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MODELLING TRANSPORT OF MICROPOLLUTANTS IN BIOFILTRATION
SYSTEMS FOR STORMWATER TREATMENT

Abstract

Biofiltration systems, also known as bioretentions or rain-gardens, are widely used for
stormwater treatment. In order to successfully design biofilters, it is important to
improve models that can predict their performance. This thesis presents a rare model
that can simulate removal of a wide range of micro-pollutants from stormwater by
biofilters. The model is based on (1) a bucket approach for water flow simulation, and
(2) advection/dispersion transport equations for pollutant transport and fate. The latter
includes chemical non-equilibrium two-site model of sorption, first-order decay, and
volatilization, thus is a compromise between the limited availability of data (on
stormwater micro-pollutants) and the required complexity to accurately describe the

nature of the phenomenon.

The model was calibrated and independently validated on two field data series collected
for different organic micro-pollutants at two biofilters of different design. This included
data on triazines (atrazine, prometryn, and simazine), glyphosate, and chloroform. The
data included variable and challenging biofilter operational conditions; e.g. variable
inflow volumes, dry and wet period dynamics, and inflow pollutant concentrations. The
model was able to simulate water flow well, with slight discrepancies being observed
only during long dry periods when, presumably, soil cracking occurred. In general, the
agreement between simulated and measured pollutographs was good. As with flows, the
long dry periods posed a problem for water quality simulation (e.g. simazine and
prometryn were difficult to model in low inflow events that followed prolonged dry
periods). However, it was encouraging that pollutant transport and fate parameters
estimated by the model calibration were in agreement with available literature data. This
suggests that the model could probably be adopted for assessment of biofilter
performance of other stormwater micro-pollutants (PAHSs, phenols, phthalates, etc.).
The model, therefore, could be applied in practice for sizing of biofilter systems and

their validation monitoring, when used for stormwater harvesting.



The model was run with laboratory data from batch studies (fluorescein as referent
pollutant) and column studies (herbicides: atrazine, prometryn, simazine, glyphosate). A
procedure was developed for the estimation of parameters from batch studies, and a
regular calibration method was used for parameter estimation from column tests.
Parameters for both sorption and degradation were found to be underestimated from
batch studies. This is hypothesized to be due to differences in the water to soil ratio in
batch studies, when compared to the field. The sorption parameters estimated from
columns were also somewhat underestimated, and when used with the model produced
higher outflow pollutant concentrations. This is especially the case with glyphosate, and
only slightly with the triazines. Column studies also indicate less-kinetic-sorption
behaviour when compared with the field data. It is hypothesized that kinetic sorption
behaviour on the field may be apparent, and a consequence of the assumption that the
flow is one dimensional, when in reality it is not, leading to conclusion that the kinetic
behaviour is due to structural heterogeneity of the biofiltration material, rather than

chemical.

Uncertainty analysis was conducted using GLUE methodology that pointed the most
sensitive parameters: soil-water partitioning coefficient and fraction of sites prone to
instantaneous sorption. Additionally, the predictive uncertainty was assessed by making
95% confidence intervals for model predictions, and it suggested that the model is

sound.
Keywords

Stormwater biofilter, micropollutant modelling, atrazine, simazine, prometryn,

glyphosate, chloroform, uncertainty analysis
Research area: Civil Engineering

Specific research areas: Ecological engineering, Fluid mechanics and hydraulics,

Transport processes in hydrotechnical engineering
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MOAEJIMPABBE TPAHCIIOPTA MUKPOIIOJIYTAHATA V BUODOUIITEPCKUM
CUCTEMHUMA 3A TPETMAH KNIIHNUX BOJA

Pe3ume

Buodunrepcku cucremu, Mo3HATH M Kao OMOpETEH3Wj€ MM KHIIHE OaliTe, ce YecTo
KOPHUCTE 3a TPETMaH KUIIHUX Boja. Jla 6u 6uoduntepn OMiM yCcHemHo npojeKTOBaHH,
HEOTXOIHO j€ MOOOJBIIIake MoJIeNia KOJH MOTY Jia TpeABUIE HUXOBO MoHamame. OBa
JMcepTanyja CcaapKd MOZET KOjH MOXKE Ja CHMYJHpa OTKJIamame IIUpe Ipyme
MHUKpPOIOJyTaHaTa M3 KUIIHUX Boja rnomohy Omodunrepa. Mogen je 6asupan Ha (1)
METOAM JIMHEAPHUX pe3epBoapa KOjUMa Ce OINHUCYyje TOK BoJe U (2) aJABEKTHBHO-
JIMCIICp3UBHE TPAHCIIOPTHE jeHAYMHE 32 TPAHCIOPT MHUKPOIIOIyTaHaTa. TpaHcmopTHA
jemHayMHa CampKM M MOJEN 3a XEMHJCKH HEYPaBHOTEKEHY JBOCTEIICHY COPIIIIH]Y,
Ouopasrpajmy IO peakiju NPBOT peda, W BOJATHIU3ALM]y, U TaKO IpPeICTaBiba
KoMmrpoMuc wu3Mel)y orpaHmueHuxX mojaTtaka (0 MHUKPOIOJIYTaHTHMA Yy KHUIIHOM

OTHIIA]y) U HEOIXO/IHE CIIOKEHOCTH JIa C€ OTHUIIIE Mpupoaa peHoMeHa.

Mopen je kanmuOpricaH M HE3aBUCHO BepH(PUKOBAH Ha JIBE CepUje TEPEHCKHUX IMojaTaKa
NPUKYIUBCHE 33 Pa3JINYUTE OPTaHCKE MUKPOTIOIyTaHTe Ha Ba onodwirepa. [loganum cy
0 TpUa3WHHMMA (aTpa3uH, MPOMETPHH, CHMa3uH), riaudocary, u xiopodopmy. [logamm
o0OyxBaTajy OIEpaTHBHE YCIOBE KOJU Cy BapujadMJIHU ¥ HW3a30BHU: BapujaOUIIHE
3alpeMUHEe BOJE Ha yia3y y Ouodmirep, pa3iiMuuTy IWHAMHUKY CYIIHUX WU KHIITHHX
nepuosa W BapujaOWIIHE KOHIIGHTpaluje 3arahuBavya y KHWIIHO] Boau. Mogen je
YCIIEIIHO CUMYJIHpAo TOK BOJE, ca pa3jhuKkamMa Yy MEPeHUM W CHMYJIUPaHUM
BpPEIHOCTHMA MPOTOKA YOUJbUBUM Y MEpUOIMMA TIOCIIE JYTHX CYIIa, KaJa je 3eMJBHILTE
ucnynano. Crnarame n3Mely CUMyIUpaHuX U MEPEHHX IOJIyTorpaMa je OMiIo yriiaBHOM
no6po. Kao m ca mpoToruma, Iyru CyIIHH MEPUOAN Cy MPEICTaBJballd MPoOIeM | 3a
CUMYyJIallMje KBAJIUTETa BOJIE (HIP. CUMa3uH U IPOMETPUH HUCY HA]OOJbE MOJICITUPAHH Y
Nepuoly MAJOBOJHUX KHIIHMX €MU30/1a KOje Cy YCIEAWJEe IOCie AYror CYIIHOT
nepuona). Mehyrum, 6uno je oxpabpyjyhe na cy mapameTpu MOZen 3a TPAHCIOPT
MoJTyTaHaTa OICHEHU TMyTeM KanuOpalyje OWM Yy CcarjlaCcHOCTH ca BPEAHOCTHMA Y
muteparypu. OBO Jaje Ha3HaKe Ja OM MOJEN MOTrao Ja ce KOPHUCTH M 32 CUMYJIUPAHE

NOHAIIAka JPYTUX MHUKPONOJIyTaHTa (MOJUIMKINYHUX YIJbOBOJOHHIA, (eHoa,



¢ranara, uta.) y buopunrepuma. Mozen 6u, gakie, MOrao a ce IpUMEHHU U Yy IpaKkcu

3a JUMCH3HMOHHUCALEC 6HO(bHHTGpCKHX CUCTCMA U BAJIMJATUOHU MOHUTOPUHT .

Mogen je ucnpoban u ca 1abopaTopujckuM noganuma ca batch tecrosa (¢yopecuenn
Kao pedepeHTHH MHUKPOIIONYTAHT) U ca KOJOHA (XepOWIMIW: aTpa3uH, MPOMETPHH,
cuMasuH W riaudocar). Pa3Bujena je mpormenypa 3a MpOIEHY IMapaMarepa Mojena
KopuinhemeM mopataka ca batch TectoBa, a momamm ca konoHa cy kopumheHu 3a
kanuOpauujy mozaena. [lapamerpu Mozena Koju ONHCY]y COPIIHUjy U OuOpasrpaamy
onpehenn momohy batch tecroBa cy 6mmm mano mortuemenu. Cmarpa ce na je y3pok
TOME Pa3IM4YUT OJHOC 3EMJBHINTE-BOAA KOjU j€ TMPUMEHEH Y TECTOBHMA y OJHOCY Ha
OHaj KOju ce Hajazno Ha TepeHy. CopnumoHu mapameTpu oapeheHu ca KoJioHa Cy
Takohe OWIM Majo TMOTHEHEHH, W JaBaiu cy Behe wu3Ia3He KOHIGHTpaluje
MuKponoiayranara. OBo je moceOHO ciyyaj ca rimdocaroM, W Majl0 Mame ca
tpuazuauMa. [loganm ca KojoHa Ccy MOKa3anu Aa ce y HBHMa OJBHja MPOLEC COPIIHje
KOjH MMa JTAJIEKO Marmhe KapaKTePUCTHKY KHHETUKE, HEro OHO HITO CYy IOKa3aJIy MOAAIH
ca tepeHa. CMaTpa ce J1a je KUHETHKa COpIIIHje Ha TepeHy BEpOBATHO MPUBHUIHA, U Ja
je mocienuia MpeTnocTaBke Ja jé TOK BOAE Kpo3 OnoduiaTep jenHOIMMEH3MOHANAH.
Takohe ce cmarpa nma je jemaH oJ pasjiora 3a NMPUBHIHO KUHETHYKE KapaKTEPUCTHKE
COpIIIIMje Ha TEPEHY CTPYKTypalaHa XETEpOoreHOCT OmodmiITepcKkor Marepujaia, a He

XeMHjcKa (IITO je MPEeTIoCTaBKa MOJIENA).

Amnanuza nHeonpehenoctu je cnposeneHa xopuinhewem GLUE mertononoruje koja je
yKa3aja Ha HajoCeTJbHBHjEe MapamMeTpe Mojena: KOS(pHUIMjeHT MapTULUje U MPOLeHAT
COpIIIMOHHUX MeCTa KOja Cy CKJIOHa MHCTaHT copruuju. [logaTHo, HampaBsbeH je 95%
WHTEpBaJ TOBEpeHa, KOjU je TMokazao Ja je BehmHa mepewma a00po oOyxBaheHa

MOACIOM.

Kibyune peun

buodunrtep 3a TperMaH KUIIHMX BOJa, MOJEIHMPAKE MHKPOIOJIyTaHaTa, aTpa3uH,

CHUMa3HH, IPOMETPHH, Taudocar, xaopodopm, ananuza Heoxpehenoctu
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1 INTRODUCTION

Micropollutants found in stormwater are becoming a noticeable issue, and an increasing
number of studies illustrate their toxicological effects. Although micropollutant
concentration levels are usually lower than what is the maximum allowed level (by
regulations), and pharmaceutical products’ levels are usually lower than therapeutic
doses, adverse effects still exist while their cumulative effects are unknown. In some
cases, harmful effects are caused by micropollutant byproducts. The presence of certain
micropollutants or their byproducts at even low levels are sufficient to change the
metabolism of living cells, which results in deterioration of cell self-protection, making
them susceptible to illnesses and malignant degenerations. The effects are increased in
high population density areas, as well as in industrial and commercial city zones.
Micropollutants and their byproducts have been found in both surface and ground
waters in such areas. These micropollutants are involved in sorption and degradation
processes that eventually lead to their attenuation. Urban stormwater, a possible major
carrier of micropollutants, can contain disinfection products, herbicides, hydrocarbons
and other miscellaneous organic compounds. This is of particular problem for
stormwater harvesting practices that aim to treat captured urban runoff for both non-

potable and (in rare cases) potable uses.

Biofilters, wetlands and other Water Sensitive Design technologies are effective
stormwater treatment technologies. They have been shown to efficiently reduce loads of
nutrients, sediments and metals, but there is no understanding on whether these systems
can remove common stormwater micropollutants. More importantly there are no
reliable models that can predict micropollutant behavior in Water Sensitive Urban
Design navesti puno ime skracenice pre prvog koriscenja u tekstu (WSUD) stormwater
treatment systems. Even models for assessing micropollutant discharges from urban
catchments are very rare. However, without such models, it is difficult to assess impacts
of micropollutants on receiving waters and even more difficult to design and assess

performance of the stormwater treatment and harvesting systems.

Water legislation regulates micropollutant concentrations in waterways either directly,

by controlling their discharge (e.g. National Pollutant Discharge Elimination System,
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US EPA) or indirectly, by setting requirements for achieving a good water status (e.g.
EU Water Framework Directive). Lists of priority pollutants (a.k.a. emerging
pollutants), such as the EU WFD 2008/105/EC, include a large number of organic
micropollutants, some of which are often found in stormwater. To achieve legislative
requirements that call for limiting pollutant discharge concentrations, and especially to
achieve a good water status, it is necessary to collect a substantial amount of
measurement data. The main issue with measurements related to micropollutants in
various environments (water, soil, air) is that due to their very low concentrations (order
of magnitude is pg/L) data uncertainty is quite high: representative samples are difficult
to produce and sample analysis methods include operations that can induce large errors
e.g. concentrating samples to get detectable amounts of micropollutants. This is why
measurements of micropollutant concentrations require high technical and financial
resources. The difficulties in conducting measurements give an additional value to the
development of a micropollutant-biofilter model, as it can be used as a tool to optimize
the monitoring procedure (that is necessary to demonstrate that treatment processes are
capable of achieving the required water quality objectives) by selecting only the most
valuable data points to be collected, thereby minimizing the total expenses (number of

measurements).

1.1 Biofiltration water quality modelling

As previously stated, for biofilters to be used as an effective stormwater management
measure, it is important to accurately model their performance: continuous simulations
of biofilter hydraulic and treatment efficiencies allow for predictions of long-term
impact on reduction of stormwater pollution levels and loads. Reliable modelling of
biofilter performance is crucial for adequate sizing of biofiltration systems when used

for both pollution control and stormwater harvesting.

There are not that many stormwater quality models that can be easily applied to
stormwater biofilters without oversimplifying the processes. Some of the widely used
stormwater software tools, such as MOUSE (DHI, 2009a-c), SWMM (Rossman, 2010)
and STORM (US Army Corps of Engineers, 1977) use reservoir equations for
modelling of biofiltration (i.e. bioretention) hydraulics, while they offer simple user

defined regressions for the assessment of their treatment performance. These regression
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equations need an abundandance of data, which in the case of micropollutants is quite
difficult to obtain (technically and financially). Additionally, they lack the
transferability between different variants of systems and do not perform well under
different operational conditions. Even software specifically developed for stormwater
biofilters, such as MUSIC software (eWater CRC, 2009), although includes a more
complex biofiltration hydraulic model that continuously assesses outflows and moisture
content within the systems, still relies heavily on regression equations for the transport
and fate of pollutants (it uses first-order decay (USTM by Wong et al., 2006), but also
experimentally derived regression curves (EWATER CRC, 2009)). It should be noted
that, to the best of author’s knowledge, none of the above models have been tested with

micropollutants.

There are, however, models more physically based developed for biofilters (e.g.
STUMP (Vezzaro et al., 2010)) or vertical flow constructed wetlands (e.g. CW2D
(Langergraber and Simtinek, 2005)), but they are either dependent on data shown to
have low correlation with micropollutant concentrations (such as TSS, as shown by
Zhang et al, 2015b), or are too complex (excessive data needed).

A more suitable model that is able to simulate the main treatment processes within the

stormwater biofilter with parameters that are easily estimated is needed.

