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Abstract 13 

This paper presents a comparative environmental assessment of several different green 14 

concrete mixes for structural use. Four green concrete mixes were compared with a 15 

conventional concrete mix: recycled aggregate concrete with a cement binder, high-volume 16 

fly ash concrete with natural and recycled aggregates, and alkali activated fly ash concrete 17 

with natural aggregates. All five concrete mixes were designed and experimentally verified to 18 

have equal compressive strength and workability. An attributional life cycle assessment, 19 

based on the scenario which included construction practice, transport distances, and 20 

materials available in Serbia, was performed. When treating fly ash impacts, three 21 

allocation procedures were compared: ‘no allocation’, economic, and mass allocation, with 22 

mass allocation giving unreasonably high impacts of fly ash. Normalization and aggregation 23 

of indicators was performed and the impact of each concrete mix was expressed through a 24 

global sustainability indicator. A sensitivity analysis was also performed to evaluate the 25 
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influence of possibly different carbonation resistance and long-term deformational behavior 1 

on the functional unit. In this specific case study, regardless of the choice of the 2 

functional unit,  the best overall environmental performance was shown by the alkali 3 

activated fly ash concrete mix with natural aggregates and the high-volume fly ash recycled 4 

aggregate concrete mix. The worst performance was shown by the recycled aggregate 5 

concrete mix with a cement binder.  6 

Key words 7 

Green concrete; Fly ash; Recycled concrete aggregate; Alkali activation; Life Cycle 8 

Assessment; Environmental performance. 9 

 10 

1. Introduction 11 

Over the past few decades, the development of energy and resource efficient technologies and 12 

products became a primary goal in a generally accepted principle around the world – 13 

sustainable development. The construction industry is no exception to this rule. It is 14 

responsible for 50% of the consumption of natural raw materials, 40% of the total energy 15 

consumption and almost half of the total industrial waste generation (Oikonomou, 2005). 16 

Concrete is the most widely used construction material today. It is estimated that roughly 25 17 

billion tons of concrete are produced globally each year, or over 3.8 tons per person per year 18 

(WBCSD, 2009). Twice as much concrete is used in the construction industry worldwide than 19 

all the other construction materials combined.  20 

The specific amount of harmful impacts embodied in a concrete unit is, in comparison to 21 

other construction materials, relatively small. However, due to the high global production and 22 

utilization, the total environmental impact of concrete is still significant: large consumption of 23 

natural resources (mineral resources for cement and concrete and fossil fuels in particular), 24 
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large emissions of greenhouse gasses, primarily CO2 from cement production and a large 1 

amount of generated waste.  2 

So far, a lot of effort has been put into finding sustainable solutions for concrete as a 3 

structural material. Two major trends can be outlined: (1) replacement of natural aggregates 4 

with recycled ones and (2) partial replacement of cement with supplementary cementitious 5 

materials (e.g. fly ash (FA), blast furnace slag, silica fume etc.) or complete replacement of 6 

cement with alkali activated binders and, of course, any combination of these possibilities. 7 

Demolished concrete can be recycled, although not into its original constituent materials or 8 

original whole form. Rather, concrete is crushed into aggregate called recycled concrete 9 

aggregate (RCA) for use in new applications. If it fulfills certain quality requirements, RCA 10 

can be used as a partial or full replacement of natural aggregate (NA) in new structural 11 

concrete – recycled aggregate concrete (RAC). When made with the same mix proportions, 12 

RAC exhibits lower mechanical properties such as compressive, tensile strength, and modulus 13 

of elasticity (Rahal, 2007; R. V. Silva et al., 2015a; R. V Silva et al., 2015) and higher 14 

shrinkage and creep than corresponding NAC (Domingo-Cabo et al., 2009; R. V. Silva et al., 15 

2015b). The exact value of this decrease/increase depends on various factors: RCA quality, 16 

replacement ratio, mixing procedure, use of admixtures, additions, etc.    17 

Approximately one ton of the greenhouse gas CO2 is released for each ton of Portland cement 18 

clinker produced (Bilodeau and Malhotra, 2000), originating from the combustion of carbon-19 

based fuels and the calcination of limestone. Today, there is a general trend of replacing high 20 

amounts of Portland cement with FA in concrete. Concrete that contains more than 35% of 21 

FA in the total cementitious materials mass is usually called high-volume fly ash concrete 22 

(HVFAC). Owing to the pozzolanic activity of FA, this type of concrete can have similar 23 

mechanical properties as Portland cement concrete if produced with a low water-to-24 
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cementitiuos materials ratio and the use of a superplasticizer (Bouzoubaâ and Fournier, 2003; 1 

Poon et al., 2000).   2 

At the end of this ’cement replacement’ line stands alkali activated concrete in which the 3 

cement binder is completely replaced by alkali activated materials rich in silicon and 4 

aluminium. Different natural and waste materials are activated with alkaline solutions, usually 5 

with a combination of sodium hydroxide and sodium silicate solutions. According to 6 

(Davidovits, 2015), currently two types of low-calcium FA based materials are in the research 7 

focus: (1) alkali activated fly ash concrete (AAFAC ) which uses caustic sodium hydroxide 8 

and usually needs curing at elevated temperatures and (2) slag/FA based geopolymer concrete 9 

which uses non-caustic silicate solution and is capable of hardening at ambient temperature. 10 

With both types it is possible to obtain adequate mechanical properties for structural concrete 11 

(Davidovits, 2015; Glasby et al., 2015; Rangan, 2009). High-calcium FA can also be used, but 12 

it is much less reactive in alkali activated systems than low-calcium FA and therefore better 13 

suited for cement replacement in binary and ternary systems (Winnefeld et al., 2010). 14 

However, there is published research on alkali activated high-calcium FA concrete with NA 15 

and RCA aggregate where relatively good concrete properties were obtained (Nuaklong et al., 16 

2016).     17 

All of these efforts aim at the same environmental improvements: preservation of natural 18 

resources, lowering of CO2 emissions, and decreasing the amount of generated waste. With 19 

RCA, there is also a potential for reducing transportation burdens, since concrete can often be 20 

recycled on demolition sites or close to urban areas where it will be reused. 21 

A concrete with a simultaneous replacement of cement and natural aggregates has the largest 22 

potential for a decrease of environmental impact, if engineering properties required for 23 

structural use can be obtained. In this work, four ’green’ concrete mixes, with experimentally 24 

verified equal compressive strengths, were environmentally assessed and compared with a 25 
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corresponding conventional concrete mix (NAC). These were recycled aggregate concrete 1 

with a cement binder (RAC), high-volume fly ash concrete with natural (NAC_FA) and 2 

recycled aggregates (RAC_FA) and alkali activated fly ash concrete with natural aggregates 3 

(NAC_AAFA). In all concrete mixes only low-calcium FA was used. The reason for such a 4 

choice lies in the fact that blast furnace slag is scarce in Serbia while vast amounts of low-5 

calcium FA are generated at coal-fired power plants—6 million tons obtained per year, while 6 

200 million tons is being currently deposited in the landfills. Moreover, only 2.7% of the total 7 

FA generation in Serbia is currently utilized by the construction industry (Dragaš et al., 2016).  8 

 9 

2. Background 10 

In order to introduce a new material or technology into the construction practice, its 11 

performance at all levels (including cost) should be competitive to materials or technologies 12 

already existing on the market. Along with its technical performance, the environmental 13 

performance of a construction material should also be assessed. 14 

A lot of research was dedicated to mechanical and durability related properties of so-called 15 

green concretes. However, their environmental performance was substantially less 16 

investigated although it was, in fact, the driving force behind the introduction of green 17 

concretes (Celik et al., 2015; Davidovits, 2015; Fawer et al., 1999; Habert et al., 2011; 18 

Jiménez et al., 2015; Knoeri et al., 2013; Marinković et al., 2010; McLellan et al., 2011; 19 

Teixeira et al., 2016; Turk et al., 2015; Turner and Collins, 2013; Van Den Heede and De 20 

Belie, 2014; Weil et al., 2009, 2006). Replacing virgin materials and cement with by-products 21 

or waste, with or without alkali activation, does not necessarily and directly lead to better 22 

environmental performance in the course of the concrete’s life cycle. Any environmental 23 

assessment should be performed using a comprehensive, scientific-based approach, where all 24 
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energy and material flows within system boundaries and in the course of the concrete’s life 1 

cycle are clear and transparent.  2 

For that purpose, the well recognized and standardized methodology – Life cycle assessment 3 

(LCA) is usually applied. It allows for evaluating the environmental impacts of processes and 4 

products during their life cycle. LCA is used according to the ISO 14040 standard (ISO, 5 

2006), which provides a framework, terminology and methodological phases of the 6 

assessment: (1) goal and scope definition (including the system boundaries and functional unit 7 

