1) = 1, f(i) = 0 and f(−1) = −1. Also,
there are many polynomials such that f(1) = 1, f(i) = 0 and f(−1) = i.

f(x) = ax
2 +

1 + i

2
x +

(

1 − i

2
− a

)

.

Example. Let R = C[x; ¯ ] and ∆ = {1, i, 2i}. Then, the minimal polynomial of ∆ is
f∆ = x3 −2ix2 −x+2i. (We get it from

(

x− g(2i) 2i(g(2i))−1
)

g(x) where g(x) = x2 −1).
The degree of minimal polynomial is 3 so, there is a unique polynomial f of degree ≤ 2
such that f(1) = A, f(2i) = B and f(−1) = C for any A,B, C.

L0(x) =
(

x − i 2i i
−1

)

(x − i) = (x + 2i)(x − i) = x
2 + 3ix + 2,

L1(x) =
(

x − (2i − 1) 2i (2i − 1)−1
)

(x − 1) = x
2 +

1

5
(3 + 6i)x −

2

5
(4 + 3i),

L2(x) =
(

x − (i − 1) i(i − 1)−1
)

(x − 1) = (x + 1)(x − 1) = x
2 − 1.

Then,

f(x) =
(1 − i

6
A+

i − 3

6
B +

1

3
C

)

x
2 +

(1 + i

2
A−

1 + i

2
B

)

x+
(1 − i

3
A+

3 + i

3
B−

1

3
C

)

.

Example. Let R = D[x] where D is a division field of real quaternions. If ∆ = {i, j, k},
then f∆ = x2 + 1 is a polynomial of degree 2. There is no polynomial of degree ≤ 2 such
that f(i) = 1, f(j) = 0 and f(k) = 0.

If ∆ = {1, i, j}, then f∆ = (x−1)(x2+1) = x3−x2+x−1 is a polynomial of degree

3. Then, there exists a unique polynomial of degree ≤ 3 such that f(1) = A, f(i) = B

and f(j) = C.

There is a relation between the interpolation polynomial problem and the
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σ-Vandermonde matrix. We define σ-Vandermonde matrix to be

V σ
n (x0, . . . , xn−1) =















1 1 . . . 1
N1(x0) N1(x1) . . . N1(xn−1)
N2(x0) N2(x1) . . . N2(xn−1)
...

...
. . .

...
Nn−1(x0) Nn−1(x1) . . . Nn−1(xn−1)















.

T. Y. Lam [3] proves that the rank of this matrix is same as the degree of
a minimal polynomial of the set ∆ = {x0, . . . , xn−1} , and also gives the following
useful formulae for computing it:

(1) For any generalized quaternion division algebra D over a field F of cha-
racteristics 6= 2, then rank V=

∑

i

min{2, |∆i|} where ∆ = ∆1 ∪ · · · ∪ ∆m is the

partition of ∆ into σ-conjugacy classes.

(2) For C[x;−] let δ1, . . . , δm be different values among |d|, d ∈ ∆. Then rank

V =
m
∑

i=1

ri where ri = 1 if exactly one element in ∆ has modulus δi and ri = 2

otherwise.

Using this, we can answer the question about a degree of minimal polynomial
of given set. Now, we will give an exposition on generalization of polynomial
interpolation problem.

Proposition 4.3. Let ∆ = {x1, . . . , xk} and S = {(r, sr)|1 ≤ r ≤ k, 0 ≤ sr ≤ nr},
where n1, . . . , nk ∈ N. Then

(1) There exists a nonzero polynomial f such that f (sr)(xr) = 0 for all

(r, sr) ∈ S.

(2) The set I of polynomials such that f (sr)(xr) = 0 for all (r, sr) ∈ S form

a left ideal in R.

(3) If f∆,S is a monic polynomial of the smallest degree in I, then I = Rf∆.

We will call f∆,S the minimal polynomial for the pair (∆, S).

Proof. (1) For nr, 1 ≤ r ≤ k the polynomial f has right factor (x − xr)
nr−1. It

follows from Theorem 3.3. The left factor is determined by the Product Theorem.

(2) If f, g ∈ I, then f + g ∈ I. It follows from additive property of derivatives
at scalar. Let α ∈ R, and f ∈ I. Then (from Proposition 3.1.)

(αf)(sr)(xr) =
∑

i,k

(

sr

k

)

bia
σi

k M sr−k
i (d),

where ak = f (k)(xr) = 0 and f(x) =
∑

bix
i, bi ∈ K. So, (αf)(sr)(xr) = 0 for all

sr such that (r, sr) ∈ S. Then αf ∈ I.

(3) Let f ∈ I, f = qf∆,S + r, where q, r ∈ R and deg r < deg f∆,S. Then,
0 = f (sr)(xr) = r(sr)(xr) implies r ∈ I. f∆,S is polynomial of the smallest degree
in I, so r ≡ 0. The conclusion is: f ∈ Rf∆,S. �
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Theorem 4.4. Let ∆ = {x1, . . . , xk} and S = {(r, sr)|1 ≤ r ≤ k, 0 ≤ sr ≤ nr}
where n1, . . . , nk ∈ N and ysr

r ∈ K. Then, there exists the unique polynomial f ∈ R
of degree ≤ n−1 where n =

∑

(nr+1), such that f (sr)(xr) = ysr
r for all pairs (r, sr),

iff the minimal polynomial (in the sense of Proposition 4.3.) f∆,S is of degree n.