1.2 Overall aim

The aim of this study was to develop a general treatment model that allows for long-
term simulations of stormwater biofilters and their performance for a wide range of
micro-pollutants. The model needed to be reliable even when little data is available,
which is almost always the case. Therefore, the model was required to simulate the main
treatment processes within stormwater biofilters (at least volatilisation, sorption, and

bio-chemical degradation) where the model parameters can be easily determined.
The aim was achieved through following specific objectives:

1. To develop a stormwater micropollutants model that includes the transport and
fate of pollutants in biofiltration systems (the aim for the model was to be mechanistic,
so that it can be easily transferred to other WSUD systems such as filters, infiltration

trenches, swales, wetlands, etc.);
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2. To conduct controlled lab and field tests to refine model components that

simulate micropollutant treatment in biofilters;

3. To calibrate, validate, and assess uncertainties in the model using field data from

two stormwater systems (two types of biofiltration design).

The developed model is anticipated to be used as a tool to ease the management of
stormwater biofiltration systems when they are used for water harvesting or for control
of the polluted urban runoff to water receiving bodies. The model can also facilitate the

validation monitoring of biofilter systems (Zhang et al., 2015).

1.3 Scope of the thesis

The model developed in this study focuses on predicting micropollutants levels in urban
stormwater treated by biofiltration systems of varying design. Model outputs include
both micropollutant concentrations and loads. Although the model can be useful in
water quality assessments, it does not include a specific part that can assist with that
type of analysis (assessment criterias are not incorporated).

The development of the model and its testing was conducted on datasets that were
collected throughout this research, as well with some data previously collected at the
same sites. Data was collected from two different biofiltration cells, located at Monash
campus in Melbourne and from several biofilter column testing tubes. Long term and
high resolution flows, water levels, and soil moisture were measured. Composite and
discrete inflow and outflow samples were analyzed to obtain data on TSS, TP, TN, total
petroleum hydrocarbons, PAHS, glyphosate, triazines (atrazine, simazine, prometryn),
phthalates (dibutyl phthalate, di-(2-ethylhexyl) phthalate), trihalomethanes (THMs) and
phenols (phenol, pentachlorophenol).

The sensitivity analysis was performed using the less formal likelihood method GLUE
(Generalized Likelihood Uncertainty Estimation, Beven and Binley, 1992), as it has no
drawback when compared to the strictly Bayesian methods as shown by Dotto et al.
(2010). The main focus of the uncertainty analysis was the module for the transport and

fate of micropollutants.
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1.4 Outline of the thesis

Chapter 2 provides a literature review as well as the identification of the key knowledge
gaps, and presents the research aims and the main hypotheses. The review has four
distinct parts: (1) stormwater quality and identification of key micropollutants, (2)
biofiltration system operation characteristics, (3) review on existing models and
modelling techniques, and (4) sources of uncertainty and uncertainty assessment in

stormwater quality models.

Chapter 3 presents experimental data collected at the field and laboratory scale. It
includes the field tracer tests, field electroresistive tomography, field spiking tests and
laboratory column and batch studies. The column and batch studies were mostly
performed by Kefeng Zhang (PhD thesis, 2015) and are only summarized here.

Chapter 4 presents the development of the MPiRe model, which includes both the
adaptation of the water flow module, as well as the total development of the water

quality part. This chapter includes governing equations and their solving techniques.

Chapter 5 includes model testing against field data i.e. calibration and verification. In
addition to the input data and the boundary conditions, the calibration procedure is
explained and model performance indicators are presented. This chapter also includes
the methodology for estimating model parameters from column and batch tests. The
initial testing includes analysis of the model performance against field data, and the

meaning of parameter values.

Chapter 6 explores the model further via an uncertainty analysis. The calibration
uncertainty is assessed by choosing different parts of dataset for calibration. The
uncertainty of input data is visualized with impact of different scenarios (introduction of
systematic errors to measurement data) on the probability distributions of model
parameters. The results are used for the evaluation of sensitivity and predictive

uncertainty of the stormwater quality model.

Chapter 7 provides a summary of the key findings, as well as a critical overview of the
thesis’ main strengths and weaknesses. A summary of necessary further investigations

IS given.
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2 LITERATURE REVIEW

2.1 Introduction

This chapter presents a literature overview of the broader research topic. The first topic
is the stormwater quality in general with a focus on micropollutants, where different
studies reported in literature are explored in search for the key micropollutants (their
importance is estimated by their presence in the stormwater, as well as the hazard they
present to humans and aquatic biota). This is followed by an overview of the major
characteristics of stormwater biofiltration systems that includes their design and mode
of operation. The major focus is the review of existing models and modelling
techniques, which is the base for the development of the model in this thesis
(Chapter 4). The final topic is the review of the uncertainty assessment methods
applicable to stormwater quality modelling that present a theoretical background for
Chapter 6. The literature review is concluded by identifying the key knowledge gaps

and subsequently presenting the specific research aims and main hypotheses.

2.2 Stormwater quality
2.2.1 Micropollutants, priority or emerging pollutants

Micropollutants, priority substances, priority and emerging pollutants are terms that are
sometimes used interchangeably; although the terms overlap to some extent, they have
different origins. The term “micropollutant” is a scientific classification, while the terms
“priority substance”, “priority pollutant” or “emerging pollutant” can be considered

regulatory classifications.

Micropollutants are defined as compounds present in traces in the environment (with
concentrations in the pg/L to ng/L range) that can affect the health of living organisms
(Schwarzenbach et al., 2006). This broad definition does not limit the scope of
substances that can be classified as micropollutants, so literature identifies
micropollutants as various inorganic substances (metals, minerals) as well as different
organic compounds (pesticides, polycyclic aromatic hydrocarbons, phenols, volatile

organic substances, pharmaceuticals and personal care products, etc.).
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Priority pollutants are defined in the US water quality regulatory programs under the
Clean Water Act (CWA of 1977) as “toxic pollutants, with an available chemical
standard test, that are found in water with a frequency of occurrence of at least 2.5% and
are produced in significant quantities.” The list contains a total of 129 pollutants, most
of which are organic substances. The majority of priority pollutants, but not all, are also
considered micropollutants, as they are detected in very low concentrations in the

environment.

Priority substances are defined under the Annex Il of Directive 2008/105/EC (EU Water
Framework Directive, 2008). The list contains a total of 33 organic and inorganic

substances, which are all considered to be micropollutants.

Emerging pollutants are a never-ending list of synthetic or natural substances that are
“not commonly monitored but have a potential to enter the environment and cause
adverse ecological and human health effects” (Geissen et al., 2015). These compounds
are a new frontier in science; some do not have a long history of release into the
environment and are only now becoming detectable due to advances in monitoring
methods, while others are newly synthesized materials or are created by changes in use
or disposal of existing chemicals (Geissen et al.,, 2015). The Norman-network

(www.norman-network.net) lists more than 700 emerging pollutants. Most of these

substances are considered to be micropollutants.

2.2.2 Notable stormwater quality studies

Stormwater as a major non-point pollution source can have a significant impact on
receiving water bodies and as such has been a subject of many studies to date. Probably
the most comprehensive and thorough study is the 1995 Makepeace et al. review of
multiple physical, chemical and microbiological contaminants and indicators covering
around 140 literature sources over a span of 25 years (1967 — 1992). The compilation’s
significant contribution is that it identified and quantified specific parameters (such as
metals, organic compounds, microorganisms, temperatures, alkalinity etc.) rather than
the traditionally used overall quality parameters. The reported levels of these parameters
were compared to their regulated values and additionally to reported possible adverse

effect levels. In addition to defining the most critical stormwater contaminants that
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affect humans (through drinking water) and aquatic life, the study also helped in
identifying the knowledge gaps in the toxicity of the combinations of certain organic
and/or inorganic parameters. Duncan (1999) presented a statistical overview of reported
urban runoff water quality and included interactions between stormwater quality with
land use, population density, traffic density, and other catchment characteristics. The
work by Duncan (1999) was based on data that covered a span of 47 years (1950 —
1997) and 21 specific water quality parameters: suspended solids, nutrients, COD,
BOD, oils, TOC, pH, turbidity, heavy metal concentrations, and faecal coliforms. Gobel
et al. (2007) went even further by developing a matrix for urban stormwater runoff
concentrations for different types of surfaces (roofs, roads, etc.) that is usable in
stormwater quality modelling. This includes event mean concentration range, as well as
the representative average concentrations for 22 pollutants in 12 types of surface runoff
(physico-chemical parameters, sum parameters, nutrients, heavy metals, main ions, and

organic substances).

One of the first extensive priority pollutant specific studies was a monitoring
programme conducted by Cole et al. (1984) across various cities throughout the United
States, which included a total of 129 pollutants (pesticides, inorganic compounds,
PCBs, halogenated aliphatics, phenols, etc.) and their potential risk to human health. A
more recent and comprehensive two-part study was performed in the urban areas of
Paris, France by Zgheib et al. (2012) and Gasperi et al. (2012). The named authors
analysed a total of 88 priority pollutants in separate (“pure” stormwater) and combined
storm sewers, such as metals, PAHs, PCBs, pesticides, volatile organic compounds,

phthalates, etc., and presented their occurrence in particulate and dissolved phases.

2.2.3 Organic micropollutants detected in stormwater

Based on the results of Programme 5: Risks and Health of the Cooperative Research
Center for Water Sensitive Cities (CRCWSC, Australian Government), a list was
compiled that includes organic micropollutants detected in stormwater. The
methodology for the formation of the list was to find whether regulated priority
pollutants are detected in stormwater. The search lists included EPA and EU regulated

priority substances from three major lists:
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The US EPA Priority Pollutants list (126 chemicals) (US EPA, 2009);

The US EPA Unregulated Contaminants Monitoring Rule 2: Assessment
monitoring list 1 and Screening survey list 2 (25 chemicals) (US EPA, 2010);
The European Commission Priority Substances list (33 chemicals) (ECE, 2008).

2-1 shows a list of 91 organic substances from regulated lists of priority

pollutants that are reported to be detectable in stormwater, as well as their detection

range.

Table 2-1 Organic micropollutants detected in stormwater (list adapted from P5: Risks

and Health (CRCWSC, Australian Government) and Zhang (2015))

No. Category Compound CAS No. Detection Range Reference
Halogenated Tribromomethane
! Aliphatics (Bromoform) 75-25-2 lug/L [1]
Trichloromethane

2 (Chloroform) 67-66-3 0.2-12pg/L [1]

3 Chlorodibromomethane 124-48-1 2ug/L [1]

4 Dichlorobromomethane 74-82-8 2ug/L [1]

1], [2], [14
5 Dichloromethane 75-09-2 1.5-14.5ug/L (a1, [[1]é][ L
Tetrachloromethane

6 (carbon tetrachloride) 56-23-5 1-2pg/L [1], [2]
7 Trichlorofluoromethane 75-69-4 0.6-27ug/L [1]

8 1,1-dichloroethane 75-34-3 1.5-3ug/L [1]

9 1,2-dichloroethane 107-06-2 <4ug/L [1], [2]
10 1,1,1-trichloroethane 71-55-6 1.6-10pg/L [1], [2]
11 Trichloroethylene 79-01-6 0.3-10pg/L [1], [2]
12 1,1,2-trichloroethane 79-00-5 2-3ug/L [1]

13 Tetrachloroethylene 127-18-4 4.5-43ug/L [1], [2]
14 1,1,2,2-tetrachloroethane 79-34-5 2-3ug/L [1]

15 1,1-dichloroethene 75-35-4 1.5-4pg/L [1]

16 1,2-dichloroethene 156-59-2 1-3ug/L [1], [2]
17 Trichloroethene 79-01-6 0.3-10pg/L [1]

18 Tetrachloroethene 127-18-4 4.5-43ug/L [1]

19 1,2-dichloropropane 78-87-5 <3ug/L [1], [2]
20 PAHs Total PAHs Unspecified 0.24-33.7ug/L [1[]é][2[]l1([;]”'
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No. Category Compound CAS No. Detection Range Reference
21 Anthracene 120-12-7 0.005-10pg/L [1], [2], [7]
22 Acenaphthene 83-32-9 0.013-0.044 [14], [15]
23 Acenaphthylene 208-96-8 0.027-0.126 [14], [15]
24 Benzo(k)fluoranthene 207-08-9 0.0012-103pg/L [1], [2], [3]
25 Benzo(b)fluoranthene 205-99-2 0.0034-260ug/L [1], [2], [3]
26 Benzo(k)fluoranthene 207-08-9 0.0012-103pg/L [1], [2], [3]
27 Benzo(e)pyrene 192-97-2 4-6.1pg/L [2]

28 Benzo(g,h,i)perylene 191-24-2 0.0024-1.5ug/L [1], [2]
29 Chrysene 218-01-9 0.0038-10ug/L [1], [2]
30 Fluoranthene 206-44-0 0.3-110pg/L [1], [2], [3]
31 Fluorene 86-73-7 0.006-1pg/L [1], [2]
32 Benzo(a)pyrene 50-32-8 0.0025-300pg/L (11, [[é]]' 31,
33 Naphthalene 91-20-3 0.018-100pg/L [1][’6[]2][17[]311
34 Phenanthrene 85-01-8 0.026-10ug/L [1], [2], [7]
35 Pyrene 129-00-0 0.045-120pg/L [11, [21, [3]
36 2-methylantracene 613-12-7 0.01-1.6pg/L [2]

37 9,10-diphenylanthracene 781-43-1 1-1.4pg/L [2]

38 Indeno[1,2,3-cd]pyrene 193-39-5 0.031-0.05 [2], [14], [15]
39 Pesticides Aldrin 309-00-2 0.1ug/L [1]

40 Atrazine 1912-24-9 0.0003-0.0016 [13]

41 Aminotriazole 61-82-5 0.14-0.53 [14], [15]
42 AMPA 74341-63-2 0.48-0.73 [14], [15]
43 a-BHC 319-84-6 0.0027-0.01pg/L 111, [2]
44 B-BHC 319-85-7 0.1pg/L [1], [2]
45 v-BHC (lindane) 58-89-9 0.052-0.01pg/L [1], [2]
46 6-BHC 319-86-8 <0.1pg/L [1], [2]
47 Chlordane 12;;3?7_2_39-6/ 0.01-10pg/L (11, [[12613'] 31,
8 P e 72-54-8 <0.008pg/L 1, 2]
49 DDZI(SPLIZTL‘Z;;'EP:;”V' 72-55-9 <0.015ug/L 1], [2]
50 DDT (di-chloro-diphenyl- 50-29-3 <0.1pg/L (11, 2]

trichloroethane)
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No. Category Compound CAS No. Detection Range Reference

51 Dieldrin 60-57-1 0.005-0.1pg/L [1], [2]

52 Diuron 330-54-14 0.02-0.65ug/L [13[]:'[;:][4]'

53 a-endosulfan 959-98-8 0.1-0.2pg/L [1], [2]

54 Endrin 72-20-8 <0.005pg/L [2]

55 Glyphosate 1071-83-6 <1.92 [14], [15]

56 Heptachlor 76-44-8 0.1pg/L [1]

57 Heptachlor epoxide 1024-57-3 0.1pg/L [1]

58 Isophorone 78-59-1 <10pg/L [1], [2]

59 1,3-dichloropropene (DCP) 115-07-1 1-2ug/L [1], [2]

60 Methoxychlor 72-43-5 <0.02 pg/L [2]

61 Metaldehyde 108-62-3 <0.062 pg/L [14], [15]

62 Pentachlorophenol (PCP) 87-86-5 1-115pg/L [1], [2]

63 Simazine 122-34-9 0.06-0.17 [13]

64 PCBs Total PCBs Unspecified 0.03-1.12 pg/L [2]

65 PCB 118 31508-00-6 <0.01-0.104 pg/L [15]

66 PCB-1260 (Arochlor 1260) 11096-82-5 0.03pg/L [1]

67 Phthalates Diethyl Phthalate (DEP) 84-66-2 2-10pg/L [1], [2]

68 Dibutyl Phthalate (DBP) 84-74-2 0.5-11pg/L [11, [2]

69 Dioctyl phthalate (DOP) 117-84-0 0.4-1pg/L [1], [2]

70 Diethy”‘(‘;xEy:IE;‘thalate 117-81-7 0.45-60.9 pg/L [[11]152%15;]
[15]

71 Butyl benzyl phthalate 85-68-7 3.3-130ug/L [1], [2], [3]

Pharmaceuticals
72 :a"rz z‘:;;‘:nci's Ibuprofen 15687-27-1  <0.0026-0.674ug/L (5]
(PPCPs)