(FU) definition), (2) creating the life cycle inventory (LCI), (3) assessing the environmental 8 

impact (LCIA), and (4) interpreting the results. Beside these four mandatory steps, 9 

normalization, grouping, weighting, and additional LCIA data quality analyses are optional 10 

steps within the LCIA phase. 11 

Whenever dealing with multi-functional processes, some type of allocation (partitioning the 12 

input and/or output flows of a process to the product system under study) must be applied. For 13 

green concretes this is especially important when calculating the impacts of by-products from 14 

other industries or recycling impacts. ISO 14040 (ISO, 2006) recommends a three-step 15 

procedure with regard to allocation. As a first step, allocation should be avoided where 16 

possible by dividing the process into subprocesses or by expanding the system boundaries to 17 

include all the additional functions of the co-products. System expansion is not the same as 18 

the commonly applied substitution method, but it was proven to be conceptually equivalent at 19 

the process level (Tillman et al., 1994). As a second step, when allocation cannot be avoided, 20 

it must be done in a way that reflects an underlying, causal, physical relationship—usually 21 

mass allocation. The third step is about ‘other relationships’ such as market value—economic 22 

allocation. If system expansion for some reasons is not acceptable, the question remains what 23 

type of allocation to use—mass or economic. Chen et al. (2010) tested mass and economic 24 

allocation in the case of FA used as a substitute for cement in concrete. The authors concluded 25 
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that mass allocation induced large impacts of FA, higher than those of ordinary cement, which 1 

can discourage the cement and concrete industry to use this by-product. On the other hand, 2 

economic allocation, although unstable because of potential market prices fluctuations, 3 

induced much lower impacts of FA. It supports the fact that FA is primarily waste and 4 

therefore should not have an environmental impact similar to that of the main product. Van 5 

Den Heede and De Belie (2012) recommended economic allocation to ensure an enduring use 6 

of FA as a cement-replacing material. 7 

Having all this in mind, it is obvious that there are many possible options when applying 8 

LCA. It is hard to compare the results of previous research in this area since they differ in 9 

many aspects. On the material level, various compositions of green concretes were analyzed, 10 

with different replacement ratios of virgin materials with by-products and waste, different 11 

alkali activators were used, etc. On the LCA level, different system boundaries are possible, 12 

different approaches to LCI modeling, different choices of FU, etc. Beside the commonly 13 

used FU equal to 1 m3 of concrete, the FU extended to include strength and durability 14 

requirements was applied by some researchers (Garcia-Segura et al., 2014, De Schepper 15 

et al., 2014, Van Den Heede and De Belie, 2014). A thorough analysis of an equivalent 16 

functional unit for RAC was conducted in (Dobbelaere et al., 2016). Based on the 17 

analysis of material properties, authors showed that, depending on the particular 18 

serviceability and ultimate state, the equivalent functional unit was higher for RAC than 19 

for corresponding NAC, if the same mix design was applied for both concretes.  20 

Assuming that the goal of the LCA study is the comparison of conventional and green 21 

concrete’s environmental performance, the results of the assessment mostly depend on the 22 

system boundaries, or the way of dealing with multi-functional processes – whether an 23 

attributional or consequential approach to inventory data modelling is chosen.  24 
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This is especially true when comparing recycled and conventional concrete. In LCA studies 1 

where a consequential approach with system expansion (understood as substitution) is 2 

applied, results are usually beneficial for RAC. For instance, Knoeri et al. (2013) showed that 3 

RAC environmental impacts were reduced to 70% of the conventional concrete impacts. Turk 4 

et al. (2015) obtained similar results: impacts were reduced to 88% and 65% of the 5 

corresponding conventional concrete’s impacts in the case of RAC and RAC_FA, 6 

respectively. However, the main reasons for such improvements in environmental behavior 7 

were avoided burdens: avoided waste landfilling and avoided iron production if iron scrap as 8 

a co-product of recycling was recovered. These avoided impacts were therefore attributed 9 

only to the product that receives waste, i.e. green concrete.  10 

In attributional LCA studies where allocation is used instead of system expansion with 11 

substitution, results are not so beneficial for RAC. The credits from recycling or utilization of 12 

by-products in concrete are accounted for only on the level of different waste management 13 

scenarios comparison, not on the level of the product’s life cycles comparison. With this 14 

approach, at best, for low cement increase in RAC, impacts of RAC and the corresponding 15 

conventional concrete are similar (Marinković et al., 2010; Weil et al., 2006). Specially, 16 

according to Jiménez et al. (2015), if a mix proportioning method called ‘equivalent mortar 17 

volume method’, proposed by Fathifazl et al. (2009), is used in RAC design, the RAC impacts 18 

are lower than those of the corresponding conventional concrete, even with an attributional 19 

approach.  20 

The second main source of discrepancy in obtained results are different replacement 21 

percentages of coarse NA with RCA in previously mentioned studies. They range from 30% 22 

(Turk et al., 2015), 45% (Knoeri et al., 2013) to 100% in (Marinković et al., 2010). 23 

LCA studies performed on the environmental evaluation of HVFAC with natural aggregates 24 

showed that replacement of cement with FA reduced the environmental impacts of concrete 25 
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(Celik et al., 2015; Teixeira et al., 2016; Van Den Heede and De Belie, 2014). However, this 1 

was possible if the standardized k-value concept (EN 206-1, 2000), which limits the amount 2 

of active FA and strength of concrete, was not followed (Van Den Heede and De Belie, 2014). 3 

As expected, the exact value of reduction depended on the system boundaries and chosen FU. 4 

The results of research performed so far on LCA of AAFAC are contradictory. This is mostly 5 

the consequence of different LCI data used for alkali activators (Davidovits, 2015). Habert et 6 

al. (2011) reported that AAFA concrete had a slightly lower impact on global warming and 7 

higher other environmental impacts than ordinary Portland cement concrete. Turner and 8 

Collins (2013) came to a similar conclusion regarding the global warming potential. This was 9 

probably the result of a misinterpretation of Fawer’s data on LCI of sodium silicate (Fawer et 10 

al., 1999). Other research was dedicated mostly to the calculation of the global warming 11 

potential (McLellan et al., 2011; Weil et al., 2009; Yang et al., 2013) and showed a significant 12 

reduction of this impact category in the case of AAFA concretes. The exact value of the 13 

reduction again depended on the system boundaries, whether transportation and heat curing 14 

were included, the activator type, etc.   15 

 16 

3. Objectives 17 

The main aim of this work was to bring in a single environmental LCA several different green 18 

concrete mixes that utilize FA and RCA as substitutes for natural resources. Therefore, the 19 

objectives were to determine the appropriate functional unit for concrete mixes with possible 20 

different performances, to identify the life cycle phases with major impacts, to quantify and 21 

compare these impacts for different concrete mixes, and finally, to recommend the best 22 

option and/or improvements within the analyzed concrete mixes.      23 

 24 

4. Methodology 25 
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Comparative environmental assessment of five different concrete mixes was performed using 1 

LCA according to ISO 14040 (ISO, 2006). Concrete mixes are intended for the application 2 

in precast structural elements. AAFA concretes must be cured at elevated temperatures 3 

and therefore they are not suited for in-situ applications. Beside the mandatory steps, 4 

normalization and aggregation was also performed. Assessment was carried out according 5 

to the scenario typical for Serbia, which included: specific concrete mixes, transport 6 

distances and localy available materials (specifically RCA and FA). Regarding exposure 7 

conditions, carbonation-induced steel corrosion was assumed and a service life of 50 8 

years. An attributional LCI modeling approach was adopted. All five concrete mixes 9 

were designed and experimentally verified to have the same compressive strength and 10 

workability. In the following, firstly, the tests of concrete properties are described. 11 

 12 

4.1 Tests of concrete properties 13 

An experimental program was carried out to obtain the mix proportions of five different 14 

concrete types, so that all of them have equal 28-day compressive strength and workability: 15 

NAC – natural aggregate concrete made entirely with river aggregate and a cement binder; 16 

NAC_FA – natural aggregate concrete with 35% replacement of cement with FA; 17 

NAC_AAFA – alkali activated fly ash natural aggregate concrete; 18 

RAC – recycled aggregate concrete with natural fine and recycled coarse aggregate (100% 19 

replacement ratio) and a cement binder; 20 

RAC_FA – recycled aggregate concrete with 35% replacement of cement with FA. 21 

Coarse RCA was obtained from a demolished reinforced concrete structure which had been 22 

exposed to weather conditions for more than thirty years. The crushing of the demolished 23 

concrete was performed in a mobile recycling plant, while natural aggregate was river sand 24 

and gravel from the Morava River (Serbia). NA was used in saturated, surface-dry condition 25 
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while RCA was used in oven-dried condition. For easier control of RCA absorption and 1 

concrete workability, in concrete mixtures containing RCA an additional water amount was 2 

calculated on the basis of the water absorption of RCA after 30 minutes. Basic properties of 3 

recycled and natural aggregates are shown in Table 1, while their particle size distribution is 4 

presented in Figures 1 and 2. Water absorption of RCA after 24 h varied from 3.7% to 5 