Proof. Let Φ : K[x; σ] → Kn be a K-linear function of left K-spaces given by

f 7→ (f (sr)(xr) : (r, sr)) ∈ S.

It follows from properties of derivatives. The rest of the proof is same as the proof
of Theorem 4.2. �

Example. Let R = C[x;−] and ∆ = {1, i}, S = {(1, 0), (2, 0), (2, 1)}. The minimal
polynomial of the pair (∆, S), i.e. the minimal polynomial such that f∆,S(1) = f∆,S(i) =
f ′

∆,S(i) = 0 is f∆,S(x) = x2 − 1. This is polynomial of degree 2. There is no polynomial
f such that f(1) = 1, f(i) = 1 and f ′(i) = 1.

Let ∆ = {1, i}, S = {(1, 0), (1, 1), (2, 0)}. The minimal polynomial of the pair
(∆, S) is f∆,S(x) =

(

x− (2 − 2i) i(2− 2i)−2
)

(x− 1)2 = (x + 1)(x − 1)2 = x3 + x2 − x− 1
(2 − 2i is value of polynomial (x − 1)2 = x2 − 2x + 1 at i). This polynomial is of degree
3, so there is a unique polynomial f of degree ≤ 2 such that f(1) = A, f(i) = B and
f ′(1) = C.

L0(x) is the monic polynomial such that L0(i) = L′

0(1) = 0, then L0(x) = x2

−2x − 1 + 2i. L1(x) is the monic polynomial such that L1(1) = L1(i) = 0. Then
L1(x) = x2 − 1. L2(x) is the monic polynomial such that L2(1) = L′

2(1) = 0. Then
L2(x) = (x − 1)2. We find that

f(x) =
(

−
1 + i

4
A +

B

2
+

1 + i

4
C

)

x
2 +

1 + i

2
(A − C)x +

(3 − i

4
A −

B

2
+

1 + i

4
C

)

.

Let ∆ = {1, i} and S = {(1, 0), (1, 1), (1, 2), (2, 0)}. Then

f∆,S(x) =
(

x − (4i − 4) i(4i − 4)−1
)

(x − 1)3 = (x + 1)(x − 1)3

(4i − 4 is the value of polynomial (x − 1)3 at i) is minimal polynomial of degree 4, so
there is unique polynomial of degree ≤ 3 such that f(1) = A, f ′(1) = B, f ′′(1) = C and
f(i) = D. The monic polynomial L0(x) such that L′

0(1) = L′′

0 (1) = L0(i) = 0 is

L0(x) = x
3 − 3x

2 + 3x − 4i + 3.

The monic polynomial L1(x) such that L1(1) = L′′

1 (1) = L1(i) = 0 is

L1(x) = x
3 − 3x

2 − x + 3.

The monic polynomial L2(x) such that L2(1) = L′

2(1) = L2(i) = 0 is

L2(x) = (x + 1)(x − 1)2 = x
3 − x

2 − x + 1.

The monic polynomial L3(x) such that L3(1) = L′

3(1) = L′′

3 (1) = 0 is

L3(x) = (x − 1)3 = x
3 − 3x

2 + 3x − 1,

So, desired interpolation polynomial is

f(x) = AL0(1)
−1

L0(x) + BL
′

1(1)
−1

L1(x) + CL
′′

2 (1)−1
L2(x) + DL

′′

3 (1)−1
L3(x).
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In general, we can find the interpolation polynomial for condition from The-
orem 4.4

f(x) =
∑

aΓ,SfΓ,S ,

where aΓ,S ∈ K are coefficients which we will find from condition f (rs)(xi) = yrs

i

and fΓ,S is the minimal polynomial of the pair (Γ, S) where

Γ = {x1, . . . , xi−1, xi+1, . . . , xk}

and
S = {(r, sr)|1 ≤ r ≤ k, r 6= i, 0 ≤ sr ≤ nk}

or Γ = ∆ and

S = Sm,` = {(r, sr)|1 ≤ r ≤ k, 0 ≤ sr ≤ nk, 0 ≤ s` ≤ n` − m},

where 1 ≤ ` ≤ k and 1 ≤ m ≤ n`.

For example: if ∆ = {x1, x2} and S = {(1, 0), (1, 1), (2, 0), (2, 1)}

f(x) = a1f{x1},{(1,0),(1,1)} + a2f{x2},{(2,0),(2,1)}

+a3f{x1,x2},{(1,0),(1,1),(2,0)} + a4f{x1,x2},{(1,0),(2,0),(2,1)}.

If ∆ = {x1, x2} and S = {(1, 0), . . . , (1, n − 1), (2, 0)}, then

f(x) = A(x − x1)
n + B(x − x2) +

n−2
∑

i=0

aif{x1,x2},Si
,

where Si = {(2, 0)} ∪ {(1, s)|0 ≤ s ≤ i}.
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