73 Naproxen 22204-53-1 <0.0004-0.145pg/L [5]

74 Triclosan 3380-34-5 0-0.029 pg/L [5]

75 Phenols Phenol 108-95-2 3-10ug/L [1]

76 2-chlorophenol 95-57-8 2ug/L [1]

77 2,4-dimethylphenol 105-67-9 <10ug/L [1], [2]

78 Nonylphenol 104-40-5 0.01-9.17 pg/L [Ggii?’]’[ii]’

79 4-n-octylphenol 1806-26-4 0.018-0.24 [12]

80 4-nitrophenol 100-02-7 1-19ug/L [1]
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No. Category Compound CAS No. Detection Range Reference
81 Bisphenol A 80-05-7 0.0015-0.113pg/L [5]
82 Ethers Bis(2-chloroethyl) ether 111-44-4 2.0-87ug/L [3]
83 Bis(2-chloroisopropyl) ether 39?3::2;__?3/ 3.0-400ug/L [3]
Other
84 mis;‘::::i?us Benzene 71-43-2 3.5-13ug/L (1], 2]
chemicals

85 Chlorobenzene 108-90-7 1-10ug/L [1], [2]
86 Ethylbenzene 100-41-4 1-2pg/L [1], [2]
87 Toluene 108-88-3 9-12ug/L [1], [2]
88 Perfluorooc(t;:gss)ulfonic acid 1763-23-1 0.051g/L (10]
89 Perfluor((l):?:gZToic acid 335.67-1 0.09ug/L (10]
90 Perylene 198-55-0 0.05-0.5ug/L [2]
91 m-cresol, p-chloro- 108-39-4 <1.5ug/L [1], [2]

[1] Cole et al., 1984; [2] Makepeace et al., 1995; [3] Pitt et al., 1995; [4] Ngabe et al., 2000; [5]
Boyd et al., 2004; [6] Eriksson et al., 2005; [7] Hwang and Foster, 2006; [8] Go6bel et al., 2007;
[9] Bjorklund et al, 2009; [10] Murakami et al., 2009; [11] Clara et al., 2010; [12] Bressy et al.,
2011; [13] Page et al., 2011; [14] Zgheib et al., 2012; [15] Gasperi et al., 2012; [16] Gillbreath
and McKee, 2015

The organic compounds identified in Table 2-1 were further classified according to
whether they were detected in levels that are considered to have no detrimental effects
to humans. The detection ranges of organic pollutants listed in Table 2-1 were compared
to Australian Drinking Water Guidelines (ADWG, 2011), and Australian Guidelines for
Water Recycling: Augmentation of Drinking Water Supplies (AGWR, 2008). Organic
pollutants detected above AGWR-ADW guideline values are presented in Table 2-2.
The exclusion of other detected organic micropollutants does not imply that their
environmental presense and concentration levels are safe and that they can be neglected,
as the AGWR and ADW guidelines mainly focus on hazards likely to be present in
wastewater and potable water and may overlook a broader range of hazards that may be
present in stormwater (especially for aquatic biota). The chemicals not identified by
AGWR-ADWG as hazards should be further analysed for potential risk to humans and
aquatic biota (Zhang, 2015).

| Page 14



Chapter 2: Literature review

Table 2-2 Micropollutants detected in stormwater above Australian drinking water
guideline values

Category Compound Detection range Guideline value

Halogenated

Aliphatics Dichloromethane 1.5-14.5 pg/L 4 pg/L®
PAHs Benzo(a)pyrene 0.0025-300ug/L 0.01ug/L?
Naphthalene 0.018-100pg/L 70ug/L"
Pesticides Chlordane 0.01-10ug/L 2ug/L?
Pentachlorophenol (PCP) 1-115pg/L 10pg/L?®
PCBs Total PCBs 0.03-1.12 ug/L 0.14pg/L"®
PCB 118 <0.01-0.104 pg/L 0.016 ng/L "
Phthalates Diethylhexyl phthalate (DEHP) 0.45-60.9 pg/L 10pg/L®
Other MOCs Benzene 3.5-13pug/L 1pg/L?®

& Australian Drinking Water Guidelines (NHMRC-NRMMC, 2011)
® Australian Guidelines for Water Recycling: Augmentation of Drinking Water Supplies
(NRMMC et al., 2008)

2.2.3.1 Halogenated aliphatics

Halogenated aliphatics are non-aromatic hydrocarbons. A total of 19 halogenated
aliphatics is reported to be detected in stormwater with only one compound,
Dichloromethane, detected in the concentration range above the AGWR-ADW
guidelines (Table 2-2). However, having in mind that the AGWR-ADW guidelines do
not consider all potential hazards to human health and aquatic biota, Chloroform
(Trichloromethane) was also included as a compound of particular significance. This is
due to the high toxicity of chloroform (e.g. stillbirths, Dodds et al., 2004), which is of
particular interest if stormwater is to be harvested for potable use. Sources of
dichloromethane and chloroform in stormwater include solvents, aerosols, fire-retardant
chemicals, and products of reactions of chlorine with organic chemicals (Makepeace et
al., 1995).

2.2.3.2 Polycyclic aromatic hydrocarbons (PAHS)

Polycyclic aromatic hydrocarbons (PAHs) have two or more aromatic rings. Some
PAHSs are volatile (e.g. naphthalene), while most PAHs are hydrophobic (non soluble in
water). Depending on the number of rings, PAHSs can be classified as light (3-rings and
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less: naphthalene, acenaphthene, acenaphylene, fluorene, etc.) or heavy (more than 3-
rings: fluoranthene, pyrene, benzo(a)pyrene, etc.). All PAHs are considered to be
cancerogenous. A total of 18 PAHs are identified in stormwater, with only two
surpassing the concentration levels prescribed by the AGWR-ADW guidelines:
benzo(a)pyrene and naphthalene (Table 2-2). In addition, pyrene (a PAH with five
benzene rings) is also considered to be a significant organic micropollutant as it
contributes substantially to the total PAHs load, and is detected in concentrations
(120 pg/L) close to the AGWR-ADW guideline values (150 pg/L). PAHs are
ubiquitously present in the environment as they are produced by an incomplete

combustion and many fuel processing operations.

2.2.3.3 Pesticides

Pesticides include: (1) herbicides that are chemicals used for prevention of growth or
killing of certain types of vegetation, like weeds, and (2) biocides that are chemicals
used for prevention of reproduction or killing of pest animals (insects, fungi, rodents
etc.). Biocides are also referred to as fungicides, insecticides and pesticides. Pesticides,
therefore, include various chemical compounds such as triazines, organophosphorus,
organochlorines, amino-phosphonates, etc. Chlordane and pentachlorophenol (PCP) are
the only two pesticide compounds detected in stormwater at concentrations above the
AGWR-ADW guidelines (Table 2-2). Glyphosate, an active ingredient in many popular
herbicides, including Monsanto’s Roundup® brand herbicide, is probably the most used
and most studied worldwide pesticide. Due to its classification as “probably
carcinogenic to humans” by the International Agency for Research on Cancer (IARC,
2015) and its widespread use, it was selected as one of the key micropollutants.
Triazines (especially atrazine and simazine) are also popular choices as pesticides due to
their high efficiency in eliminating weeds. Although banned in many countries (e.g.
Serbia, since 2008; EU, since 2003), triazines can still be found and are widely used in
the US and Australia (SoE, 2011). Major sources of pesticides in stormwater are runoff

from gardens, agriculture areas, and pesticide production and storage points.

2.2.3.4 Polychlorinated biphenyls (PCBsS)
Polychlorinated biphenyls (PCBs) are very toxic substances that are persistent and

readily transported from sites of contamination to remote areas (Beyer and Biziuk,
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2009). Total PCBs and PCB 118 are found to surpass the set guidelines (Table 2-2). It
should be noted that PCBs are found to be 100% particle-bound in stormwater (Zgheib
et al., 2012). Main sources of PCBs in stormwater include leaching of lubricants,

hydraulic fluids, landfills, and old transformer fluids.

Table 2-3 The key organic micropollutants that exist in stormwater runoff with their
physicochemical properties (Mackay et al, 2006)

Solubility
(mg/L)

Kienry Half-life

Category Compound (Pa m*/mol) (days)

Log Kow Log Ko

1.3-191 (sandy I)

Halogenated .\ " ethane 16940 1.31 1.68 110-450 54.8 (sand)

Aliphatics 12.7 (sandy clay)
100 (soil)
* - R
Chloroform 8452 1.95 1.65-1.90 200-700 56-180 (grondw.)
PAHs Benzo(a)pyrene 0.002 6.13 6.6-6.8 8-74E-03 229-309 (sandy |.)
Naphthalene 32.2 3.33 2.30-3.17 35-125 80 (soil); 220 (gw)
Pyrene* 0.1 5.13 3.11-6.50 0.5-0.2 199-260 (sandy |.)
Pesticides Chlordane 0.1 2.78 4.19-4.39 0.2-10 476-2272
Pentachlorophen 18.9 483  3.483.60  0.003-0.28 23-178
ol (PCP)
Glyphosate* 12000 3.5 3.42-4.38 1.4E-05 4-210
Atrazine* 29.8 2.65 2.09 2.7-6.2E-04 36-116
Simazine* 5.7 2.18 2.13 0.3-3.4E-04 11-70
PCBs Total PCBs insoluble >4.0 >3.7 20-100 3-100
PCB 118 0.1-0.2 5.4 4.5-5.3 20-101.5 1-120
Diethylhexyl
Phthalates phthalate (DEHP) 0.029 7.48 4.0-5.0 0.004-4 2-69.3
5-16 (soil)
Other MOCs Benzene 1748 2.17 1.99 270-650 10-720 (gw.)

* Micropollutant detection range in stormwater was not above selected guidelines, but is selected

according to different criteria

2.2.3.5 Phthalates

Phthalates are esters of the phthalic acid and are mainly used as additives in the
production of plastic compounds such as polyvinyl chlorids (PVC). Phthalates can be
easily released from plastics, as they do not form a covalent bond, but rather only stay
entangled (Wilkes et al., 2005). This is why many monitoring campaigns of human

urine, food, and environment report the presence of phthalates (e.g. Griffiths et al.,
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1985). As can be seen in Table 2-2, bis(2-ethylhexyl) phthalate (DEHP) is the only
phthalate detected in concentration above the set guidelines. Sources of phthalates are

plastic pipings, varnishes, safety glass and plastic food wraps.

2.2.3.6 Pharmaceuticals and personal care products (PPCPs)

Pharmaceuticals and personal care products (PPCPs) include various compounds and
are usually found in the sewer (from showers, toilets, etc.). There is some evidence of
PPCPs presence in stormwater (Boyd et al., 2004), but the detected levels are far below

selected guidelines.

2.2.3.7 Phenols

Phenols are compounds that are derivatives of the phenol — carbolic acid. Due to their
inexpensive production, phenols are used across different industries: production of
plastics, polycarbonates, epoxide resins, precursor to different pharmaceutical products,
cosmetics, herbicides, etc. The wide use of phenols results in their abundant presence in
the environment. Although there are 7 different priority phenols detected in stormwater,
only four of them have guideline values: 4-nitrophenol (30 ug/L), 2-chlorophenol (300
ug/L), nonylphenol (500 pg/L) and Bisphenol A (200 pg/L). None of the listed phenols
are detected in stormwater concentrations that surpass the selected AGWR-ADW

guidelines.

2.2.3.8 Other Miscellaneous organic chemicals

Of the many non-classified organic chemicals, only benzene is detected in stormwater
in concentrations far above the guidelines (Table 2-2). Sources of benzene in
stormwater include spills and combustion of fuels (especially from motor vehicles), and

petrochemical and chemical manufacturing emissions.

2.2.3.9 Inorganic chemicals

Although not a research aim in this thesis, some inorganic chemicals are also considered
to be micropollutants. The most studied of them are the heavy metals (elements starting
with Sc, sometimes Na). The presence of heavy metals in stormwater is interesting as
they are quite toxic and persistent (are not degraded chemically or biochemically). The
main sources of heavy metals in stormwater are depositions throughout catchments

(Djuki¢ et al., 2016) or emissions in the atmosphere due to either anthropogenic
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activities or natural causes. Anthropogenic sources include vehicle brake emissions,
weathering of roof materials, petrol additives, paints, batteries, pesticides, etc. Natural
sources are activities of volcanoes, forest fires, erosion of rock materials, minerals etc.
Lead (Pb), copper (Cu), zinc (Zn), cadmium (Cd), chromium (Cr), mercury (Hg),
platinum (Pt), and nickel (Ni) are identified as priority pollutants, while Zhang (2015)
reports six more metals to be detected in stormwater at concentrations above the
AGWR-ADW qguidelines: antimony (Sb), aluminium (Al), arsenic (As), iron (Fe),

manganese (Mn) and selenium (Se).

2.2.3.10 Summary

Table 2-3 presents selected key micropollutants present in the stormwater along with
their physicochemical properties (solubility (S), octanol-water partitioning coefficient
(log Kow), soil-water partitioning coefficient normalized to organic carbon content (log
Koc), Henry constant (Knenry), and biodegradation half-life (T1/,). Possible transport and

fate mechanism for the key pollutants are explored in Chapter 2.4.

2.3 Biofiltration systems characteristics

Stormwater biofilters, also known as bioretentions and rain-gardens, are soil-based
filtration systems that contain a rich plant community that enhances their physical,
chemical and biological treatment processes. Stormwater biofilters are widely used in
the protection of waterways from polluted urban runoffs, and more recently for
stormwater harvesting (Wong et al, 2012). Due to their attractive designs and good
performance in removing sediments (e.g. Li and Davis, 2008a), nutrients (e.g. Hunt et
al., 2006; Davis, 2007, Hatt et al, 2009), heavy metals (e.g. Li and Davis, 2008b; Feng
et al, 2012), and faecal microorganisms (Li et al., 2012; Chandrasena et al., 2012),
stormwater biofilters are popular Water Sensitive Urban Design (WSUD) measures
(also known as Low Impact Development - LID technology or Sustainable Urban
Drainage System, SUDS). Stormwater biofilters have also been tested for organic
stormwater micropollutants at field scale; DiBlasi et al. (2009) showed good
bioretention performance against 16 polycyclic aromatic hydrocarbons (PAHSs). The
importance of organic micropollutants comes from their harmful effect on both (1)
aquatic systems (e.g. toxicity of pesticides to fish (Chopra et al., 2011)) and (2) humans

(e.g. Australian drinking water guidelines regulate maximum allowed concentrations).
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2.3.1 Biofilter design

Soils used as filter media in biofiltration systems need to be structurally stable, with
moderate infiltration capacity, to promote stormwater treatment. The actual
recommendations on compacted hydraulic conductivity rate differ slightly among

regions and continents:

¢ In Australia and Asia infiltration capacities range between 100 and 300 mm/h, in
temperate climates, and up to 600 mm/h in tropical climates (e.g. FAWB, 2009;
ABC Waters — Design Features, 2014);

e In North America the recommended infiltration rates are between 50 and 100
mm/h for natural soils and up to 300 mm/h for engineered soils (soil mixtures)
(e.g. Hinman, 2009; Maryland Stormwater Design Manual Volumes | and II,
2009),

e In Europe, the most comprehensive design manual for biofiltration systems is
CIRIA’s SuDS Manual (2015) form the UK, that adopted recommendations
from FAWB (2009) and suggests infiltration rates of around 100 — 300 mm/h.

The infiltration rates allowed in tropical climates are usually higher, as rain episodes
have larger volumes and are more frequent, and therefore pollutant concentrations are

lower (diluted).

A loamy sand, either natural or engineered, is recommended by most design manuals,
provided it is free of toxicants and weed seeds. The granulometry of the soil should be
such that there is less than 5% clay and silt fractions (< 0.063 mm, w/w) and that the
distribution curve is continuous (FAWB, 2009). The total porosity of the material
should be more than 30% (e.g. The SuDS Manual, 2015). There are limits to organic
matter content (up to 5%), pH (5.5-8.5), and contents of major plant nutrients (total

nitrogen, total phosphorus, extractable potassium etc.).