4.6%, and oven-dried density varied from 2309 kg/m3 to 2370 kg/m3, depending on the 6 

particle size. With these properties, RCA can be classified for instance, as belonging to 7 

between classes A3 and B1 according to the classification proposed in (Silva et al., 2014). 8 

Since the loss of the concrete’s compressive strength with these RCA classes can be 9 

significant (5% - 30%), lower quality of RCA would not be recommended for structural 10 

applications. Hence applied RCA can be considered as a representative for the class of 11 

RCA that could be used for the structural elements made of RAC. 12 

Low-calcium FA was obtained from the coal-fired power plant ‘Nikola Tesla B’ (TENT) in 13 

Obrenovac, Serbia, while blended Portland cement CEM II/A-M (S-L) 42.5R was used. This 14 

type of cement has additions (ground slag and limestone) up to 20% of the total mass. The 15 

chemical composition and physical properties of FA and cement are presented in Table 2, 16 

together with requirements of EN 450-1 (2012) for FA use in concrete. According to the 17 

standard ASTM-C618-12a (2012) it was classified as class F. However, the molar 18 

silicon/aluminium (Si/Al) ratio of FA was 2.9, i.e., considerably higher than recommended for 19 

the application in concretes for structural use (Davidovits, 1999), and the CaO content was 20 

also relatively high for class F. The FA and cement particle size distribution is presented 21 

in Figure 3. Applied FA had particle size distribution as fine as cement had thus 22 

enabling high pozzolanic reactivity in concrete mixes that contained FA and best 23 

possible properties.  24 
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For FA activation, a combination of sodium hydroxide solution (NaOH) and sodium silicate 1 

solution (Na2SiO3) was chosen as the alkali activator (AA). The chemical composition of the 2 

sodium silicate solution was Na2O = 14.7%, SiO2 = 28.08% and H2O = 57.22% by mass. 3 

A series of laboratory tests were carried out to obtain the target compressive strength (40 4 

MPa) and target workability (slump equal to 15 ± 3 cm) for all concrete mixes. Concrete 5 

specimens were cast in 100 mm cube steel moulds, and the concrete was compacted using a 6 

vibrating table. After finishing, the specimens (except those of NAC_AAFA) were covered 7 

with wet fabric and stored in the casting room at a temperature of 20 ± 2°C. They were 8 

demoulded after 24 h and kept in a water tank until testing. 9 

AAFA concrete needs curing at elevated temperature. NAC_AAFA samples were, after 10 

casting, compacting, and sealing in a plastic membrane, cured for 6 h at a constant 11 

temperature of 80°C. This heating regime was selected as a typical curing procedure in 12 

precast concrete plants in Serbia. After curing, the samples were stored at laboratory 13 

conditions, a temperature of 20 ± 2°C and approximately 50% relative humidity until testing.  14 

The proportioning of the concrete mixtures was based on the absolute volume method. Firstly, 15 

laboratory tests with various mix proportions of NAC and RAC were performed to obtain 16 

these target values. Eight NAC mixes and eight RAC mixes with different free water-to-17 

cement ratios were designed for a target slump (this ratio refers to the free water content, 18 

excluding the amount of additional water). For each concrete mix compressive strength was 19 

tested on three samples. Based on average values, a relationship between concrete 20 

compressive strength and cement-to-free water ratio (mc/mw) was established for NAC and 21 

RAC and shown in Figure 4. Using this relationship, the free water-to-cement ratio (mw/mc) 22 

was determined on the basis of required compressive strength equal to 40 MPa for both 23 

concrete mixes. Mix proportions and obtained properties of NAC and RAC mixes are 24 

presented in Table 3, where mw/mc is designated as w/c. 25 
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For NAC_FA concrete mixes no such relationship was established, but trial mixtures with 1 

various water-to-cementitious materials ratios were tested until the desired compressive 2 

strength and workability were obtained (Dragaš et al., 2016). This was found as a simpler 3 

approach since several parameters affect the concrete properties. The results are presented in 4 

Table 4, where the designation of a particular mixture includes the cement (C) amount, the FA 5 

(F) amount and water-to-cementitious materials ratio. It was determined in previous works 6 

(Dragaš et al., 2016; Kou and Poon, 2012) that replacing not only a part of cement, but also a 7 

part of aggregate with FA had a beneficial effect on the concrete compressive strength, 8 

especially on the early-age strength. In the first attempt (C192F192_055), 50% of cement was 9 

replaced with FA and in the second attempt (C192F346_036), an extra amount of FA was 10 

added at the expense of the fine aggregate amount and that resulted in a higher compressive 11 

strength of concrete. The maximum aggregate content that could be replaced was determined 12 

on the basis of the required aggregate mixture particle size distribution according to EN 13 

12620 (2010). The effect of water-to-cementitious materials ratio was tested, firstly by 14 

changing the water content (C192F346_037, C192F346_034, and C192F346_030) and then 15 

by changing the FA content (C200F200_049, C200F250_043, C200F300_039, 16 

C200F350_036, and C200F400_033). Based on these results, with minor changes in the 17 

constituents’ amounts, a final mixture was selected and tested. It is designated as NAC_FA 18 

and presented in the last, shaded row of Table 4.   19 

Owing to RAC and NAC_FA test results, only two trial mixtures for RAC_FA were needed, 20 

Table 5. In the first attempt (C192F346_033), neither strength nor slump were adequate, 21 

which was corrected with a different natural/recycled aggregate ratio and lower 22 

superplasticizer amount. Final mixture is designated as RAC_FA and presented in the last, 23 

shaded row of Table 5.   24 
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To obtain an optimal mix design of AAFAC, tests on pastes with varying SiO2/Na2O ratios in 1 

the range 0.87–1.64, were first performed (Dragaš et al., 2014), Table 6. This variation was 2 

achieved with a combination of 10M or 16M NaOH solution (M – molarity is the mass of 3 

NaOH solids in a solution expressed in terms of moles) and a Na2SiO3 solution with different 4 

moduli n (Na2SiO3/NaOH = 2, 3.5, 5, and 10). All paste samples had an AA to FA mass ratio 5 

(AA/FA) equal to 0.6 since it was not possible to activate FA with a smaller amount of AA. 6 

The reason for the uncommonly high needed amount of AA was probably an unfavorable 7 

Si/Al ratio in the used FA. Based on the paste test results of compressive strength and having 8 

in mind both cost and environmental effects, activators containing a 10M or 16M NaOH and 9 

Na2SiO3 solution with the modulus n equal to 10 (except for one mixture with this modulus 10 

equal to 3.5) were chosen for the evaluation of concrete properties. To estimate the influence 11 

of additional water on workability and compressive strength of AAFAC, the water content 12 

was also varied, Table 7. Finally, concrete mixture C_1 (NAC_AAFA) in the first, shaded 13 

row of Table 7 was chosen, for its compressive strength and workability. 14 

With selected concrete mixtures, both target design requirements were fulfilled. The 28-day 15 

compressive strength of all concrete mixes is somewhat over 40 MPa, with a maximum 16 

difference of 4.0 % when compared with NAC mix. However, slightly larger cement amount 17 

(about 3%), i.e., slightly smaller free water-to-cement ratio, was applied in RAC mix to reach 18 

similar compressive strength as NAC. The first idea was to produce all concrete mixes 19 

without adding superplasticizer to avoid its effect and enable fair comparison. For that 20 

reason, RAC mix contained slightely larger cement amount compared with the NAC 21 

mix. However, concrete mixtures with a high content of FA (NAC_FA and RAC_FA) were 22 

very dry and stiff in the fresh state and it was necessary to add a certain amount of 23 

superplasticizer to obtain a desired workability. It was noticed also that small changes of the 24 

superplasticizer content resulted in a significant change of concretes’ workability. Therefore, 25 
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the five tested concrete mixes were not five environmentally optimal ones (with the 1 

lowest possible cement content) but five possible mixes, which all fulfill same 2 

requirements regarding strength and workability. 3 

 4 

4.2 Goal, scope and functional unit 5 

This specific case study is performed with a goal of comparing the environmental impact of 6 

the life cycle of five different mixes of structural concrete as defined in the previous section. 7 

In order to enable comparison of the entire life cycles of different concrete types, a FU 8 

should be chosen to provide the same performance of the structures that are made of 9 

them, throughout their whole life cycle. Same structural performance means that 10 

serviceability limit states (including short and long-term behavior), ultimate limit states 11 