The area of the biofilter depends on its filter media hydraulic rate, but as a rule of
thumb, it corresponds to around 2% of the catchment area (Hatt et al, 2007). The
recommended depths for different layers of the system are: extended detention 200-

500 mm, filter media 400-700 mm (300-600 mm, in case a submerged zone exists),
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transitional sand layers of 100-150 mm, and gravel (with perforated pipe) of around
150 mm (e.g. FAWB, 2009; The SuDS Manual, 2015). The perforated pipe should have
a slope of at least 0.5% (5% the most) if it is freely draining, or no slope when a

submerged zone is present.

Figure 2-1 Some of the commonly used plants in biofiltration systems: Cephalanthus
occidentalis (upper left), Salix nigra (upper right), Scirpus microcarpus (lower left),
Eupatorium purpureum (lower right). Source: Wikipedia.org

The choice of plants used in biofiltration systems depends on local climatic conditions,
but all plants share a possession of a well-structured root system and a tendency to
sustain wet/dry regimes. The plants have two major roles: (1) to help in the removal of
nutrients and (2) to keep the biofiltration system from clogging (Read et al, 2008). The
plants promote the microorganism and fungi growth in the filter media and the root
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system that help with removal of various pollutants. The plants additionally help in
water retention during dry periods and influence the pH level (e.g. Schnoor et al., 1995).
FAWB, for example, recommends Carex appressa, Melaleuca ericifolia, Juncus
amabilis and Juncus flavidis for effective nutrient removal. The Maryland Stormwater
Design Manual (2009) lists multiple trees (Acer rubrum, Betula nigra, Quercus spp.,
Salix nigra etc.), shrubs (Cephalanthus occidentalis, Hamemelis virginiana, llex spp.,
etc.) and herbaceous plants (Eupatorium purpureum, Scirpus spp., Dichanthelium

scopariu, etc.) as commonly used species.

The additional features for biofiltration systems include the construction of a submerged
zone, addition of organic matter to this zone (mulch, peat, etc.) and inclusion of specific
materials in the engineered soil composition (e.g. Cu®* - exchange zeolite, Li et al.,
2014). These additional features enhance biofilter performance in terms of the removal
of nutrients (e.g. Hatt et al, 2009, Bratieres et al., 2008), heavy metals (e.g. Blecken et
al, 2009; Bratieres et al., 2008) and pathogens (e.g. Chandrasena et al., 2014; Li et al.,
2014). The submerged zone additionally helps in maintaining the vegetation and

microorganism community during prolonged dry periods.

2.3.2 Mode of operation

Stormwater biofilters function as intermittent treatment systems, consisting of:

e The active phase, when stormwater ponds and filtrates through the media during
rain events, and
e The passive phase, when during dry weather pollutants retained in the soil and

captured water are further treated by plants and microbes.

Good practices for biofilter design suggest a retention time in the range of 1 to 3 hours
(FAWB, 2009) during the active phase, while the length of the passive phase depends
on local climatic conditions which are highly variable. The removal of most pollutants
occurs through three main processes (Hong et al., 2006; LeFevre et al, 2012; Zhang et
al., 2014): volatilisation within the biofilters pond and sorption to the filter media and
plant root system — predominate during the active phase, and bio-chemical
transformation and degradation - predominate during the passive stage.
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The hydraulic performance of biofilters decreases with time, as shown by an extensive
study by Le Costumer et al (2009). Most of the change in hydraulic conductivity
happens due to the formation of a so called surface cake i.e. surface clogging, caused by

sediment deposition.

2.4 Review of stormwater and related treatment models
2.4.1 Overall view

A scientific model is an aproximation of the observed reality created to better
understand its nature, underlying processes, and to allow for future predictions. Once
the relevant processes for a particular system are observed, a set of mathematical
equations is selected that transforms the input to output data. These equations represent
only a part of a model’s structure. The remaining structural components include a
solving technique for equations (an algorithm or a numerical model), a procedural
model (a code), and parameter values (estimated from measured data or calibrated). The
model is then tested: (1) against an independent dataset (not used for its calibration) and
(2) for robustness using uncertainty analysis (see Chapter 2.5). Depending on the

knowledge on the system’s processes and observed data, models can be:

e Empirical — completely data-driven models with parameters that do not have any
physical meaning, and, therefore, need to be determined via calibration:
regression equations (e.g. Biofilter treatment equations in MUSIC, eWater CRC,
2009), neural networks (Loke et al., 1997), etc.

e Conceptual — models with processes that have some physical meaning, but are
represented by a highly simplified “concept”; parameters are estimated
indirectly by calibration and directly from measured data (e.g. CITY DRAIN ©
by Achleitner et al, 2007; USTM by Wong et al., 2006), and

e Mechanistic — physically based process models with parameters reasonably
determined from measured data (e.g. CW2D by Langergraber and Siminek
(2005), FITOVERT by Giraldi et al. (2010))

Model equations may be deterministic, where a set of input data always has a unique
output set, or may be stochastic, where the processes are described with random

components, so different model runs on same input data give different model outputs.
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The stochasticity in models serves to account for a process uncertainty that cannot be
reduced by gathering new knowledge; this is known as aleatoric uncertainty (Beven,
2009). Although this quality gives stochastic models a certain advantage, it limits their
calibration, validation and sensitivity analysis, as they do not give consistent results.
Deterministic models are considered a standard approach in many fields, as well as in
urban drainage (Butler and Davis, 2011).

2.4.2 Stormwater biofilter models and water quality modelling

Some of the widely used stormwater software tools, such as MOUSE (DHI, 2009a-c),
SWMM (Rossman, 2010) and STORM (US Army Corps of Engineers, 1977) use
reservoir equations for modelling of biofiltration (i.e. bioretention) hydraulics, while
they offer simple user defined regressions for the assessment of biofilter treatment
performance. The MUSIC software (eWater CRC, 2009) is widely used in Australia and
New Zealand and includes a more complex biofiltration hydraulic model that
continuously assesses outflows and moisture content within the systems. MUSIC can
predict treatment of only sediments and nutrients by biofilters; it is based on a
combination of the first order decay treatment equation (USTM by Wong et al., 2006)
and experimentally derived regression curves (EWATER CRC, 2009), and is therefore a
conceptual-empirical model. The problem of this approach is in the amount of data
needed for their calibration, and its poor transferability between systems used under
different operational conditions. These models are also seldom, if ever, used for the

assessment of micropollutant removal.

Process based models, that simulate the key treatment mechanisms, although far more
reliable and transferable (Loucks et al, 2005), are very rarely used in stormwater
practice. One of the rare examples is STUMP (Vezzaro et al., 2010), characterized by a
simplified water mass balance model, with pollutant fate governed by the removal of
Total Suspended Solids (TSS). The model has not yet been tested for organic
micropollutant removal by stormwater biofilters, but showed good results when tested
for the removal of heavy metals by a biofilter (Vezzaro et al., 2010) and organic
micropollutants (iodopropynyl butylcarbamate - IPBC, benzene, glyphosate and pyrene)

at a stormwater pond (Vezzaro et al., 2011).
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Another example of a mechanistic model is a model by He and Davis (2009), which has
been set up for bioretention water quality in COMSOL Multiphysics to simulate the fate
of naphthalene and pyrene in single events. The flow model is based on Richard’s
Equation with Van Genuchten soil-water parameters, while the water quality model
includes only linear sorption. This model showed good results, but is missing the ability
to simulate pollutant degradation, and therefore has not been tested for continuous

simulations.

2.4.3 Water quality models potentially applicable to stormwater organic
micropollutant modelling

While stormwater treatment literature is very limited on this subject, a literature review
has been done on micropollutant removal processes and their modelling in soil-based
media (especially in the field of bioremediation) and wastewater treatment systems.
Among the many diverse types of micropollutants found in soil media literature,
pesticides and PAHs have been studied most frequently, with a substantial number of
process-based models being set up to include leaching, sorption, aerobic and anaerobic
degradation, uptake by plants, and volatilization at different scales — column, field, and
catchment (e.g. Mulder et al., 2001, Tao et al., 2003, Kdhne et al., 2009). Most of the
models follow the interaction between water and soil (sorption-desorption), and present
processes as different sink terms in the pollutant mass conservation partial differential
equation (PDE). Depending on how the water flow is solved (Richards’s equation,

Philips infiltration, etc.) the PDE is accordingly discretised.

Particularly interesting are the models for Vertical Flow Constructed Wetlands; though
used for wastewater treatment, they share several operating principles with stormwater
biofilters, such as inlet spraying to the surface of the filter media, presence of
macrophytes, vertical flow to the drainage zone, etc. It should be noted that there is a
major difference between wetlands and biofilters: wetlands are permanently wet
systems, while biofilters’ dry weather treatment processes are crucial for their
performance (e.g. Hatt et al., 2009). This makes the loading rates (eWater, 2009) and
selection of plants (Read et al, 2008) for the two types of systems very different.

The models used for Vertical Flow Constructed Wetlands range from simple first-order
decay lumped models (Kadlec and Knight, 1996), to more complex process-based
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multicomponent reactive transport models (e.g. CW2D (Langergraber and Simtnek,
2005), FITOVERT (Giraldi et al., 2010)). The former have been assessed as inadequate
by Kadlec himself (e.g. Kadlec, 2000), while the latter have been adapted from
Activated Sludge Models (Henze et al., 2000) and therefore include complex and
intertwined cycles of substances such as oxidation of carbon sources, organic matter
hydrolysis, nutrient transformation, etc.

CW2D (Langergraber and Simanek, 2005) was developed for HYDRUS-2D software to
model the biochemical transformation and degradation processes. The HYDRUS-2D
software numerically solves the Richard's equation for saturated/unsaturated water flow
and the advection—dispersion equation for heat and solute transport using finite-
elements. The water flow equation incorporates a sink term to account for water uptake
by plant roots. The transport equations include advective—dispersive transport in the
liquid phase, diffusion in the gaseous phase, as well as non-linear non-equilibrium
reactions between the solid and liquid phases — sorption (Siminek et al., 1999). To
demonstrate the complexity of the CW2D module, its 12 components and 9 processes

are listed:

e Components: dissolved oxygen, organic matter (inert, slowly and readily
degradable), ammonium, nitrite, nitrate, and nitrogen gas, inorganic phosphorus,
and heterotrophic and two species of autotrophic micro-organisms;

e Processes: hydrolysis, mineralization of organic matter, nitrification (modelled
as a two-step process), denitrification, and a lysis process (as the sum of all

decay and loss processes) for the microorganisms.

Organic nitrogen and organic phosphorus are modelled as nutrient contents of the
organic matter (they are calculated as a percentage of COD). The biochemical
elimination and transformation processes are based on Monod-type expressions used to
describe the process rates. This adds up to a total of 46 model parameters.

As CW2D has been set up for nutrient analysis, most studies have been successfully
carried out with that particular purpose (e.g. Toscano et al., 2009; Langergraber et al.,
2009). To the best of author’s knowledge, no modelling studies have been performed

with heavy metals or organic micropollutants. This is not surprising having in mind the
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number of parameters, and the available data on these pollutants: it should be noted that
only very recent studies present the behaviour of heavy metals and organic pollutants in
constructed wetlands (e.g. Schmitt et al., 2015; Gao et al., 2015).

FITOVERT (Giraldi et al., 2010) was developed as a more practical tool for the design
and operation optimization of vertical flow constructed wetlands. The complexity of the
model is lower than that of the CW2D module. The flow is considered to be dominantly
vertical and is described by the Richard’s equation. Biochemical transformation
processes are similar to the CW2D module, as they both come from the standard
Activated Sludge Models (Henze et al., 2000). FITOVERT is able to handle the
porosity reduction due to bacteria growth and accumulation of particulate components.
This means that the clogging process is also simulated: hydraulic conductivity decreases
with the pore size reduction. Although current settings of FITOVERT are not applicable
to heavy metal or organic micropollutant modelling, it is anticipated that its philosophy

will be useful for the biofilter model set up.

Another important constructed wetland model type is the RSF_Sim model (Meyer et al.,
2008; Meyer and Dittmer, 2015). The RSF_Sim model is a simple phenomenological
model that describes purification processes in retention soil filters (RSFs). It was
designed to be combined with sewer quality models (e.g. SWMM, Mike Urban,
InfoWorks) in long term simulations. The RSF_Sim model works with three complete

stirred tanks in vertical series:

e Ponding: the retention layer provides the water storage on top of the process
layer,

o Filter layer: the process layer describes the sand/gravel layer (saturated during
feeding, drained afterwards) in which the treatment occurs,

e Drainage layer: improves the volume balances.

Descriptions of treatment performances are kept very simple. The total COD is
separated into two fractions: particulate COD is reduced by filtration (down to a
background concentration), and dissolved COD is reduced by a treatment efficiency
factor (varies with temperature, outflow limitation rates and the duration of antecedent
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dry periods). The retention of NH4-N is calculated with a steady-state two-stage linear
sorption isotherm, and nitrification with 1% order kinetics.

The simplicity of the RSF_Sim model allows for very successful calibrations and
validations, and usage in general. However, it should be noted that detailed predictions

of treatment failures are not possible.

2.4.4 Process modelling

Since treatment systems include pollutant flow, it is first necessary to define the
transport processes. The movement of pollutants in the fluid or porous media is driven
by three distinct processes: advection, dispersion and diffusion (Pinder and Celia,
2006). Advection is a transport mechanism of mass (or a conserved property like
temperature) achieved by fluid’s bulk motion: it is a movement by the average fluid
stream velocity. Dispersion is pollutant movement by means of small-scale velocity
variations e.g. due to porous media chaotic structure and/or non-uniform velocity
profile. Diffusion is transport due to the existence of the concentration gradient. As
diffusion and dispersion are similar in that they cause spreading of the pollutant, they
are usually combined in models, and their bulk parameter is the hydrodynamic
dispersivity (Pinder and Celia, 2006). The most commonly used transport process
modelling concepts are (1) the advective-dispersive equation and (2) the tank-in-series
approach. The former is considered a scientific notation of the substance conservation
principle (Hirsch, 2007). The latter, although it represents a conservation principle, is
not considered a “true” transport model: it is a chemical reactor model designed to
contain chemical reactions. However, the tank-in-series or the continuous-stirred-tank-
reactors (CSTRs) are capable of mimicking the advective-dispersive transport for one-
dimensional problems i.e. the input pollutograph can be transformed using CSTRs so as
to have a time-lag (consequence of advection) and a decrease in the amplitude or
spreading (consequence of dispersion). This is achieved by the proper selection of tank
layouts, and is commonly used for modelling ponds and constructed wetlands (Kadlec
and Knight, 1996).

Biofilter ecosystems can be divided into five phases: air, water, sediments (particulates

settled in the ponding zone), filter media and plants. Table 2-4 shows the anticipated
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physical, physico-chemical or bio-chemical processes affecting the mass balance of
pollutants in the five phases. Some processes are only phase exchanges (e.g.
sedimentation, resuspension, straining, sorption/desorption, volatilization) while others
represent pollutant mass sinks (e.g. hydrolysis, photodegradation, biodegradation, plant
uptake). Biodegradation and plant uptake are considered mass sinks, because they
usually include transformation processes where the “original” pollutant species is lost,

while its metabolites are formed.

Table 2-4 Processes anticipated in stormwater biofilters and their impact on pollutant
mass balance in each of the phases

Process Phase air water sediments filter media plants
physical

sedimentation - +

resuspension + -

straining - +

volatilization + - -

physico-chemical

adsorption - + + +
desorption + - - -
hydrolysis -
photodegradation - - -

bio-chemical

aerobic biodegradation - -
anaerobic biodegradation - -

plant uptake - - +

Some of the key treatment processes (e.g. sorption, degradation) have been extensively
studied in biofilters and soil-water environments, and there is a number of fairly
detailed and robust models (e.g. Simtinek and Van Genuchten, 2008, Sniegowski et al.,
2009). Other processes, e.g. volatilization from stormwater biofilter treatment ponds,
have not been studied, and knowledge transfers need to be done from other types of
treatment systems containing a free water surface such as conventional wastewater
systems (Lee et al., 1998) or free surface constructed wetlands (Kefee et al., 2004; De
Biase et al., 2011). Some of the relevant processes for the identified key stormwater
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micropollutants are shown in Table 2-5. Table 2-7 shows some of the common equation
types used for process modelling.