(strength) and the service life (durability) of the concrete structural element are equal, 12 

regardless of the concrete that it is made of. Therefore it was firstly necessary to determine 13 

if different analyzed concrete mixes cause different serviceability and durability 14 

performance of the structure. Similar load carrying capacity was provided with the 15 

same compressive strength. 16 

Most of the research including comparison of NAC properties to green concrete properties 17 

was based on the same mix design (meaning a simple replacement of cement or natural 18 

aggregate with FA and/or RCA by weight, where the amount was corrected only for different 19 

densities). This approach does not lead to equal 28-day compressive strength, neither for FA 20 

concretes nor for RAC or their combinations. In this study, different concrete mixes with 21 

same compressive strengths and accordingly adjusted mix designs were compared. When 22 

needed, as in the following, only research data that complied with that requirement were 23 

considered. This significantly reduced the available test database on the properties and 24 

behavior of structural elements made of green concretes.    25 
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For all analyzed concrete types, previous research has shown that the behavior of structural 1 

elements under short-term loading is very similar to that of the corresponding NAC. The 2 

deflection, cracking load and crack pattern, yield load, flexural and shear capacity of beams 3 

made of NAC_FA (Arezoumandi et al., 2014; Rao et al., 2011; Yoo et al., 2015), 4 

NAC_AAFA (Sumajouw et al., 2007; Yost et al., 2013a, 2013b), RAC (Ajdukiewicz and 5 

Kliszczewicz, 2007; Choi et al., 2012; Gonzalez-Fonteboa and Martınez-Abella, 2007; Han et 6 

al., 2001; Ignjatović et al., 2013), and RAC_FA (Sadati et al., 2016) were very similar to 7 

those of the corresponding NAC beams, if the beams were made of concretes with similar 8 

compressive strength. The same conclusion was valid for RAC slabs and seismic behavior of 9 

RAC frames (Reis et al., 2015; Schubert et al., 2012; Xiao et al., 2006).  10 

Regarding the long-term behavior there is very limited data and it is almost exclusively 11 

related to the behavior of RAC beams under sustained loads (Ajdukiewicz and Kliszczewicz, 12 

2011; Choi and Yun, 2013; Knaack and Kurama, 2015a). Because RAC usually has a lower 13 

modulus of elasticity and larger shrinkage and creep strains compared with the corresponding 14 

NAC (Domingo-Cabo et al., 2009; Knaack and Kurama, 2015b; Limbachiya et al., 2000), 15 

RAC beams exhibit larger deflections under sustained loads. Based on this limited research 16 

data, deflection increase can be up to 20–25% if beams are made of concretes with similar 17 

compressive strength. To the best of the authors’ knowledge, no previous research has been 18 

conducted on the long-term behavior of structural elements made of other green concretes 19 

analyzed in this study. So it was assumed that their behavior was similar to the long-term 20 

behavior of corresponding NAC. This assumption was made on the basis of available research 21 

data on creep on the material level of NAC_FA (Dragaš et al., 2016), NAC_AAFA (Hardjito 22 

et al., 2004; Rangan, 2009), and RAC_FA (Kou and Poon, 2012). In this area there was also 23 

very limited test data, since most of the research referred to the comparison of concretes with 24 

different compressive strengths.  25 
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Regarding durability-related properties, a service life of 50 years and XC1 exposure class 1 

according to European standard EN 1992-1-1 (2004) were considered. The XC1 exposure 2 

class is related to an indoor environment with low air humidity (common conditions in 3 

building structures), i.e., only carbonation-induced steel corrosion is taken into account. This 4 

practically means that the carbonation depth should stay smaller than the reinforcement cover 5 

in the course of 50 years of service life, for all analyzed concrete mixes. Otherwise, 6 

maintenance and eventual repair caused by the carbonation-induced steel depassivation and 7 

corrosion onset will not be equal for different concretes. 8 

Carbonation is a slow, mostly diffusion-controlled process which starts from the concrete 9 

surface and slowly penetrates into the interior of concrete. Its rate and extent are controlled 10 

physically by gas permeability (porosity of concrete) and chemically by the reserve of 11 

alkalinity in the cement paste. Also, carbonation is affected by the curing and exposure 12 

conditions (CO2 concentration, humidity, temperature of the natural environment, etc.) 13 

(Pacheco Torgal et al., 2012).  14 

Most of the research data on concrete carbonation are based on accelerated carbonation tests 15 

and measuring the carbonated (non-carbonated) part by a phenolphthalein indicator test. 16 

Although there are concerns about the capability of such a test to reproduce realistic 17 

environmental conditions and chemical processes within concrete (Bernal et al., 2013; Van 18 

Den Heede and De Belie, 2014), this is still the major source of information. There is also 19 

research (Lye et al., 2015) showing that similar carbonation resistance is obtained under 20 

accelerated and natural CO2 exposures in the case of HVFAC. 21 

When produced with equal compressive strength, RAC exhibits similar or slightly lower 22 

carbonation resistance than NAC (Levy and Helene, 2004; Limbachiya et al., 2012; R. V. 23 

Silva et al., 2015c). On the other hand, most of the research has shown that replacing cement 24 

with FA in NAC increased the carbonation depth, with the increase being larger for a larger 25 
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FA content. According to an extensive study by Lye et al. (2015) this was also true in the case 1 

of equal 28-day compressive strength. Lower carbonation resistance of FA concretes is 2 

explained by the effect of the reduction of calcium hydroxide consumed in the pozzolanic 3 

reaction dominating over the process of pore refinement caused by blocking capillary pores 4 

with new formed C-S-H (Sim and Park, 2011). The largest increase in the carbonation depth 5 

was however reported in RAC_FA concretes. Even in the case of similar compressive 6 

strengths, the carbonation depth of RAC_FA was almost twice as large as the carbonation 7 

depth of corresponding NAC for a 35% replacement ratio of cement (Kou and Poon, 2012; 8 

Limbachiya et al., 2012).     9 

In AAFA concretes, carbonation is understood as the reaction of sodium hydroxide with CO2 10 

forming sodium carbonate hydrates. According to previous research (Law et al., 2014; Sufian 11 

Badar et al., 2014), this results in only a minimal reduction of the initial pH to approximately 12 

11. This pH value should be sufficient to protect reinforcement from depassivation in 13 

carbonated AAFAC and consequently, this type of concrete should mitigate the risk of 14 

carbonation-induced corrosion.  15 

From previous analysis it was concluded that structural elements made of RAC may have 16 

larger long-term deflections and structural elements made of RAC_FA and possibly of 17 

NAC_FA may have lower carbonation resistance than corresponding NAC elements. Proper 18 

modeling of different structural behavior for all analyzed concrete mixes at this state-of-19 

the-knowledge is hardly possible – simple extrapolation of material properties on the 20 

structural behaviour is not correct. So the following estimation, as a simplification based 21 

on evaluated test results on the beams, is made. Deflection of a structural element under 22 

lateral loading (v) is related to its height (h) through the following relationship:  23 

 24 

v ~ 1/h3         (1) 25 
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 1 

If RAC beams exhibit 20–30% larger long-term deflections than corresponding NAC beams, 2 

from equation (1) it can be solved that they should have a 5–10% larger height to maintain the 3 

same deformational level. On the other hand, to provide for the same carbonation resistance, 4 

the reinforcement cover should be increased for the possible larger carbonation depth. Since 5 

the order of magnitude of such enlargement is several centimeters, again a 5–10% (beams-6 

slabs) larger height of the element is needed to provide for the same duration of service life 7 

(durability).  8 

For these reasons, two scenarios with different FU were considered: 9 

Scenario 1 – a functional unit of 1 m3 was assumed for all analyzed concrete mixes (FU 10 

based only on the strength requirements) and  11 

Scenario 2 – a functional unit of 1.1 m3 was assumed for RAC, NAC_FA and RAC_FA, and 12 

1.0 m3 for the other concrete mixes (FU includes strength, serviceability and durability 13 

requirements).  14 

 15 

4.3 System boundaries and LCI 16 

Since the goal of the study was to estimate and compare the absolute impacts of different 17 

concrete life cycles at a given point in time, an attributional data modeling approach was 18 

chosen. A consequential approach (also called change-oriented approach) was found not to fit 19 

well with the goal, because this type of approach is intended to provide information on the 20 

environmental burdens that occur, directly or indirectly, as a consequence of a certain 21 

decision, i.e., the results are intended to represent the net environmental impacts of the change 22 

caused by this decision (Ekvall and Andrae, 2006; Ekvall and Weidema, 2004; Pelletier et al., 23 

2015). 24 
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In accordance with the goal of the study, system boundaries were chosen and shown in Figure 1 

5. In the phase ‘Concrete’, steam curing at a concrete plant was included for alkali activated 2 

concrete. Transport to construction site, construction, and use phases were omitted from the 3 

assessment since similar impacts were expected for all concrete mixes (Scenarios 1 and 2). 4 

End-of-life was assumed to be comparable (part of the waste was disposed of in landfills and 5 

part was recycled), so it was omitted as well. This assumption was somewhat beneficial for 6 

green concretes since it is not proven yet that they can be recycled back into new RCA, but 7 

they certainly can be recycled into aggregates for low-value applications. 8 

In resolving multifunctional problems (in this case study, open-loop recycling and treating of 9 

FA as by-product), allocation was applied. The system expansion with substitution method 10 

was not used since it can lead to double counting of avoided burdens in attributional LCA, 11 

i.e., same loads can be subtracted from multiple products, depending on the goal of the study 12 