Table 2-5 Some of the key stormwater micropollutants’ properties relevant for fate

processes
Category Compound Volatile”  Sorbable”  Mobile®™  Persistent™

:ﬁ;iet?castm Dichloromethane ++ - +++ No
Chloroform ++ - ++ Slightly

PAHs Benzo(a)pyrene - ++ -—- Yes
Naphthalene + +- + Slightly

Pyrene - ++ - Yes

Pesticides Chlordane - +- - Very
Pentachlorophenol (PCP) - ++ -- Slightly
Glyphosate - +- --- Varies
Atrazine -- +- ++ Slightly
Simazine -- +- ++ Slightly
PCBs Total PCBs + ++ - Slightly
PCB 118 + ++ - Slightly

Phthalates Diethylhexyl phthalate (DEHP) - ++ -—- No
Other MOCs Benzene ++ - ++ Varies

Yvolatility is based on the Henry’s constant, H [Pa m® mol™] (Sebastian, 2013): “++" highly

volatile: > 100; “ +-" volatile 1 - 100; “-” non vol. 0.003 - 1; “--" non vol. < 0.003

2Sorbability is based on the octanol-water partitioning coefficient logKs, (Sebastian., 2013):

“++” high > 4; “ +-” moderate 2.5 - 4; “--” low < 2.5

®Mobility is based on soil-water partitioning coefficient normalized to organic carbon content
Ko (Rogers, 1996): “+++" very high 0-50; “++” 50-150; “+” 150-500; “-” 500-2000; “--" 2000-
5000; “---” very low >5000

“Persistence is based on degradation half-life Ty, [day]: No < 100, Yes > 100, Slightly ~ 100

Sedimentation and resuspension are movements of suspended solids from water to the
bottom of the biofilter’s pond and vice versa. Since a major drive of these processes is a
combination of gravity vs. fluid viscosity vs. particle shape, most of the models contain

a settling velocity (e.g. Stokes’ law) and water depth. A very versatile model is
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proposed in a ScorePP deliverable on Unit Process Models for Fate of Priority
Pollutants (Vezzaro et al., 2009) which proposes sedimentation to be modelled as a
1% order kinetic process affecting the particulate phase of micropollutants (i.e. mass
sorbed to the Total Suspended Solids), assuming there is a fraction of a non-settleable

concentration.

Straining or filtering, in the domain of this work, is a mechanical process of separating
solid matter from liquids by the attenuation of small particles by large one in the porous
media. In a broader sense, filtration involves three different types of processes as per
Table 2-6, where straining is equivalent to mechanical filtration. According to some
researchers, large particles follow the fluid streamlines but are stopped in the
passageways too narrow for passage (crevices and constrictions). The resulting particle
deposits continuously reduce the size of the free passage and eventually can cause
blockage (Herzig et al., 1970).

Table 2-6 Deep filtration types with possible capture mechanisms and decolmatage
characteristics (after Herzig et al., 1970)

Filtration Particle Retention Retention Capture Spontaneous Provoked

type size sites forces mechanism  decolmatage decolm.

Mechanical 2=30um  Constrictions, Friction, fluid Sedimenta- Improbable Flow
crevices, pressure tion, direct direction
caverns inter- reversal

ception
Physico- ~1um Surface sites  Van der Direct inter- Possible Increase in
chemical Waals forces, ception flowrate

electrokinetic

forces
Colloidal <0.1lum  Surface sites  Van der Direct inter- Possible Increase in
Waals forces, ception flowrate

electrokinetic
forces,
chemical

bonding
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Yao et al. (1971) identifies three different transport processes of particles: (1)
gravitational pull of small particles by larger ones, which is referred to as interception,
(2) net effect of buoyant weight vs. fluid drag force, or sedimentation, and Brownian
movement of small particles influenced by surrounding molecules in the fluid, which
can be described as diffusion. In the domain of mechanical filtration, capture processes
are sedimentation and direct interception due to (1) the fluid pressure holding a particle
immobilized against the opening at a constriction site, and/or (2) the friction force
keeping a particle moving from being wedged in a crevice (Herzig et al., 1970).
Filtration is, therefore, influenced by the ratio of suspended solids particle size to filter
bed pore size, but also water depth, flow rate, filter and suspended solids material, filter

bed specific surface, temperature, pore structure, etc.

Model types used for straining range from simple empirical (regression) models like
Siriwardene et al. (2007), across moderately complex kinetical process models like
models by Yao et al. (1971) and Altoé et al. (2006), to complex kinetical models that
include both particle and liquid flow coupled with an increased pressure drop due to
particle retention, like presented by Herzig et al. (1970). Complex models are based on
the probability theory, where retention is described using a collision efficiency factor, as
in the Yao model, or a retention probability, as in the work of Herzig et al. (1970).
These probability coefficients are proportional to the rate of suspended solids removal,

and are used in Kkinetic first-order rate equations.

Table 2-7 Some of the common equation forms/models in environmental modelling

Equation forms Process type

1. Equilibrium processes

H H “u:ry
¢; - concentration in “i” phase non-limited process

K = “driving” coefficient (e.g. e.g. sorption isotherm; c.= 0,
partitioning coeff.) Freundlich isotherm

¢, =K-c;+¢,

n - exponent

c.— non reacting fraction

“ry

K.c ¢; - concentration in “i” phase limited process
G = 1+K-c,,, C K — “driving” coefficient (e.g. e.g. Langmuir isotherm
partitioning coeff.)

Cmax— limiting factor (e.g. max.
adsorption conc.)
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Equation forms

Process type

2. Kinetic processes

dc
—C
dt

¢ — concentration

K, — kinetic rate coefficient
(x=0, 1, 2 - zero, first, second order)

kinetic — rate process

e.g. first order rate:
sedimentation, straining,
volatilization, sorption,
hydrolysis, photodegradation,
biodegradation

e.g. second order rate:
sorption

steady flux oc D, &
OX

do
dt OX

2
de, p, o'
dt OX
a ox._C
dt K.+cC

dC  Hmx y . C

— C

dt Y s
dXx c

o K re

S

K.+cC

¢ — concentration

D, — diffusive rate coefficient
(x=0, 1, 2 — steady, advection,
dispersion)

¢ — pollutant concentration
X — catalyst amount
k — specific process rate — “driving”

K — half saturation coeff. — “limiting”

¢ — pollutant concentration

X — catalyst amount

Umax — Maximum rate

Y — catalyst yield

Umay/Y — Spec. process rate — “driving”

K, — half saturation coeff. — “limiting”

Fick’s law — processes

e.g. plant uptake,
volatilization, D, — advection,
D, — dispersion and diffusive

fluxes

catalyst limited process

e.g. biodegradation: Michaelis-
Menten, volatilization (Lee et
al., 1998), photodegradation -

Langmuir-Hinshelwood

catalyst limited — catalyst
evolving process
e.g. biodegradation: Monod

growth model

Volatilization is a physical process in which a volatile substance dissolved in water is

released and transferred to the atmosphere. In the simplest way, the contact between the

water surface and the atmosphere can be described by four layers: (1) well-mixed,

turbulent, bulk air, (2) thin stagnant layer of air, (3) thin stagnant layer of water and (4)

well-mixed, turbulent, bulk water below the interface region. The transfer is believed to

occur between the two stagnant thin layers of water (3) and air (2) by molecular

diffusion. It is also assumed that resistances in the air and the water film are additive,

although they are of different magnitudes. These two concepts are the basis of the two-
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film theory published by Lewis and Whitman (1924), usually used for the description of
the process of volatilization.

The model consists of pollutant mass transfer through the two layers with a combined
water-air diffusion mass flux (mass-transfer). The equilibrium condition for this theory
is expressed in terms of the Henry’s law. The mass balance is a dynamic steady-state
that does not allow for pollutant mass accumulation in any of the two layers.
Volatilization is influenced by pollutant properties, such as the Henry’s constant and
solubility, and by water and air properties such as temperature, viscosity, partial
pressure, etc. Two-film models have successfully been used for modelling of volatile
organic compounds in primary and secondary settling tanks (e.g. Lee et al., 1998) and
constructed wetlands (e.g. Keefe et al., 2004). It should be mentioned that for more
turbulent environments, models have been developed that do not have a stagnant
boundary between air and water. These include (1) the surface renewal model (Higbie,
1935) — in which new surfaces are formed by breaking waves, air bubbles entrapped in
the water, and water droplets ejected into the air, and (2) the boundary layer model
(Deacon, 1977) — an upgrade to the two-film model that includes a continuous

diffusivity profile and transport of turbulence (kinematic viscosity).

Sorption is a complex physico-chemical process by which one substance (e.g. dissolved
in fluid) becomes attached to another (e.g. mineral surface). This is achieved by
absorption (when substance is incorporated into the volume of another), adsorption
(surface adhesion) and/or ion-exchange. Sorption of pollutants is influenced by
pollutant’s intrinsic properties (hydrophobicity, polarity, aromaticity etc.) and soil
physico-chemical characteristics (e.g. pH, cation exchange capacity, ionic strength,

surface area, soil organic matter, water temperature, etc.) (Langmuir, 1997).

Sorption is usually described using a plot of the sorbate versus concentration in solution
measured at a constant temperature when equilibrium is reached (a.k.a. a sorption
isotherm). The two most commonly used isotherm models for fluid solutions are
(Langmuir, 1997):

e Freundlich — which assumes an infinite supply of unreacted sorption sites, and

e Langmuir — which assumes a finite supply of sorption sites.
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Sorption isotherms are not always adequate to describe sorption processes, even in
simple cases such as batch-experiments, as they lack information on process Kinetics.
This is where e.g. adsorption kinetic models come in place. Qiu et al. (2009) made an

extensive critical review of adsorption kinetic models, grouping them into:

e Adsorption reaction (e.g. pseudo-first-order rate eq., pseudo-second-order rate
eq., Elovich’s eq.) and

e Adsorption diffusion models (e.g. liquid film, intraparticle, double-exponential).

Although both types can fit the kinetic data in batch tests, Qiu et al. (2009) give slight
preference to adsorption diffusion models. This is due to their capability of representing
the real adsorption course “more reasonably”, while the diffusion parameter determined
from these models can be useful for system design (e.g. flow-through treatment
systems). Similar conceptual kinetic models exist for both absorption and ion-exchange.

Stepping up from batch tests to pollutant flow through the porous media, it is necessary
to formulate conceptual models of mass transport which include both transport and
sorption processes. In these cases, isotherms are modified (simplified) and/or combined

with kinetic models, allowing for non-equilibrium models.

The simplest model is the equilibrium Kyq — model (a linear Freundlich isotherm) with
parameter estimates compiled in most textbooks (e.g. Langmuir, 1997; Schwarzenbach
et al., 2003; Mackay, 2006). The Ky parameter is not pollutant specific, but a lumped
parameter that depends on the porous media composition and conditions at which it is
determined, which is why most compilations include this metadata as well. There are
attempts to “break” the Ky parameter into pollutant-specific and media-specific parts
e.g. Ky for organic pollutants is described as a product of the soil-water partitioning
coefficient normalized to organic content, which is pollutant-specific, and soil organic
carbon content (Karickhoff et al., 1979; Karickhoff, 1984). The equilibrium Ky — model
is usually used with the advective-dispersive transport equation, while K4 as a parameter

IS present in many non-equilibrium models.

Probably the most extensive review on non-equilibrium sorption-transport in the
variably saturated porous media is given by Simiinek and van Genuchten (2009). The

models are grouped in:
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e Conceptual physical non-equilibrium for water flow and solute transport and

e Conceptual chemical non-equilibrium models for reactive solute transport.

Both types of models try to compensate for simplifications made with the porous media,
which is assumed to be structurally and chemically homogeneous. Physical non-
equilibrium models compensate for assumed structural homogeneity (Figure 2-2). They
are derived from a so-called uniform flow model (the original version of the transport
equation, with bulk parameters such as hydraulic conductivity and porosity), by
assuming that the soil particles have their own microporosities. These micropores allow
(1) dissolved pollutants to move in-and-out by diffusion (Mobile-Immobile Water
model) or (2) both water and dissolved pollutants to move in-and-out (Dual-Porosity
model). More complex models include the Dual-Permeability models that assume
existence of two types of pores: (1) large a.k.a. interporosity domain with fast fluid and
solute movement and (2) small a.k.a. intraporosity domain with slow fluid and solute
movement, and can be combined with “stationary” pores (such as in Mobile-Immaobile
water). Physical non-equilibrium models may be considered to account for pollutant
absorption to soil, although that is not their primary intent. The motivation for their
development comes from laboratory column experiments with uniform flow and
conservative tracers which show extensive tailing in the pollutograph, indicating
structural heterogeneity.

Equilibrium Model Non-Equilibrium Models
a. Uniform Flow  b. Mobile-Immobile Water ¢, Dual-Porosity d. Dual-Permeability ¢. Dual-Permeability with MIM
| Water Water Water
l Water l l Water l Immob) Mobile * Slow Fast ‘ Slow Fast
-~ e L
Solute Solute fl Solute Solute
l, Solute l Immob| Mobile [immob|  Mobile Slow Fast|| |im.| Stow Fastl
- l -t l - -} >

Figure 2-2 Conceptual physical non-equilibrium models for water and solute transport
(after Simtinek and van Genuchten, 2009)

Chemical non-equilibrium models compensate for assumed chemical homogeneity.
These are: (1) One Kinetic Site — assuming Kinetic nature of sorption and modelled
using any of the kinetic models (usually the first order rate) (2) Two-Site — assuming

instantaneous sorption to one fraction of sorbing sites and kinetic to the rest, modelled
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using a combination of sorption isotherms and kinetic models, and (3) Two Kinetic
Sites models — assuming two natures of sorption sites, each modelled by a kinetic model
(Figure 2-3). When dealing with pollutants in real systems, it is natural to expect both
physical and chemical non-equilibrium. Combination models, such as the Dual-Porosity
with One Kinetic Site or the Dual-Permeability with Two-Site sorption, should be used

when the two processes are of equal intensity (Simiinek and van Genuchten, 2009).

The desorption process is implicitly accounted for in equilibrium sorption modelling,
since sorption isotherm parameters depict net-sorption (sorption-desorption). In non-
equilibrium sorption models, desorption is a kinetic process with identical or different
kinetical model than sorption. Desorption kinetical models are usually first order rate
models (e.g. STUMP byVezzaro et al., 2009).

4. Ome Kinetic Site Model b. Two-Site Model ¢, Two Kinetic Sites Model

=

Figure 2-3 Conceptual chemical non-equilibrium models for reactive solute transport
(6 — soil water content, ¢ — pollutant concentration in water, s° — pollutant concentration
sorbed on soil at equilibrium, s — pollutant concentration sorbed on soil kinetically
(after Simianek and van Genuchten, 2009)

Hydrolysis is a chemical process in which water molecules break existing bonds in
substances and form new molecules: e.g. hydrolysis of organic molecules, RX, includes
reaction with water where anion group X is substituted by OH’, changing the water
acidity. However, hydrolysis is sometimes used as a prototype reaction for any of the
chemical decomposition or displacement reactions in which a nucleophile (electron-rich
species) attacks an electrophilic atom (an electron-deficient reaction centre)
(Schwarzenbach et al., 2003). Hydrolytic reactions are catalysed by acids, bases and, to

some extent, water. Hydrolytic type reactions are usually modelled using kinetic:
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e Pseudo-first order rate equations, when nucleophile is water or its concentration
is constant or unknown, or
e Second order rate equations, when nucleophile concentration is changing and

known (Schwarzenbach et al., 2003).

In most cases, the nucleophile is assumed to be water, and first-order rate is determined
based on experimental data using reaction rate constants. Environmental compilations,
such as Mackay et al. (2006), include hydrolysis “half-life” parameters in various

environmental compartments, which are easily transformed to hydrolysis rates.

Photodegradation is a process of pollutant transformation following light absorption.
This is also referred to as the direct photolysis (Schwarzenbach et al., 2003). Indirect
photolysis, on the other hand, includes light excitation of photosensitive chemicals that
easily react with organic species e.g. hydroxyl radicals, singlet oxygen, or ozone are
formed in the presence of light. Although, indirect photolysis is induced by light
absorption, it is usually neglected in the presence of other degradation mechanisms, due
to its minor impact on the overall degradation rate. Photodegradation is a kinetic
process that depends on (1) solar radiation intensity and wavelength, (2) suspended
matter, colour and other factors influencing the penetration of light through water, (3)
pollutant sensitivity to different wavelengths, and (4) the quantum yield — fraction of

adsorbed photons that result in a chemical reaction (Schwarzenbach et al., 2003).