(Chen et al., 2010; Vogtländer et al., 2001).  13 

Recycling is a multi-functional process in a way that it is a waste management service for the 14 

product that is recycled and a part of a raw material production for the product that receives 15 

the recycled material. Recycling of concrete from one product life cycle (NAC) to another 16 

(RAC) is a case of an open-loop recycling and it should be somehow allocated between these 17 

products. Although there are more refined approaches (Allacker et al., 2014), a relatively 18 

simple but not uncommon approach was adopted in this study (Vogtländer et al., 2001): 19 

demolition and separation were allocated to the NAC life cycle, while the recycling process 20 

itself was allocated to the RAC life cycle, Figure 6.    21 

Fly ash is no longer considered as merely waste but as a useful by-product (European Union, 22 

2008). As such, it carries a part of the environmental load of the electricity production in the 23 

coal-fired power plant (primary process – main product), beside the load from its own 24 

treatment prior to the utilization in concrete (secondary process – by-product). In the power 25 
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plant TENT, the secondary process includes only transport from the electromagnetic separator 1 

to the storage silo which is a pneumatic process powered by electricity.  2 

For the calculation of the part of the environmental load of the primary process which should 3 

be allocated to FA, three types of allocation were considered: 4 

‘No allocation’ – FA was considered as waste; only impacts from the secondary process were 5 

included; 6 

‘Mass allocation’ – impacts of the primary process were allocated between the main product 7 

and by-product according to the ratio of their masses. The mass allocation coefficient Cm can 8 

then be calculated as (Chen et al., 2010): 9 

 10 

byproducttmainproduc

byproduct
m mm

m
C

+
=         (2) 11 

 12 

where mbyproduct is FA mass and mmainproduct is electricity ’mass’; 13 

’Economic allocation’ – impacts of the primary process were allocated between the main 14 

product and by-product according to the ratio of their prices. The economic allocation 15 

coefficient Ce can then be calculated as (Chen et al., 2010): 16 

 17 

byproducttmainproduc

byproduct
e mm

m
C

)€()(€

)(€

⋅+⋅
⋅

=       (3) 18 

 19 

where € is the price per unit of material, and m is a mass of material produced during the 20 

process. 21 

For the production of 1 kWh of electricity, 1.290 kg of coal is consumed, while 0.194 kg of 22 

FA and 0.013 of bottom ash is generated in TENT. ‘Mass’ of the electricity (main product) is 23 

calculated as the mass of equivalent coal: 24 
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 1 

kgm tmainproduc 084.1013.0194.0290.1 =−−=      (4) 2 

 3 

and the mass allocation coefficient Cm,FA is: 4 

 5 

152.0
194.0084.1

194.0
, =

+
=FAmC        (5) 6 

 7 

The cost of FA and industrial electricity in Serbia is 3.5 €/ton and 0.05 €/kWh, respectively. 8 

The economic allocation coefficient Ce,FA is then: 9 

013.0

1000

5.3
194.005.01

1000

5.3
194.0

, =
⋅+⋅

⋅
=FAeC       (6) 10 

 11 

With the allocation coefficients Cm,FA and Ce,FA, the impacts of electricity production were 12 

allocated to FA production in the ‘mass allocation’ and ‘economic allocation’ case, 13 

respectively. 14 

Life cycle inventory (LCI) data for the aggregate, cement and concrete production, as well as 15 

for the FA treatment, were obtained from local Serbian suppliers whose products were used 16 

for concrete mixes (Marinković et al., 2008). The data on energy demand and emissions for 17 

the cement production were obtained from Lafarge Cement Plant, Beočin, Serbia. LCI data 18 

for the natural (river), recycled aggregate and concrete production were calculated based on 19 

the information about technology processes and used energy obtained from their 20 

manufacturers. Basically, this is about 0.015 MJ of diesel per kg of river aggregate and 0.024 21 

MJ of diesel per kg of recycled aggregate, for the production without separation. Separation 22 

was included in the concrete production, where about 20 MJ of electricity per m3 of concrete 23 
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is consumed. For steam curing, about 600 MJ of natural gas (15 m3) is spent per m3 of 1 

concrete in a precast concrete plant. Similar data were reported by other researchers (Kawai et 2 

al., 2005). 3 

Emission and resource data for diesel and natural gas production and distribution, sodium 4 

hydroxide (NaOH) and sodium silicate (Na2SiO3) production and transport that couldn’t be 5 

collected for local conditions were taken from the Ecoinvent V2.0 database (Dones et al., 6 

2007; Spielmann et al., 2007; Zah and Hischier, 2007), Table 8. Impacts of the 7 

superplasticizer production were neglected since its mass was lower than 0.15 % of the 8 

concrete mass. 9 

Transport distances and types were estimated as typical for a construction site located in the 10 

capital of Serbia, Belgrade and presented in Table 9. Recycling is performed in a mobile 11 

recycling plant at the demolition site close to Belgrade (20 km). A larger transport distance 12 

for RCA was deemed unacceptable in industrial practice, mostly because of the cost 13 

efficiency in comparison with natural river aggregate. Since Serbia has only mobile 14 

recycling plants, it was assumed that a mobile recycling plant has to be transported 15 

from somewhere in Serbia to the demolition site close to Belgrade (200 km distance as a 16 

worst case scenario).  17 

 18 

4.4 Life cycle impact assessment 19 

The impact category indicators included in this work were global warming potential (GWP), 20 

ozone layer depletion potential (ODP), eutrophication potential (EP), acidification potential 21 

(AP), and photochemical oxidant creation potential (POCP). They were calculated using the 22 

CML baseline methodology (Guinée et al., 2002). Besides, abiotic depletion of fossil fuels 23 

potential (ADP_FF) was calculated using the cumulative energy demand method. For the 24 

ADP_FF calculations, the following heating values of fossil fuels were used: 19.1 MJ/kg of 25 
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hard coal, 8.8 MJ/kg of soft coal, 42.0 MJ/kg of diesel, and 39.0 MJ/m3 of natural gas. An 1 

original Excel-based software was used for the life cycle inventory and the life cycle impact 2 

calculations.  3 

 4 

4.4.1 Normalization and aggregation  5 

Calculated indicators are expressed in different units and their absolute values vary 6 

significantly. In order to enable aggregation and calculation of a single sustainability 7 

indicator, normalization is performed using the Diaz-Balteiro equation (Díaz-Balteiro and 8 

Romero, 2004). This equation, in the case of a ‘less is better’ indicator type, can be 9 

formulated as: 10 

  11 

*
*

*

ii

ii
i

II

II
I

−
−=           (7) 12 

 13 

where Īi is the normalized value of i-th indicator, I i*  and I i
*
 are the worst and the best value 14 

(minimum) of the i-th indicator, respectively. In this way, indicator’s values are converted 15 

into dimensionless values ranging from 0 (worst value) to 1 (best value) (Teixeira et al., 16 

2016). 17 

Now, a global sustainability indicator SI can be calculated by the aggregation of n normalized 18 

indicator’s values (Teixeira et al., 2016): 19 

 20 

i

n

i
i IwSI ∑

=
=

1

          (8) 21 

 22 

where wi are the weights representing the relative importance of the i-th indicator for the 23 

overall environmental performance. The ‘most sustainable’ product is then the product with 24 
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the maximum SI value. It should be noted that according to ISO 14040 (ISO, 2006) there is 1 

no scientific way to reduce LCA results to a single overall score or number, hence weights are 2 

usually determined by a panel of experts expressing the societal preference. 3 

In this study two different sets of weights were used and compared: (1) all six calculated 4 

indicators are equally important, i.e., the weight of each is equal to 1/6 = 0.1667 and (2) the 5 

most important indicator is GWP and weights suggested by the US Environmental Protection 6 

Agency Science Advisory Board (Mateus et al., 2013) were used for SI calculation. These 7 

weights are shown in Table 10. 8 

 9 

4.4.2 Sensitivity analysis 10 

As already explained, in order to evaluate the influence of different carbonation resistance and 11 

long-term deformational behavior of structural elements made of different concrete mixes, 12 

two scenarios (Scenarios 1 and 2) were tested and compared. Comparison of these two 13 

scenarios was performed to test the sensitivity of the impacts’ results on the choice of FU 14 

– to determine how important is whether a simple FU (including only strength 15 

requirements) or an improved FU (including also serviceability and durability 16 

requirements) is applied. 17 

No sensitivity analysis regarding other parameters and assumptions that can affect 18 

results (quality of RCA, chemical composition and fineness of FA, transport distances, 19 

exposure conditions and duration of service life) was performed. These limitations 20 

should be kept in mind. 21 

 22 

5. Results and interpretation  23 

LCI data per 1 kg of constituent materials, 1 m3 of concrete (including curing) and 1 ton-24 

kilometer (tkm) of transport are shown in Table 11. 25 
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Calculated impact indicators in the ‘no allocation’, ‘economic allocation’ and ‘mass 1 

allocation’ case and for Scenario 1 are shown in Figures 7, 8, and 9. Impact indicators of 2 

green concrete mixes are presented as a percentage of the NAC mix impact indicators. 3 