The kinetics of photodegradation of organic compounds is usually best described using
a Langmuir-Hinshelwood scheme (Gaya and Abdullah, 2008). This is because a plateau
type kinetic profile is observed where the initial rate (increased with longer irradiation
time) changes to zero over time. According to the Langmuir-Hinshelwood model, the
photocatalytic reaction rate is proportional to the reaction rate constant, organic
compound concentration and the Langmuir adsorption constant. However, this scheme
simplifies to a first order rate when applied to micropollutants (at low concentrations).
Reaction rate constant is determined from experimental data, or can be calculated using
pollutant specific data such as the quantum yield, and site-specific data such as water-
depth, irradiation intensity, and water media light attenuation property (ScorePP,
Vezzaro et al.,, 2009). Mackay et al. (2006) report experimentally determined

photodegradation “half-life” parameters in various water bodies.
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Biodegradation is a chemical process of substance dissolution catalysed by
microorganisms: bacteria, viruses, fungi, protozoa or parasites. In this reaction,
microorganisms profit as they receive carbon, nitrogen and energy necessary for their
metabolism. Biodegradation may occur with or without oxygen, depending on the
catalyst microorganism, and can be classified as aerobic or anaerobic. Biodegradation
depends on the availability of microorganisms and substance (e.g. sorbed substance may
be unavailable to microorganisms), but also on redox conditions, pH, temperature, or
any other environmental parameter that limits the metabolism of microorganisms (e.g.
oxygen) (Corapcioglu and Hossain, 1990). Biodegradation can be modelled using some
of the simpler models, such as the zero order rate (constant) or first order rate kinetics
model, or growth — models that include information on microorganisms, which are
usually based on Monod (Monod, 1949) or Michaelis-Menten type kinetics (Johnson
and Goody, 2011). Growth models include relationships between microorganism
growth and substrate (i.e. substance being degraded). Monod type Kinetics assume that
the substance being degraded is a limiting factor in microorganism growth, while
Michaelis-Menten type Kkinetics assumes that microorganism growth is either constant,
or not influenced by the substrate itself: it is an equation developed for enzyme kinetics.
This is why Monod may be more applicable to nutrient degradation modelling, while
Michaelis-Menten may be more suitable for micropollutants. However, there are
multiple cases where Monod kinetics have been used for pollutants that are not apparent
nutrients, such as pesticides (Cheyns et al., 2010; Sniegowski et al., 2009), but the
purpose was to model pesticide-degrading bacteria. Mackay et al. (2006) report
experimentally determined half-life estimates (assuming first-order rate Kkinetics) for
different environmental compartments such as different soils, surface water,

groundwater etc.

Plant uptake (and storage) of organic compounds is one of the important steps in the
global cycling of persistent pollutants (Collins et al., 2006). There is a substantial
amount of evidence of plant contamination with a diversity of toxic organic pollutants,
like accumulation of volatile substances in mosses, lichens, and higher plants due to air-
plant interactions (e.g. Thomas et al., 1984) or phenanthrene and pyrene by soil-plant
interactions (e.g. Gao and Zhu, 2004). Major plant uptake pathways are identified as
follows: (1) passive and active uptake from soil into plant roots, (2) particulate
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depositions followed by desorption into leafs and (3) gaseous interchanges at leaf levels
(additionally influenced by transport of pollutants within the xylem) (Figure 2-4). The
processes depend on the pollutant, plant and soil specific properties like sorption
mechanisms (include octanol-water and octanol-air partitioning coefficients), solubility,
plant lipid content, plant metabolism, temperature, etc. Simple process modelling,
which is usually used for non-nutrient type pollutants, is based on partitioning models at
root or leaf levels (Chiou et al., 2001; Collins et al., 2006), to calculate the plant uptake
factor (PUF) as a driving force for either first-order Kinetic rate (driven by
concentration) or diffusive fluxes (driven by the concentration gradient). The Nye-
Tinker-Barber model, used for nutrient type substances, uses a heuristic Michaelis-
Menten kinetics to model nutrient uptake at root level (Roose, 2000). In addition to the
root uptake, nutrient models include transport through the xylem, and transpiration

fluxes.

Evaporation and
volatilization from leaf

Gaseous deposition to leaf

Dry and wet deposition of via cuticle and stomata

particles followed by
desorption into leaf

Transport in the
transpiration stream
within the xylem

Suspension of soil
particles by wind
and rain

Desorption from soil / ‘ .
followed by root uptake t ‘
from soil solution ‘

Volatilization from
soil

Figure 2-4 Major uptake processes of organic substances by plants (after Collins et al.,
2006)

2.5 Uncertainty analysis
2.5.1 Introduction

Uncertainty is present in every modelling process, with sources ranging from decisions

on model conceptualisation, to data collection, calibration and verification. By mapping
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and analysing sources of the uncertainty, especially by quantifying their impact on
modelling (e.g. estimating confidence intervals), model predictions can become more
reliable i.e. less uncertain. Additionally, by knowing the impact of a particular error
source on the overall simulation uncertainty, it is possible to decide on investing
resources in improving the quality of that particular source e.g. if it is the input data that
has the highest impact on the total simulation uncertainty, then the right decision would
be to work on the data collection system, rather than to increase model complexity or
improve calibration techniques (Vrugt, 2008). This section presents some of the

methods for uncertainty assessment and uncertainty sources identified in the literature.

2.5.2 Uncertainty assessment

A fair number of studies investigated the uncertainty in groundwater, hydrological or
environmental modelling in the past few decades (e.g. Beck, 1987; Beven and Binley,
1992; Kuczera and Mroczkowski, 1998; Kuczera and Parent, 1998; Muleta and
Nicklow, 2005; Refsgaard et al, 2007). In the beginning, the research was directed
primarily toward parameter uncertainty (Kuczera and Mroczkowski, 1998), then toward
calibration induced uncertainty (McCarthy, 2008), only to find its way to the model
structure (Gupta et al., 2012). Urban drainage modelling studies, on the other hand, do
not have such a long history of uncertainty assessment (e.g. Kleidorfer et al., 2009;
Lindblom et al., 2011; Vezzaro et al, 2012; Dotto et al., 2012), but have mostly acquired
frameworks developed for hydrological models. Many of the uncertainty assessment
concepts have been developed into commercial software models, where methods range
from formal Bayesian like the Markov-Chain Monte-Carlo approaches (e.g. MICA by
Doherty (2003), DREAM by Vrugt (2008)), to less formal likelihood methods as the
Generalized Likelihood Uncertainty Estimation (GLUE by Beven and Binley, 1992).
Either concept is used for (1) simple sensitivity analysis (usually qualitative study on
parameters), (2) structural study of uncertainties by examining prior and posterior
parameter distribution while propagating errors through the modelling process, and (3)

evaluating predictive uncertainty using confidence intervals.

2.5.2.1 Methods for Uncertainty Assessments
Many methods for uncertainty assessment are developed for automatic model
calibration. These methods solve an inverse problem and are based on a Bayesian
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approach: (1) prior probability distribution function (PDF) of model parameters is
estimated based on the best-available-knowledge (usually a uniform distribution), which
is then (2) readjusted by sampling data and a likelihood function to obtain a posterior
parameter PDF. The shape of the posterior PDF indicates uncertainty, with extremes

being:

e Total certainty — defined as a Dirac 6 function at the parameter value, and
e Total uncertainty — represented by a uniform PDF over (-0, +00) (Kottegoda and
Rosso, 2008).

Deletic et al. (2012) identify the most commonly used methods for uncertainty
assessment in urban drainage modelling to be the Generalized Likelihood Uncertainty
Estimation — GLUE (Beven and Binley, 1992), Shuffled Complex Evolution Metropolis
Algorithm — SCEM-UA (Vrugt et al., 2003), Multi-objective calibration algorithm —
AMALGAM (Vrugt and Robinson, 2007), and MICA (Doherty, 2003).

GLUE is considered a non-formal Bayesian method, due to its lack of a formal
likelihood function, and its brute-force algorithm for parameter space exploration.
GLUE is based on Monte-Carlo simulations, where model parameters sets are sampled
randomly from their prior PDFs. A user defined likelihood function is used to compare
model results with observations. Model parameter sets with “low” likelihood values are
discarded, while the ones retained are used for formation of a posterior PDF. A “low”
likelihood function is a user defined threshold. The major advantage of this method is
its lack of assumptions on the error distribution function. However, the method may be
computationally costly, and suffers from modeller’s subjectivity on the choice of a

threshold value for the likelihood function.

MICA belongs to the group of Markov-Chain Monte-Carlo methods (MCMC). Markov-
Chain methods sample from a random walk which adapts to the true posterior

distribution and in such way decreases the number of Monte-Carlo runs:

e Initial parameter sets are randomly sampled from the prior PDF;

e Model runs from these sets are evaluated by using the likelihood function;
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e Subsequent parameter sets (a.k.a. proposed) are sampled from an updated
parameter PDF function which depends on the values of the previously
generated parameter sets;

e Proposed parameter sets can be accepted or rejected based on the comparison

between their likelihood function with that of the previous set.

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is one such
MCMC, where proposed parameter sets can be accepted even when they have a lower
likelihood function than their parent sets, allowing for a broader parameter space search
(avoiding local optima). MICA uses Bayes’ theorem for calculation of posterior
distributions, and assumes normal distribution of errors. The acceptance of parameter
sets is not based on subjective threshold criteria for the likelihood function, but on the

Metropolis-Hastings algorithm and assumed likelihood function.

SCEM-UA is a hybrid between GLUE and MICA: it explores the parameter space using
the Metropolis-Hastings algorithm, but finalizes the posterior parameter PDFs by
selecting those parameter sets with likelihood values above user defined threshold.
AMALGAM is a complex 4-step algorithm that includes a genetic algorithm,
Metropolis search, and GLUE-like cut-off. Both have a major advantage over the brute-
force method (like GLUE) in that they can explore larger parameter spaces, with small
computer costs, by focusing only on areas with high likelihood values. However, both
have issues with subjective criteria for the likelihood functions.

Dotto et al. (2012) explored these four uncertainty techniques on simple water quantity
and quality models, and concluded that all of them generated similar posterior PDFs and
predictive uncertainties (confidence intervals on model results). The compromise is
between the need for a strict theoretical description of uncertainty (e.g. MICA), which
requires extensive modeller’s knowledge, simplicity (e.g. GLUE) and computer time
(SCEM-UA and AMALGAM are very time efficient algorithms).

2.5.3 Sources of uncertainty in stormwater quality models

Deletic et al. (2012) presents development of a conceptual framework for uncertainties
assessment in urban drainage modelling: a Global Assessment of Modelling

Uncertainties (GAMU). In this framework, three key groups of uncertainty sources are
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identified: (i) Model input uncertainties, (ii) Calibration uncertainties, and (iii) Model

structure uncertainties.

(1l1) Model structure uncertainties

(1) Model input uncertainties ‘ 7, Canceptualisation |

[ 8. Equations

and boundaries

1. Input data (ID) ‘ 9. Numerical methods

2.Model
Parameters (P)
5. Calibration
3. Calibration data 4. Calibration data Aleoiihmic)
measurements (CD-M) selection (CD-5) 6. Objective

Functions (OF)

(1) Calibration uncertainties

Figure 2-5 Key sources of uncertainties in urban drainage models and links between
them (after Deletic et al., 2012)

Model input uncertainties are mostly associated with measured data uncertainties, and
are caused by systematic and/or random errors. This type of uncertainty is usually
defined as a dispersion of measured values. A probabilistic approach for expressing
uncertainty is a probability density function associated with input data (and this does not
necessarily have to be a normal distribution). Sometimes, it is not possible to find input
data probability distribution functions due to an insufficient amount of available
measured data. In this case, estimates can be made based on the-best-available-
knowledge (e.g. information on the accuracy in the equipment used and assuming
normal error distribution) or the Monte Carlo method to propagate probability
distribution of the least restrictive type (e.g. uniform). In either case, uncertainties are
propagated by running the model multiple times to obtain confidence intervals on model
results. If these intervals are narrow, then it is safe to assume that input uncertainties do
not play an important part in the overall uncertainty. Uncertainties in input data have
been addressed by some urban drainage modelling studies in two ways: (1) “simply” —
by propagating errors through the model by keeping the model parameters fixed (e.g.
Rauch et al., 1998) or (2) “in-depth” — by assessing the impact of input data
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uncertainties on model parameters and model results (e.g. Kleidorfer et al., 2009; Dotto
etal., 2014).

Calibration uncertainties arise due to any of the selections made in the calibration
process: (1) calibration dataset selection, (2) calibration algorithm or (3) the objective
function. In addition to having similar uncertainties as the input data (due to
measurements), calibration dataset should be selected to fit the purpose of the model’s
application. McCarthy (2008) showed that the microorganism model gave better
predictions when it was calibrated using instantaneous concentrations instead of
microorganism fluxes. In addition, many studies dealt with the selection of data for
calibration and model verification (e.g. Vaze and Chiew, 2003). Todorovic (2015)
studied the impact of the calibration period on parameter estimates in conceptual
hydrological models. She found that with an increase in the length of the calibration
period, variability of the parameters slightly decreases. Multiple studies have addressed
the impacts of calibration and uncertainty analysis methods, along with a choice of
different objective functions, on model predictions (e.g. Dotto et al., 2012; Kleidorfer et
al.,, 2012). It was shown that different calibration methods can lead to different
parameter sets, while still having a similarly good fit between measured and modelled
data. This can happen due to difficulties in finding the global optimum, particularly
pronounced in complex systems with a multi-modal objective function surface. It can
also be the case that the model is “ill-posed” (Dotto et al., 2009), and that some of the
model parameters are not “true”, but rather compensate for the neglected or ill-
conceptualized processes. The concept that a unique optimal parameter set exists is
something that many researchers do not hold for granted, but rather accept the concept
of “equifinality”, introduced by Beven (2009), in which more than one parameter set
may be able to provide an equally good fit between the model predictions and

measurements.

Model structure uncertainties can be associated with (1) conceptualization (conceptual
model), or determination of relevant processes to be modelled, (2) equation selection
(mathematical model) or (3) solving technique (computational model) (Deletic et al,
2012; Gupta et al., 2012). Inspired by the idea that “we must be able to establish

whether a model structure is adequate to the task of simulating system behaviours under
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past, current, and potential future conditions for both similar and relatively different
locations and/or modelling conditions”, Gupta et al. (2012) performs an in-depth
analysis on model structural adequacy and synthesizes current knowledge from several
different modelling communities: groundwater (GW), unsaturated zone (UZ), terrestrial
hydro-meteorology (THM), and surface waters (SW), suggesting a five-step framework
for model evaluation (Figure 2-6). Although, model structure uncertainties are
recognized to be relevant, there are not that many studies which actually address their
impact on modelling results. A rare example is a study by Blumensaat et al. (2014)
performed on river water quality models. In addition to presenting the assessment
framework, it shows that model structure and parameter uncertainties are of the same

order of magnitude.