Results significantly depend on the allocation type. Large amounts of airborne pollutants are 4 

emitted from coal-fired power plants in the process of electricity production and even a small 5 

allocation coefficient can strongly affect the FA impact indicators.  6 

This is especially the case with ‘mass allocation’ because a relatively large mass of FA is 7 

generated during electricity production. In this case all impacts of FA concretes (no matter 8 

whether alkali activated or not) are significantly higher than impacts of NAC and RAC with 9 

no FA. Similar conclusions have been made by other researchers (Chen et al., 2010; Tillman 10 

et al., 1994) regarding the FA environmental impact when used as mineral addition or cement 11 

replacement in concrete. 12 

Since ‘mass allocation’ results in unreasonably high FA impacts, only the results obtained 13 

with ‘economic allocation’ are presented in the following text. 14 

Absolute values of impact indicators of analyzed concrete mixes in Scenario 2 are presented 15 

in Table 12, while Figure 10 shows these indicators relative to the NAC indicators. This 16 

scenario is less favorable for RAC, NAC_FA, and RAC_FA than Scenario 1, but more 17 

realistic in the authors’ opinion. While in Scenario 1 impact indicators of NAC and RAC are 18 

practically equal, in Scenario 2 all indicators of RAC are slightly higher (up to 13%) than 19 

NAC indicators. The main reason for this increase is a larger cement amount in RAC. In 20 

Scenario 2, the cement content in RAC is 14% higher than in NAC due to the larger FU. FA 21 

concretes with natural and recycled aggregates (NAC_FA and RAC_FA) perform better than 22 

NAC except in the case of EP and AP, where their impact is slightly higher. This, however, is 23 

due to the allocation procedure, since in the ‘no allocation’ case all impacts of FA concretes 24 

are lower than those of NAC for both scenarios. Alkali activated concrete NAC_AAFA is 25 
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superior regarding GWP, AP, and POCP, while for ADP_FF and ODP it presents the worst 1 

option. The single reason for much higher ADP_FF of alkali activated concrete is the large 2 

energy consumption for concrete curing at elevated temperatures. On the other hand, high 3 

ODP originates from the alkali activators’ production.  4 

Tables 13 and 14 show which unit processes are the major contributors to GWP and 5 

ADP_FF in Scenario 2. As already well known, cement is by far the largest contributor to 6 

GWP for non-alkali activated concretes, Table 13. The contribution of aggregate and concrete 7 

production is practically negligible (up to 2%), while the contribution of transport and FA 8 

production is similar (8–12%). For alkali activated concrete mix, concrete production (i.e., 9 

curing) and alkali activator production have the largest, but similar shares in GWP (32–33%). 10 

Again, aggregate production is negligible, and transport and FA production contributions 11 

range from 15% to 19%. In the case of ADP_FF, transport has a larger share (up to 25%), but 12 

otherwise the distribution among unit processes is similar as in GWP, Table 14. Similar 13 

conclusions are valid for other impact indicators of non-alkali activated concrete mixes. 14 

However, a major contributor to ODP and EP of alkali activated concrete mix is the alkali 15 

activator production. 16 

When normalized, impact categories can be presented together in a ‘radar’ diagram showing 17 

in that way the so-called ‘sustainable profile’. This type of presentation enables an easier 18 

understanding of the complete environmental profile of the particular concrete. Figure 11 19 

shows such sustainable profiles of all analyzed concrete mixes for Scenarios 1 and 2. 20 

Normalized values of each impact indicator and for each concrete mix were calculated using 21 

Equation 7. As already explained, the worst value of the normalized indicator is equal to 0, 22 

while the best is equal to 1, meaning the larger the profile area, the better the environmental 23 

(sustainable) performance. In Figure 11, the area of the referent NAC and NAC_AAFA 24 

profiles are shaded. Then it can easily be seen that alkali activated concrete is better in GWP, 25 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 28

AP, and POCP, while non-alkali activated concretes are better in ADP_FF, ODP and EP. 1 

While in Scenario 1 sustainable profiles of NAC and RAC are similar, in Scenario 2 the NAC 2 

sustainable profile is evidently better than that of RAC. Also, NAC_FA and RAC_FA profiles 3 

‘shrank’ in Scenario 2 compared with Scenario 1. 4 

Finally, the aggregation results are presented in Table 15. Sustainability indicators (SI) were 5 

calculated according to Equation 8 for each concrete mix and both scenarios. When using the 6 

‘EPA’ weights, NAC_AAFA showed the best overall environmental performance (the highest 7 

SI), while the worst belonged to RAC, regardless of the scenario. When using ‘equal’ weights, 8 

the best and the worst environmental performance belonged to RAC_FA and RAC, 9 

respectively, regardless of the scenario. So, in this study, impacts’ results in terms of best 10 

and worst overall environmental performance were not sensitive on the FU choice, but 11 

on the choice of weights. This sensitivity on the choice of weights was obtained because the 12 

‘EPA’ weights give a relatively high preference to GWP, which made the results of alkali 13 

activated concrete mix practically unattainable.  14 

It is also interesting to exclude alkali activated concrete mix, i.e., to compare concrete mixes 15 

suitable not only for precast but also for in-situ applications (NAC, NAC_FA, RAC and 16 

RAC_FA). Sustainable profiles for that case are shown in Figure 12, where only the area of 17 

the NAC profile is shaded. The change from Scenario 1 to Scenario 2 is now clearer, giving a 18 

much better environmental performance of NAC in Scenario 2. In this scenario, all 19 

normalized impact indicators of RAC were equal to 0. However, regardless of the scenario 20 

and type of weights used, RAC_FA had the best environmental performance, while RAC had 21 

the worst, Table 16.    22 

 23 

6. Conclusion 24 
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The LCA case study presented here included five specific concrete mixes and was mostly 1 

based on the construction practice, transport distances and materials available in Serbia. The 2 

concretes were made partially from waste: FA complying to EN 450-1 (2012) requirements 3 

and RCA, which was clean, without any impurities and with water absorption lower than 5%. 4 

The carbonation induced steel corrosion and a service life of 50 years were assumed. An 5 

attributional approach in LCI modeling with allocat ion was applied. The following 6 

conclusions, valid only for this set of assumptions and applied methodology, are drawn: 7 

Two types of allocation procedures were tested and compared with the ‘no allocation’ case. If 8 

mass allocation is applied, the FA concrete mixes environmental burdens become higher than 9 

the burdens of concrete mix with blended cement (several times) and this can certainly 10 

discourage producers from implementing this material as cement clinker replacement. That’s 11 

why economic allocation is recommended since it results in much lower impacts of FA, 12 

which is appropriate for waste, which FA in fact is. This is also recognized by the standard 13 

EN 15804 (2012) which recommends economic allocation when the difference in revenue 14 

from the co-products is more than 25%; in the case of electricity and FA as co-products, this 15 

is certainly fulfilled.  16 

Possible lower carbonation resistance and higher long-term deflections in the course of 50 17 

years of service life were taken into account by introducing two scenarios with different FUs. 18 

The FU in Scenario 1 was equal to 1 m3 of concrete and included only strength 19 

requirements. In Scenario 2, FU included strength, serviceability and durability 20 

requirements and for NAC_FA, RAC and RAC_FA was assumed to be 1.1 m3, while for 21 

other concrete mixes it was kept equal to 1 m3. For the aggregation of normalized 22 

indicators’ results and sustainability indicator calculation, two different sets of weights were 23 

used: ‘equal’ and ‘EPA’ weights. 24 
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Impacts’ results in terms of best and worst overall environmental performance were not 1 

sensitive to the FU choice, but to the choice of weights. 2 

Recycled aggregate concrete mix with a cement binder (RAC) showed the worst overall 3 

environmental performance in both scenarios and for both weight sets used. If better 4 

environmental performance is to be expected, RAC should be designed with the same cement 5 

amount as NAC; the water-to-cement ratio should be decreased and workability problems 6 

solved with the aid of a superplasticizer. 7 

Alkali activated concrete mix with natural aggregates (NAC_AAFA), despite the 8 

uncommonly high amount of alkali activator that had to be used, showed the best overall 9 

environmental performance in both scenarios, if ‘EPA’ weights were applied. It had the best 10 

sustainability indicator value. If no preference was given to GWP (‘equal’ weights), FA 11 

concrete mix with recycled aggregates (RAC_FA) became the best option. However, AAFA 12 

concretes have limited application only to precast concrete structures because curing at a 13 

temperature of 80°C is practically impossible in-situ at large scale. Besides, high caustic 14 

sodium hydroxide, which is needed for the alkali activation, is user-hostile and can present a 15 

problem in the industrial practice. In order to improve the environmental and cost efficiency 16 

and extend applicability, a partial replacement of FA with blast furnace slag is recommended, 17 

i.e., slag/fly ash geopolymer concrete is recommended.   18 

When comparing only concretes suited for all applications, FA concrete mixes (NAC_FA 19 

and RAC_FA) had a better environmental performance than NAC and RAC in both scenarios 20 

and for both weight sets. Even with a larger FU, FA recycled aggregate concrete mix 21 

(RAC_FA) proved to have the best sustainability indicator. Besides, only 47% (39% if water 22 

is excluded) of this concrete is made of natural resources, while 53% (61% if water is 23 

excluded) is made of waste – RCA and FA.  24 
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Based on the results of this case study, RAC with FA is to be recommended for in-situ 1 

applications. For precast structural applications, both NAC_AAFA and RAC_FA can be 2 

recommended, depending on what particular impact category is preferred. Conclusions are not 3 

to be generalized – for other assumed scenarios or different approach in LCI modelling results 4 

may be different. 5 
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Table 1. Oven-dry density and absorption of aggregates  
 
 Oven-dry density (kg/m3) Absorption 24h (%) 
Natural aggregate   
0-4 mm river sand 2573 1.20 
4-8 mm river gravel 2548 1.24 
8-16 mm river gravel 2591 1.04 
Recycled aggregate   
4-8 mm  2309 4.60 
8-16 mm  2370 3.70 
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Table 2. Chemical and physical properties of cement and fly ash 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Property CEM II 42.5R Fly ash EN 450-1:2012  
SiO2 (%) 21.04 58.24 - 
Al 2O3 (%) 5.33 20.23 - 
Fe2O3 (%) 2.37 5.33 - 
SiO2 +Al2O3 +Fe2O3 - 83.80 min 70 (%) 
TiO2 (%) - 0.45 - 
CaO (%) 60.43 7.62 - 
MgO (%) 2.43 2.01 max 4 (%) 
P2O5 (%) - 0.00 max 5 (%) 
SO3 (%) 3.55 2.21 max 3 (%) 
Na2O (%) 0.22 0.52 max 5 (%) 
K2O (%) 0.70 1.51 - 
MnO (%) - 0.03 - 
LOI (%) 3.53 2.10 max 5 (%) 
Fineness (>45 µm, %) - 11.71 max 12 (%) 
Specific gravity (kg/m3) 3040 2075 - 
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Table 3. Mix proportions and properties of NAC and RAC  

1) free water-to-cement ratio 
2) additional water amount 
 

Concrete 
mixture 

Cement Water w/c1) Natural 
aggregate 

Recycled 
aggregate 

Super 
plasticiz. 

Density 
(hardened) 

Compress. 
strength, 
28 days 

Slump 

Fine Coarse Coarse 

(kg/m3) (kg/m3) - (kg/m3) (kg/m3) (kg/m3) (kg/m3) (MPa) (cm) 

NAC 302 180 0.596 619 1203 - - 2384 40.5 19 
RAC 312 180+402) 0.580 597 - 1106 - 2320 42.1 16 
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Table 4. Trial NAC_FA mixtures 

1) water-to-cementitious material ratio 
2) flow value 
 
 
 
 
 

Concrete 
mixture 

Cement Fly ash Water w/cm1) Aggregate Super 
plasticiz. 

Density 
(hardened) 

Compress. 
strength, 
28 days  

Slump  

Fine Coarse 

(kg/m3) (kg/m3) (kg/m3) - (kg/m3) (kg/m3) (kg/m3) (kg/m3) (MPa) (cm) 

C384F0_055 384 0 212 0.55 683 985 0 2388 41.2 5.5 
C192F192_055 192 192 212 0.55 650 937 0 2307 31.0 6.0 
C192F346_039 192 346 212 0.39 452 937 1.9 2273 36.1 16.8 

C384F0_052 384 0 201 0.52 758 1015 0 2401 50.7 4.2 
C192F346_037 192 346 201 0.37 524 969 1.9 2310 45.7 14.8 
C192F346_034 192 346 180 0.34 524 1026 2.6 2315 54.0 1.5 
C192F346_030 192 346 161 0.30 524 1076 3.7 2365 63.3 18.0 

C200F200_049 200 200 195 0.49 811 810 0 2303 34.2 12.7 
C200F250_043 200 250 195 0.43 749 810 1.0 2295 38.2 14.8 
C200F300_039 200 300 195 0.39 687 810 1.2 2244 36.7 2.8 
C200F350_036 200 350 195 0.36 625 810 2.2 2268 42.0 3.3 
C200F400_033 200 400 195 0.33 563 810 2.4 2255 40.2 70.02) 

NAC_FA 192 346 195 0.36 625 810 2.5 2257 42.0 15.0 
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Table 5. Trial RAC_FA mixtures 

1) water-to-cementitious material ratio 
2) additional water amount 
 
 
 
 
 
 
 
 
 

Concrete mixture Cement Fly ash Water w/cm1) Aggregate Super 
plasticiz. 

Density 
(hardened) 

Compress. 
strength, 
28 days  

Slump  
Fine 
(natural) 

Coarse 
(recycled) 

(kg/m3) (kg/m3) (kg/m3) - (kg/m3) (kg/m3) (kg/m3) (kg/m3) (MPa) (cm) 

C312F0_058 
(RAC) 312 0 180+402) 0.58 597 1106 0 2320 42.1 16.0 
C192F346_033 192 346 180+452) 0.33 501 900 2.5  37.0 35.0 

RAC_FA 192 346 180+382) 0.33 637 779 1.1 2203 40.5 14.7 
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Table 6. Mix proportions and properties of alkali activated pastes  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Paste 
mixture 

AA/FA NaOH Na2SiO3/
NaOH 

Na2O/FA SiO2/Na2O Compress. 
strength, 
28 days 

(-) (M) (-) (%) (-) (MPa) 

P_1 

0.6 

10 

2.0 10.72 1.04 57.1 
P_2 3.5 10.09 1.30 49.2 
P_3 5.0 9.77 1.44 55.3 
P_4 10.0 9.34 1.64 59.7 

P_5 

16 

2.0 12.86 0.87 NA 
P_6 3.5 11.51 1.14 53.9 
P_7 5.0 10.84 1.30 58.8 
P_8 10.0 9.92 1.54 65.4 
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Table 7. Trial NAC_AAFA mixtures 

 
 
 
 
 

Concrete 
mixture 

Fly ash Water Aggregate NaOH 
solution 

Na2SiO3 

solution 
SiO2/Na2O Density 

(hardened) 
Compress. 
strength, 
28 days 

Slump 

Fine Coarse 

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (-) (kg/m3) (MPa) (cm) 

C_1 
(NAC_AAFA) 400 0 682 948 21.8 218.2 1.64 2311 40.7 18.3 

C_2 400 10 672 969 21.8 218.2 1.64 2293 34.3 23.3 
C_3 400 20 661 953 21.8 218.2 1.64 2275 37.2 25.3 
C_4 400 28 670 966 21.8 218.2 1.64 2281 30.5 28.0 
C_5 400 0 689 994 21.8 218.2 1.54 2279 43.6 13.2 
C_6 400 28 656 949 53.3 186.7 1.14 2270 36.3 26.5 
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Table 8. Sources of LCI data 
 
Type of data Source 

(file name in Ecoinvent V2.0) 
Geography 

Energy 
Coal mining and distribution Ecoinvent 

(hard coal, at regional storage/kg/EEU ) 
EU 
average 

Diesel production, distribution, 
and usage 

Ecoinvent 
(diesel, at regional storage/kg/RER) 
(diesel, burned in building machine/MJ/GLO) 

EU 
average 

Natural gas production, 
distribution, and usage 

Ecoinvent 
(natural gas, high pressure, at consumer/MJ/RER) 
(natural gas, burned in industrial furnace 
>100kW/MJ/RER) 

EU 
average 

Electricity Ecoinvent 
(electricity mix/kWh/CS) 

Serbia 

Concrete components 
Cement production Industry Serbia 
Fly ash treatement Industry Serbia 
River and recycled aggregates 
production 

Industry Serbia 

Sodium hydroxide production Ecoinvent 
(sodium hydroxide, 50% in H2O, mercury cell, at 
plant/kg/RER) 

EU 
average 

Sodium silicate production Ecoinvent 
(sodium silicate, hydrothermal liquor, 48% in H2O, 
at plant/kg/RER) 

EU 
average 

Concrete production Industry Serbia 
Transport 
Road and river Ecoinvent 

(transport, lorry 16-32t, EURO3/tkm/RER) 
(transport, barge/tkm/RER) 

EU 
average 
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Table 9. Transport distances and types 
 