Conceptual Physical Structure
THM: Physical structure defined in terms of dominant processes & assumed to be correct [
SW: Physical structure defined in terms of dominant processes & assumed to be correct 1
UZ: The physical structure of soil is subject to large uncertainty [ ]
Conceptual GW: Substantial challenge to determine the 3-D structure of the hydro-geological system [ |
Model
Conceptual Process Structure
THM: Recent work includes missing processes such as groundwater & impact of carbon on transpiration |
SW: Typically uses fixed model structure and focuses attention on estimating parameter values 1
UZ:  Process description typically assumed to be complete [
GW: Process description typically assumed to be complete
Spatial Variability Structure
THM: 1-D with attention to within-grid variability in land cover & between grid variability in parameters | [ 7]
SW: Typically a set of 1-D elements with attention to spatial variability in model parameters
UZ:  Substantial challenge to estimate spatial variability (especially horizontal) in soil hydraulic properties| [ |
Math GW: Substantial challenge to estimate spatial variability in aquifer properties [ ]
Model Equation Structure
THM: Some debate about choice of model equations, especially when empirical solutions are used I:'
SW: Model equations largely empirical guesses | ]
UZ: Mathematical forms of water retention and hydraulic conductivity generally assumed adequate [
GW: Typical to rely upon macroscopic-scale equations, with some use of stochastic PDEs
Computational Structure
Comp THM: Numerical errors relatively easy to control, although Richards’ equation requires special attention [
Model SW: Numerical errors often assumed to be insignificant 1
UZ: Prone to substantial numerical errors because of highly transient & non-linear processes [
GW: Compromises frequently made between numerical accuracy & computational efficiency [

Figure 2-6 Subjective assessment of the emphasis (indicated by the length of bars) given
by different modelling communities to various sources of model inadequacy (after
Gupta et al., 2012)
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2.6 Conclusion: Identification of key knowledge gaps

There is a fair number of stormwater quality studies that provide good insight into
possible stormwater compositions. However, the mechanisms of pollutant transport and
fate across the catchment, and particularly treatment systems, are not fully known. Even
though a large number of studies have been performed specifically studying the
behaviour of various pollutants in stormwater biofiltration systems, they have rarely
included the most common stormwater micropollutants. This opens certain research

questions:

e Are biofilters capable of treating micropollutant rich stormwater? If so, under
which conditions?
e What are the key transport and fate mechanisms for micropollutants in

biofilters?

Since the data on micropollutant behaviour in stormwater biofilters is scarce, it is only
natural that models capable of reproducing their behaviour are also rare or non-existent.
A literature review indicates that there are only a few models that can be adjusted to be
used for micropollutants in biofiltration systems. These models either have very simple
water dynamics, or lack some of, what is believed to be, key mechanisms. As such, the

literature review indicates that:

e A new model is required that can adequately predict micropollutant behaviour

in stormwater biofiltration systems.

This model can benefit from the reviewed models’ algorithms e.g. a hydrodynamic
module based on MUSIC (eWater, 2012) may be useful, or a treatment module adapted
from RSF_Sim (Meyer et al., 2008; Meyer and Dittmer, 2015) or from the Hydrus
family (Simtinek et al., 1999).

There is a wide range of uncertainties that can impact the modelling results. It is,
however, not standard practice to acknowledge and evaluate these uncertainties. This is
particularly the case with urban drainage water quality models, which is why this

research will attempt to perform such analysis on the developed model.
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2.7 Research aims and objectives

The literature review found that significant knowledge and data gaps exist and in order
to develop a new biofilter micropollutant model, a number of these gaps need to be
filled. The overall aim presented above will be accomplished by completing a number

of smaller, more specific, aims/objectives and hypotheses as follows:

1. To develop a transport and fate model for organic micropollutants in stormwater

biofilters:

e It is hypothesized that micropollutants can be grouped according to their
chemical structure and nature into a few groups, and that a good “representative”
can be selected from each group, whose transport and fate models can be
“transferred” to each member of the group.

e It is hypothesized that the complex hydrodynamic behaviour of urban
stormwater in WSUD systems can be conceptualized by a multiple reservoir
approach (one-dimensional model with dominant vertical flows).

e It is hypothesized that transport of micropollutants in the biofilter can be
predicted by a linear advective dispersive transport equation (vertical), while
conceptual 1% and 2" order decay models could be used to assess the removal
processes that may be physical/chemical/biological in nature (settling, straining,
volatilization, photodegradation, hydrolysis, aerobic/anaerobic biodegradation,

adsorption, and desorption).

2. To conduct controlled lab and field tests to refine the model component that simulates

the micropollutant treatment in biofilters:

e It is hypothesized that a large amount of data should be collected to ensure

accurate testing and verification of the newly developed model.

3. To calibrate, validate, and assess uncertainties in the model using field data from two

stormwater systems (biofilters with different designs):

e It is hypothesized that uncertainty analysis (using two different field data sets)
will point to sensitive parameters and provide insightful information about the

processes.
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2.8 Methodology used to complete the research aims

There is a total of seven chapters in this thesis, with each one contributing to the above
listed aims. Chapter 2 is a literature review which should result in a better understanding
of micropollutants present in stormwater, their transport and fate processes through the
biofiltration systems and assess available micropollutant and similar models potentially
useful in the development of the future model. Chapter 3 presents experimental
methodology and collection of data for model development and testing. Chapter 2 and 3
provide necessary knowledge and data for the development of the model in Chapter 4.
Chapter 5 presents calibration and verification of the model developed in Chapter 4
using data presented in Chapter 3. The data used for model testing includes field data,
laboratory column and batch test data. Chapter 6 includes uncertainty analysis of the
developed model, and its result should point to sensitive parameters. Chapter 7 gives a

summary of conclusions, evaluation of research aims, and further research ideas.

Major parts of the overall thesis include field and laboratory studies as well as model
development and testing. The information from data analysis and literature review will
assist in the development of the micropollutant model. The models’ code will be written
using Python language, which was selected on the basis of its widespread use as a
scripting language in commercial and open source programs. Model calibration,
verification and uncertainty analysis will be conducted using an array of available

softwares.
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3 EXPERIMENTAL DATA

3.1 Introduction

This chapter presents the data collection methodology used in this study. Data collected
through laboratory and field experiments is used for the development and testing of a

micropollutant transport and fate model in biofiltration units.

The chapter begins with a description of the field experimental site, where both tracer
and micropollutant spiking tests were performed. This is followed by an explanation of
the measuring system for flow and meteorological data, as well as sample collection and
analysis methods. The tracer test is complemented with an Electrical Resistivity
Tomography to visualise the vertical flow field, and the field measurements are
accompanied by laboratory batch and column studies. The collected data is presented
with its statistical measures, and a brief estimate of possible data uncertainty is

provided.

3.2 Field experimental site

Field data was collected from the Monash Car Park Biofilter built inside Monash
University (Australia) campus, which harvests stormwater from a nearby multi-level
parking lot for irrigation of a sports oval (Figure 3-1). This biofiltration system consists
of three separate cells (all lined), with different configuration of the filtration layers and
plant covers. Although the biofilter has been in operation for 9 years, it is not in its
original state. The biofiltration system were reconfigured in 2009, when barriers were
placed between cells (to avoid fluid mixture among cells) and middle cell has been
filled with media following the Guidelines for Soil in Filter Media in Biofiltration
Systems (FAWB, 2009). This study was performed on only two of the cells, as the third

cell experienced a high degree of clogging.

Cell 1 is a biofilter which is made with loamy sand and planted with Carex appressa
(Table 3-1). The loamy sand that is used has a nutrient content well above the best
design practice (FAWB, 2009), with on average 1600 mg/kg total nitrogen (TN) and
320 mg/kg total phosphorus (TP). There is an abundance of soil organic matter (SOM),
4.6% on average, and the soil’s pH value of below 7.5 is considered to be normal
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according to the same guidelines. Loamy sand is placed at a depth of 50 cm, and below
it was a drainage layer consisting of small gravel and sand. There is no transitional
layer. The drainage layer also has a central sloping (1%) PVC perforated pipe. The pipe
is placed at the bottom of the cell, made out of an impermeable concrete, which extends
all the way to the sides of the cell, isolating the cell from the surrounding soil media.
The outlet of the PVC pipe is at the same level as the cell bottom, so the filter media can
drain completely. This pipe is the outlet of the biofilter. There is an extended detention
zone, provided by the placement of a security weir at a height of approximately 40 cm

above the ground level (Figure 3-2).

Stormwater
Pond

a (Treated water)
O
O]
O
—

Monash O

Parking

Lot

p Flow measuringj point
® Sampling point

— Water flow

---- Pipe

Figure 3-1 The Monash Car Park Biofiltration system — a scheme

Cell 2 is a biofilter which is made with sand and planted with Melaleuca ericifolia
(Table 3-1). The sand used has a nutrient content in accordance with the best design
practice (FAWB, 2009), having on average 850 mg/kg TN and 255 mg/kg TP. The
SOM, 2.2 % on average, and soil’s pH value of below 7.5 are also considered to be
normal (FAWB, 2009). Sand is placed at a depth of 70 cm, with the material between
50 and 70 cm being at the same time a drainage layer and a submerged zone with extra
organic content provided by the presence of woodchips and dry peat. Similarly to Cell
1, the drainage layer also has a central sloping (1%) PVC perforated pipe, placed at the
bottom of the cell, but the outlet of the pipe is 20 cm above the cell bottom, allowing for
submerged zone to be formed. This cell is also completely isolated from the

surrounding soil by an impermeable concrete. There is an extended detention zone,
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provided by the placement of a security weir at a height of approximately 40 cm above
the ground level (Figure 3-3).

Table 3-1 Soil Characteristics and configurations of the two field biofilters, Nov 2013

Cell 1 Cell 2
(loamy sand, no (sand, with submerged
submerged zone) zone)
Soil Characteristics
Sampling point (sample ID) depth” 10 cm 30 cm 10 cm 30cm
sand (0.063 — 2.0 mm) 91.4% 92.8% 95.3% 99.4%
Soil texture  Silt (0.002 —0.063 mm) 6.10% 4.10% 3.70% 0.30%
clay (£ 0.002 mm) 2.50% 3.10% 0.10% 0.30%
pH 7.10 7.40 7.10 7.20
Bulk Density (g/cm?) 1.58 1.61 1.56 1.59
Soil Organic Matter, SOM (%) 5.30 3.90 4.20 0.350
Total Phosphorus, TP (mg/kg) 470 260 420 30.0
Total Nitrogen, TN (mg/kg) 2,000 1,200 1,400 300
Average Soil Porosity 0.35 0.40
Geometry
Length (m) 9.65 9.65
Width (m) 1.35 1.35
Ponding depth (m) 0.41 0.41
Filter depth (m) — design value 0.50 0.50
0.20 (coincides with
Drainage layer (m) — design value 0.20
submerged zone)
filter material mixed
sand and small gravel with woodchips and dry
perforated PVC pipe peat
@100 perforated PVC pipe
@100
Submerged zone depth (m) No 0.20
Plant species Carex appressa Melaleuca ericifolia

) Depth measured from the soil surface during dry period
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Figure 3-2 Cell 1 at the Monash car park biofiltration system — a scheme
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Figure 3-3 Cell 2 at the Monash car park biofiltration system — a scheme

3.2.1 Measuring and sample collection system

Water quantity data. The biofiltration system is equipped with flow measuring

devices for inflow - I, outflow - D (drainage pipe), and overflow — O (flow over the
security weir) (Figure 3-4).

Mixing
Tank

Cell 1 H
*L (manual) ®' O dp
b (ultra-sonic)
LJ H
¥], (manual) ¢ O
Cell 2 (ultra-sonic)

(Cipolletti weir 0 v ¢
and ultra-sonic) D, D,
(V-notch and
ultra-sonic)

Figure 3-4 The flow measuring system scheme
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The measuring system for flow is composed of V-notch weirs for inflow and outflows,
trapezoidal (Cipolletti) weir for overflows, equipped with an open channel flow meter -
Siemens Milltronics OCM I1l. Data was logged using the dataTaker ® 500 which

connects to a PC via the DelLogger software.

The OCM I emits ultrasonic pulses that echo off the water surface and get captured by
its transducer (supplied with velocity, auxiliary head and temperature sensors). The
measured time for the echo is temperature compensated and converted into a
measurement of head for a given zero reading (Instruction Manual PL-505, 2001). The

range of the measurements is 0.3 m min to 1.2 m max, and the resolution is 0.2 mm.

Although the Siemens Milltronics flow meter can provide flow measurements using its
velocity sensor, in this biofilter setup it was used as an ultrasonic depth measuring
device, and the measured water depth was converted to flow using a calibration
equation. The equation is Kindsvater and Shen’s formula (USBR, 1997) of the

following form:

8 0 5/2
Q=C9-E-\/ﬁ~tan(5j-(H +k) (3.1)

where Q is the flow in the function of water head — H [L], and V-notch angle § [deg]. Ce
is the flow coefficient, and k [L] is the head correction, both functions of 6 (C. is
additionally a function of the flow regime over the weir e.g. fully contracted flow). All

V-notch weirs on site have a 9 equal to 30°.

Figure 3-5 The Theta Probe — soil moisture sensor type ML2x
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Since, it was found out that the ultrasonic depth sensors were not functioning properly
at the inflow weir — I, the flow was additionally measured manually (discrete

measurements) by a volumetric method.

Measurements of the water depth near the overflow Cipolletti weirs were at the same
time measurements of water depth in the ponding zone of the biofilter — marked as H in
Figure 3-4. The ultra-sonic depth measurements were averaged on a 30-sec interval for
all measuring points (the sampling rate was 10 Hz).

Soil moisture measurements were taken with the Theta Probe sensors (Figure 3-5)
placed horizontally at multiple sections and different depths of the biofilter as can be
seen in Figure 3-6. The probe sends an output voltage proportional to the difference in
amplitude of the standing wave in two point of the transmission line. The standing wave
is produced by the emission and the reflection of the 100 MHz sinusoidal signal sent via
a transmission line ending with an array of four rods in the soil. The change in the
impedance of the rod array is influenced by the dielectric constant of the continuum
between the rods, and since the dielectric of water is much higher than both soil and air
(40 — 80 times), therefore, it can be completely attributed to the water content (Theta-
Probe USER Manual, 1999). The probe output, which is in mV, is converted to

volumetric water content via the following equation:

(1.1+ 4.44"“"‘“”“\”)—610 ,
o 1000 m (3.2)
3 m’

where a, and a; are calibration coefficients specific to soil, and for these biofilter cells
are: a, = 1.3727, a; = 9.6992. The full measurement range is 0.0 to 1.0 m®*m™, but the
accuracy of +0.01 m®m applies to the range 0.05 — 0.6 m®m™ (0 - 40°C) (Theta-Probe
USER Manual, 1999).

The placement of the probes was optimized to capture variations of soil moisture profile
with distance from the inlet and with depth. Data from the soil probes was stored using
the dataTaker ® 600 in 15-min intervals (this was selected due to the not so dynamic
change in soil moisture, as seen with previous experiments, and to save memory to

allow for long term observations).

| Page 56



Chapter 3: Experimental Data

- Cell 1
\\« H, O,
' AV N
Ponding : v/
Filter | $311(10)
70 *212(20) '514(30] D
Pipe - o >
[em]* 450
780
L
R Cell 2 H 9
Ponding : \V)
Filter ! S S,
. " 150 210100 23(10) .
Dralﬂage i 822[301 '824:35; SES[SDI ’_ _Ez
Pipe Py
[cm] ~ 420
‘ 240
450
780

Figure 3-6 Soil moisture probes scheme

Water quality data. To assess the water quality in field experiments, two types of
discrete samples were taken at both inflow, I, and outflow points, D: high frequency
small volume and low frequency large volume samples. The small volume samples
were taken to measure temperature and electrical conductivity (EC) with a multi —
parameter probe PCSTestr 35 (temperature range 0 — 50°C, accuracy £0.5°C; EC range
200 —2000uS/cm, accuracy +1%), while large volume samples were collected in
standardized bottles (plastic, dark glass etc.), kept on ice during the experiment, and
taken to the laboratory for further analysis (pH, EC, nutrients, organic matter,
micropollutants etc.). Inflow samples were grab samples, taken by sterile containers and
transferred to smaller bottles (standards and replicates for laboratory analysis), while
samples at the outflow were collected using a peristaltic pump, with the hose set in the
lower ¥4 of the outflow pipe and directly poured in bottles. The samples were taken at a
faster rate in the rising part of the breakthrough curve (e.g. every 200 to 500 L of
cumulative outflow volume) and less frequently toward the end of an event (1000 to
1500 L), as can be seen in Figure 3-7 (this is important for calculations of EMCs —

event mean concentrations).
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Depending on the experiment type, the samples brought to the lab were analysed for
pH, turbidity, fluorescein concentration, and EC. The pH and EC were checked with the
HACH senslON+ MM374 multi-parameter benchtop meter. The measurement range for
EC with this meter is 0.2 mS/cm to 200 mS/cm with an accuracy of <0.5%, and for the
pH is 0 to 14 pH with an accuracy of 0.002 pH. Turbidity measurements were done with
a HF Scientific Micro TPI portable turbidimeter.

Sampling points in an event

1.0 10000
Flow rate
- --- Cumulative Volume ____- A— - -
_ 0.8 7 A Sampling points M. 8000 "
< A | E
=06 N - 6000 3
2 =
= ”
E ’ g
£ 04 +———————pf+H -1 A~ - A - 4000
o . &
= E
02 ———gF W et - 2000 5
s}
0.0 T T T T T 0

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00
time [hh:mm)]

Figure 3-7 The sampling points showing the custom sampling procedure

AQUAFIuor® was used for measurements of fluorescein concentration in water
samples with a linear detection range between 0.4 to 400 ppb (equivalent to pg/L).
Linear detection range provides that the reading of the AQUAFIluor is directly
proportional to the content of fluorophore. The device can be used for sample
temperatures between 5 and 40°C, but since the readings are very sensitive to
temperature, it is important to assure that the readings done on samples are temperature
compensated to the temperature of the calibration standard. Fluorescence readings are
also pH dependant, so each data point needed to be accompanied by a measurement of
the pH value.

Once collected, the water samples were stored on ice, after which they were delivered to
a NATA accredited laboratory (NATA — National Association of Testing Authorities,
Australia) for analysis. All the samples were analysed for THMs, phenols, phthalates,
PAHs and triazines using GCMS, for glyphosate using HPLC and for TPHs using GC
FID (USEPA SW 846 Rev 2007) (see Table 3-2). The limit of report (LOR) for THMs,
phenols, PAHs and phthalates was 1 pg/L. The LORs for glyphosate, triazines and
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TPHs were 30 pg/L, 2 pg/L, and 100 pg/L, respectively. Electric conductivity (EC) was
measured for all samples using a HACH sensION 378. The total dissolved solid (TDS)
were then calculated based on a correlation between the EC and TDS determined by

laboratory experiments.

Table 3-2 Summary of the pPs’ physico-chemical properties, 95" percentile stormwater
concentrations, measured inflow concentrations, Australian drinking water guideline
(ADWG) values, and analytical methods used to quantify the pollutants in the collected
water samples and their associated Limits of Reporting (LOR).

th

Physico-chemical 95 Measured
properties” percentile mean infow ~ ADWG  Analysis  LOR
Pollutants .
concentratio value = STD [ug/L] method [me/L]
S [mg/L] Koc n? [ug/L] (n=9-12) [pg/L]
Sum of TPH i i
TPHs - - 147 Dieselin  coh04392 2 GCFID 100
>C10-C40 5KL
Pyrene 0.1 4.81 100 9.7£3.6 150
PAHs GCMS 1
:2phtha'e 32.2 2.74 250 16.2£6.9 70
Glyphosate 12000 3.90 2000 1600+205 1000 HPLC 30
Atrazine 29.8 2.09 60 49.519.4 20
Herbicides
Simazine 5.7 2.13 60 43.316.2 30 GCMS 2
Prometryn 48.0 2.38 60 47.2+4.9 20
DBP 9.9 2.20 60 41.3+4.4 35
Phthalates GCMS 5
DEHP 0.029 4.50 60 17.048.6 10
THMs Chloroform 8452 1.75 250 55.1+11.3 200 GCMS 1
PCP 18.9 3.50 60 27.116.1 10
Phenols GCMS 1
Phenol 83119 1.34 200 203.3140.8 -3

Y mean values compiled from Mackay et al (2006)

2 Equates to target or challenge concentration

¥ no Australian Drinking Water Guideline (ADWG) value

In addition to the micropollutant concentrations, all water samples were analysed for
potential surrogates’ concentrations (total suspended solids (TSS), total phosphorus

(TP), total nitrogen (TN), ammonia, mono nitrogen oxides (NOx), dissolved organic
carbon (DOC), and UV absorption at 254 nm (UVA).
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Soil samples were taken at both cells during the 2" test series from both the surface
(5cm) and deep (15cm) soil layers. A sample for one cell and one depth was made in a
250 ml glass jar as a composite from three points: upstream, at 1.5 m, middle, at 4.8 m,
and downstream, at 8.15 m (all distances measured from the wall at inflow end). The
LOR for the pollutants was as follows: TPHs 20 mg/kg, phthalates, phenols and
chloroform 5 mg/kg, triazines and PAHs 1 mg/kg. Glyphosate was not analysed.

3.3 Field tracer testing

A series of in-situ tests were conducted, named “challenge tests”, involving pumping
multiple pore volumes (PVs) of water from an adjacent stormwater pond spiked with
120 pg/L of fluorescein (1st and 2nd spiking tests) or without fluorescein (1st and 2nd
flushing tests) into each biofilter. The inflow concentration of 120 pg/L was selected as
it was best suited to the detection range of the measurement device — the AquaFluor®
Handheld Fluorometer (Turner) (0.4 - 200 ug/L), and it allowed for visualisation of

fluorescein in the water.

120 4

Spiking Test (FL Flushing Spiking Test (FL+KCI) N Flushing
a x X | X
-5 100 O Xx + Celll
= X XX )?
p |
_g 20 x y x x X x Cell2
© x % )
= X I —— Inflow Fluorescein
o X >°< " ¥ concentration
g 60 X X |
X X |
8 xx b x
< REY . X x }
z 40 ..0 & % y
] >6 % o'g( X
5} P % X& ® x
S 20 & . « X e,
= + X
& x \..“ * XK
L

0 - }
0.0 1.0 2.0 0.0 10 0.0 1.0 20 00 10 2.0

Pore volume

Figure 3-8 Pollutographs of fluorescein during tracer tests at Cell 1 and Cell 2

The 1st spiking test was conducted with 2.5 PVs inflow dosed into each biofilter, while
the 2nd spiking test was conducted with 2.0 PVs. Before and after the 2nd spiking test,
each biofilter was flushed by 2 PVs of un-spiked stormwater (1st flushing test and 2nd
flushing test), which were aimed to flush the fluorescein in biofilters. Zhang et al.
(2014) previously determined 2 - 3 PVs of inflow as being suitable for a challenge test
for these biofilters. During the tests, about 10 discrete inflow samples and over 20

discrete outflow samples were collected for each test. Samples were analysed for
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fluorescein concentration using a fluorometer, which was tested and validated for
fluorescein detection in laboratory using standard fluorescein concentrations (10 pg/L
and 100 pg/L) (Figure 3-8).

In spite of identical fluorescein infow concentrations, a substantial difference in
fluorescein outflow concentrations was measured at Cell 1 and Cell 2 (Figure 3-8).
Fluorescein outflow concentrations at Cell 1 were mostly lower than measured at Cell 2,
which is hypothesized to be due to higher organic content of filter media in Cell 1, and

presumable higher sorption of fluorescein in this cell.

Potassium chloride test

400 -
*
350 | SZM Jet? 5
X 0t *
— 300 8 <8
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= . . + Cell 1 measured
— x ®  Spiking Flushing
- 0o . ’; + x Cell 2 measured
£ 150 x .
100 x* x *
* X
50 4 *
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Figure 3-9 Pollutograph of KCI during the tracer test at Cell 1 and Cell 2
The conservative tracer testing was performed by pumping 2 PVs stormwater with a
chlorine ion (CI) concentration of 400 mg/L, followed by 2 PVs of stormwater (no
tracer spiked) (Figure 3-9). CI" was analysed using a FIA Automated lon Analyser
(QuickChem 8500).

The difference in measured outflow concentration of CI" in Cell 1 and Cell 2 was
attributed to a substantial decrease in hydraulic conductivity observed at Cell 1. This
change in hydraulic conductivity was attributed to soil swelling (Dif and Bluemel,
1991) that happened due to the introduction of salt ions in an organic rich soil. Soil
swelling is a phenomenon known to occur in the area, and it additionaly changes the

porous structure of the filter media.

3.4 Field Electro Resistive Tomography (ERT)
3.4.1 Introduction

The main aim of the Electro Resistive Tomography (ERT) field experiments was to

explore the dimensionality of the water flow i.e. whether one-dimensional flow was a
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too high level of problem abstraction. Additionally, the collected data complemented
the field tracer test data to uncover possible routes of short circuiting i.e. preferential
flow paths.

3.4.2 About the method

Electro-Resistive Tomography for subsurface imaging is one of the non-invasive
geophysical imaging methods that measures electrical resistivity distribution in soils.
Because it is rarely the case that the subsurface is a homogeneous and steady
continuum, but rather contains different soil materials with variable porosity, moisture
and ionic content, measurement of resistivity allows for differentiation between them.
This method can be used in both static characterizations of the subsurface, as well as to
obtain a dynamic representation — series of images showing changes in resistivity
caused by e.g. change in water saturation of pores. Since the resistivity of water is more
than 8 times smaller than resistivity of air (at 20°C: water 2x10° Qm, air 2x10'° Qm), a

local increase in soil resistivity can be attributed to increase in air content in pores i.e.

drying out.
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Figure 3-10 Sample electrode array placement and measurement points for ERT (after
Keller and Frischknecht, 1996)

Measurements for the ERT are done so that a direct current | (Figure 3-10) is supplied
via one pair of electrodes (electrodes A and B, placed in the subsurface zone) and a
potential difference V (voltage drop) is measured at another pair of electrodes

(electrodes M and N, also placed in the subsurface zone). Usually a large even number
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of electrodes is placed, and electrodes are interchangeably used for supplying the
current (only one pair at a time) and measurement of voltage drop (between pairs of
remaining electrodes). For this purpose, a cable is placed from a High-Speed Data
Acquisition System to all the electrodes, and so is formed an electrode array. Depending
on the spacing of the electrodes, the measurement scale can go from a few centimetres
to a few kilometres and can produce 2D or 3D images of the subsurface resistivity
distribution. Also, depending on which pair of electrodes measures the voltage drop, the

measurement point can be closer or further from the soil surface.

The raw measurements present an apparent resistivity (due to the heterogeneity of the
subsurface) and need to be converted applying local boundary conditions to Poisson

type equation (Garré et al., 2011) to get the calculated resistivity:

V-(EC,Vp)-V-j, =0 (3.3)
Where EC, is the bulk soil electrical conductivity (Q'm™), ¢ is the electric potential
(V), and js is the source current density (Am™). Solving of the equation can be done
using some of the state-of-the-art inversion algorithms e.g. error-weighted, smoothness

constraint Occam type algorithm as per Garré et al. (2011).

3.4.3 Field setup

The two biofilter cells at Monash Carpark were equipped each with 30 metal rods,
stabbed verticaly 5 cm in the subsurface at an equidistance of 30 cm. The electrodes
were placed in the middle longitudinal cross section of the cell, as seen in Figure 3-11,
and connected to the ABEM Terrameter LS device — a high speed data acquisition
system for resistivity measurements (ABEM, 2012). ABEM Terrameter LS is supplied
with a high power true current transmitter (output power 250 W; maximum output
current 2.5 A; maximum output voltage + 600 V), and a sensitive receiver that allows
for high resolution data recording with 4, 8 or 12 galvanically separated channels (input
impedance 200 MQ, precision 0.1%), and is set to use a dipole — dipole electrode array
(ABEM, 2012). ERT measurements were conducted in an experiment setting very
similar to the first two events of the 2012 Challenge Test (see 0): with identical inflow
dynamics of treated stormwater, from a nearby pond, with added fluorescein tracer. The
rationale behind that was to obtain soil resistivity/moisture distribution throughout the
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spiking test, but avoiding simultaneous experiments as ERT might induce electrolysis of
micro-pollutants. Soil moisture probes were removed prior to the experiment, to avoid
possible electrical damage. The tracer was used to serve as a reference between the two

experiments (the same tracer was used for spiking tests as well).

A
75cm
: 4 LR B BN B BN B BN BN B B B B B B BN BN BN BN BN BN BN BN BN OB BN B B BN BN

75 cm 39 Sm 30 electrodes
v

Figure 3-11 Electrode placement at the biofilter site - Monash Carpark

Prior to the actual experiment, the biofilter system was conditioned in a similar way as
before the second challenge test: the system was saturated with 2.5 pore volumes of
“clean” stormwater and left to freely drain for a period of two days. In that way, the
starting saturation for the actual testing days was around 75% for Cell 1 and 55% for
Cell 2. On the first testing day a total of 3 pore volumes was introduced in both cells
with a constant average concentration of 112 ug/L of fluorescein (background
concentration was 1.2 pg/L; concentration in deionized water was 0.3 pg/L). Ten hours
following the end of the ponding phase of the first testing day, a second test was
conducted: a total of 1.8 pore volumes were introduced in Cell 1 and 3 pore volumes in
Cell 2 with an average fluorescein concentration of 119 ug/L. The water was dosed so
that all the water was treated (nothing flowed over the security weir), which is the

reason why Cell 1 only received 60% of the planned inflow water quantity.

Measurements included flow measurements at inflow and outflow pipes, depth of water
at the ponding site, EC (Hach probe) and fluorescein concentration (AquaFluor

Fluorometer) (see section 3.2.1. for details).

3.4.4 Results and Discussion

The inverted ERT data i.e. resistivity in Ohms, is shown in Figure 3-12 as a time lapse
in a 10 minute increment for Cell 1 on 9/11/2012 and in Figure 3-13 for Cell 2 on
8/11/2012.

The resistivity fields in Figure 3-12 and Figure 3-13 show that it took Cell 1 around 20
minutes and Cell 2 around 50 minutes to become steady i.e. spatial heterogeneity of the
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resistivity field, closely linked to the water saturation level, becomes “uniformly
layered” at these times. This means that the change in resistivity (and, by assumption,
the soil water content) becomes gradual in the vertical direction i.e. becomes one-

dimensional.

It should be noted that the biofilters were not fully saturated prior to the test start and
that inflow pattern was such that flows were very low (0.1 — 0.2 L/s). Even in these
conditions 20 or 50 minutes is seen as a short period when compared to the total
duration of the spiking tests (3 — 5 h). It is, therefore, safe to assume that the one-

dimensional flow model can be used for spiking tests.
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Figure 3-12 Time lapse of ERT inverted data for Cell 1 on 9/11/2012 (10 min inverval)
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Figure 3-13 Time lapse of ERT inverted data for Cell 2 on 8/11/2012 (10 min inverval)

3.5 Field “spiking” testing

The field “spiking” tests (a.k.a. challenge tests) were carried out at the Monash Carpark
biofiltration system described in detail in Chapter 3.2. The main aim of the tests was to
provide sufficient data for model development, while at the same time allowing for the
development of the validation framework (see Zhang, 2015). The tests were performed
under challenging conditions: these included high target concentrations of
micropollutants in the inflows, as well as extreme (the systems were run at their full
infiltration capacity, but without any overflow) and highly variable operational

conditions that biofilters could be exposed to (e.g. different drying/wetting regimes).

| Page 67



Chapter 3: Experimental Data

3.5.1 Experimental setup

A total of seven groups of micropollutants were selected to be checked in challenging
conditions at Monash Carpark biofilter, as various studies report them to be present in
stormwater (e.g. Cole et al., 1984; Makepeace et al., 1995; Duncan, 1999; Gobel et al.,
2007; Zgheib et al., 2012) (For more details see Chapter 2.2.3). These include total
petroleum hydrocarbons (TPHSs), polycyclic aromatic hydrocarbons (PAHS),
glyphosate, triazines (simazine, atrazine and prometryn), phthalates (dibutyl phthalate,
di-(2-ethylhexyl) phthalate), trihalomethanes (THMs) and phenols (phenol,
pentachlorophenol). Table 3-3 shows details regarding these micropollutants, with their
classification according to groups, physico-chemical properties (solubility in water, K
— soil water partitioning coefficient normalized to organic carbon content, Henry’s
constant, pK, — acid dissociation constant as logarithmic value, and half-life in soil),
expected removal process in biofilters, and target concentration during tests. The target
concentration was selected based on reported concentrations found in the literature.
Event mean concentration (EMC) from each publication was considered where possible
(measured values of single samples were not considered). In this way at least 15 EMC
values were gathered for each micropollutant and the 95" percentile concentrations
were calculated. The 95" percentile was adopted as the challenge concentration for
consistency with the validation of pathogen removal in wastewater recycling schemes
(DHV, 2013). Since some reports included very low micropollutant concentrations (that
were far below the Australian Drinking Water Guideline (ADWG)), a value of twice the
ADWG value was set as the target concentration (e.g. for naphthalene, glyphosate,
DBP, chloroform). The idea behind the choice of target concentration values was to
simulate operational conditions that may cause hazard to humans or other 