Material Route Transport 

distance (km) 
Transport type 

From To 
River aggregate Place of extraction Concrete plant 100 x 2 Barge 10000 t 
Recycled aggregate Recycling plant1 Concrete plant 20 x 2 Truck 16–32 t 
Cement Cement factory Concrete plant 100 x 2 Truck 16–32 t 
Fly ash Power plant Concrete plant 50 x 2 Truck 16–32 t 
Sodium hydroxide Factory Concrete plant 25 x 2 Truck 16–32 t 
Sodium silicate Factory Concrete plant 15 x 2 Truck 16–32 t 
Mobile recycling plant 2  Demolition site 200 Truck 16–32 t 
1) Recycling is performed in a mobile plant at the demolition site 
2) For each campaign of 2500 t the mobile plant (20 t) is transported 200 km 
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Table 10.  ‘EPA’ weights (Mateus et al., 2013) 
 
Indicator Weight (%) 
ADP_FF 12 
GWP 38 
ODP 12 
EP 12 
AP 12 
POCP 14 
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Table 11. LCI data per 1 kg of constituent material, 1 m3 of concrete, and 1 ton-kilometer (tkm) of transport   
 

  Cement (kg) Fly ash (kg) Aggregate (kg) NaOH (kg)  Na2SiO3 (kg) Concrete (m3) Curing (m3) Transport (tkm) 

  
No 
allocation 

Mass 
allocation 

Economic 
allocation Natural  Recycled  

active 
substance 

active 
substance   

Lorry  
16–32 t 

Barge 

Fossil fuels                         
diesel (kg) 1.484E-03 2.828E-05 2.833E-03 2.757E-04 3.898E-04 6.499E-04 4.115E-02 4.297E-02 2.002E-02 8.129E-02 5.426E-02 1.111E-02 

gas (m3) 4.577E-03 9.366E-05 9.382E-03 9.131E-04 2.959E-05 4.934E-05 9.357E-02 9.878E-02 6.630E-02 1.788E+01 8.769E-03 1.694E-03 
soft coal (kg) 1.223E-01 7.419E-03 7.432E-01 7.233E-02 1.739E-05 2.900E-05 3.590E-01 1.820E-01 5.252E+00 1.770E-01 4.890E-03 2.050E-03 

hard coal (kg) 1.555E-01 5.661E-05 5.671E-03 5.520E-04 2.422E-05 4.039E-05 2.089E-01 1.154E-01 4.008E-02 1.796E-01 7.275E-03 2.369E-03 

Emissions (g)                         

CO2 7.394E+02 6.489E+00 6.501E+02 6.327E+01 1.085E+00 1.771E+00 6.637E+02 3.447E+02 4.594E+03 3.582E+04 1.549E+02 3.697E+01 
CO 3.757E+00 1.244E-03 1.246E-01 1.213E-02 4.397E-03 6.620E-03 2.403E-01 1.435E-01 8.808E-01 2.847E+00 4.199E-01 3.549E-02 

CH4  9.985E-01 3.095E-03 3.100E-01 3.017E-02 5.499E-05 9.094E-04 1.728E+00 1.230E+00 2.191E+00 9.252E+01 3.146E-01 5.279E-02 

C2H4  5.198E-05 1.040E-07 1.041E-05 1.013E-06 1.104E-06 2.055E-06 5.803E-04 7.562E-04 7.359E-05 1.719E-03 2.528E-04 5.336E-05 

CFC-11 1.991E-12 2.945E-15 2.950E-13 2.872E-14 4.129E-15 6.751E-14 4.156E-10 4.853E-10 2.085E-12 1.521E-11 2.333E-11 2.276E-13 

CFC-113 8.122E-11 6.884E-14 1.965E-12 6.711E-13 3.100E-13 6.192E-12 3.764E-08 4.502E-08 4.873E-11 6.260E-10 2.172E-09 1.144E-11 

CFC-114 1.164E-06 5.190E-09 5.200E-07 5.061E-08 5.064E-10 1.441E-09 1.032E-05 5.326E-06 3.674E-06 5.512E-06 3.022E-07 6.671E-08 

SOx 2.104E+00 7.540E-02 7.554E+00 7.352E-01 3.677E-04 1.274E-03 2.877E+00 1.628E+00 5.338E+01 1.386E+01 3.049E-01 5.286E-02 

NOx 3.495E+00 1.132E-01 1.134E+01 1.103E+00 1.507E-02 2.227E-02 1.128E+00 6.238E-01 8.011E+01 1.934E+01 1.283E+00 5.034E-01 

N2O 6.269E-04 3.111E-05 3.116E-03 3.033E-04 4.139E-05 6.727E-05 1.140E-02 6.318E-03 2.202E-02 3.565E-01 5.808E-03 3.278E-03 

NH3  1.283E-03 4.615E-07 4.623E-05 4.499E-06 9.679E-06 1.819E-05 2.434E-02 1.133E-02 3.267E-04 1.536E-02 2.277E-03 6.160E-04 
NMVOC 6.461E-03 1.299E-04 1.302E-02 1.267E-03 1.775E-03 2.639E-03 1.342E-01 1.250E-01 9.198E-02 9.189E+00 1.569E-01 5.073E-02 
HCl 9.841E-03 5.654E-04 5.664E-02 5.513E-03 1.249E-06 3.906E-06 5.962E-02 3.030E-02 4.003E-01 2.912E-02 8.775E-04 3.626E-04 
N (water) 1.468E-04 6.788E-06 6.800E-04 6.618E-05 1.469E-06 2.861E-06 1.068E-02 5.272E-03 4.805E-03 3.971E-03 3.834E-04 1.080E-04 

PO4
-3 (groundwater) 2.336E-01 5.442E-03 5.451E-01 5.305E-02 2.152E-05 1.671E-04 2.815E+00 1.534E+00 3.852E+00 1.579E+00 5.248E-02 1.832E-02 

P (air, water, ground) 3.940E-06 1.081E-07 1.083E-05 1.054E-06 5.874E-07 1.178E-06 5.987E-04 2.920E-04 7.654E-05 4.228E-03 1.659E-04 3.818E-05 
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Table 12. Indicators’ results per FU in Scenario 2 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  Unit NAC NAC_FA NAC_AAFA RAC RAC_FA 
ADP_FF MJ-eq. 1.765E+03 1.662E+03 2.466E+03 1.956E+03 1.663E+03 

GWP g CO2-eq. 2.604E+05 2.168E+05 1.342E+05 2.929E+05 2.161E+05 
ODP g CFC-11-eq. 3.390E-04 2.678E-04 5.947E-04 3.822E-04 2.674E-04 

EP g PO4
3--eq. 2.700E+02 2.821E+02 3.285E+02 2.933E+02 2.757E+02 

AP g SO2-eq. 1.730E+03 1.893E+03 1.198E+03 1.899E+03 1.867E+03 

POCP g C2H4-eq. 8.748E+01 8.101E+01 4.835E+01 9.489E+01 7.898E+01 
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Table 13. Contribution of various unit processes to GWP (%), Scenario 2 
 

 CEM II NA+RCA FA Activator1 Concrete  Transport 
NAC 88.2 0.8 - - 1.8 9.3 
NAC_FA 74.1 0.8 11.2 - 2.1 11.7 
NAC_AAFA - 1.3 19.1 32.6 31.7 15.2 
RAC 89.1 1.0 - - 1.6 8.3 
RAC_FA 74.3 1.1 11.3 - 2.1 11.2 

1 NaOH+Na2SiO3 
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Table 14. Contribution of various unit processes to ADP_FF (%), Scenario 2 
 

 CEM II NA+RCA FA Activator1 Concrete  Transport 
NAC 73.4 1.9 - - 2.9 21.9 
NAC_FA 54.5 1.7 15.9 - 3.0 24.9 
NAC_AAFA - 1.2 11.3 43.7 30.7 13.2 
RAC 75.2 2.5 - - 2.6 19.7 
RAC_FA 54.4 2.3 15.9 - 3.0 24.3 
1 NaOH+Na2SiO3 
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Table 15. Sustainability indicators for both scenarios and both weight sets 
 

Concrete type 
SI 

Concrete type 
SI 

‘EPA’ weights ‘Equal’ weights 
Scenario 1 Scenario 2 Scenario 1 Scenario 2 

NAC_AAFA 0.640 0.640 RAC_FA 0.662 0.629 
RAC_FA 0.622 0.585 NAC_FA 0.634 0.596 
NAC_FA 0.599 0.560 NAC_AAFA 0.500 0.500 
NAC 0.287 0.447 NAC 0.382 0.543 
RAC 0.269 0.226 RAC 0.373 0.314 
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Table 16. Sustainability indicators for both scenarios and both weight sets, ‘in-situ’ concretes 
 

Concrete type 
SI 

Concrete type 
SI 

‘EPA’ weights ‘Equal’ weights 
Scenario 1 Scenario 2 Scenario 1 Scenario 2 

RAC_FA 0.999 0.872 RAC_FA 0.999 0.823 
NAC_FA 0.845 0.800 NAC_FA 0.791 0.730 
NAC 0.080 0.589 NAC 0.079 0.653 
RAC 0.023 0.000 RAC 0.030 0.000 
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Highlights: 
 
• Four green concretes were assessed using LCA and compared with conventional concrete 
• NAC, RAC, HVFAC with natural aggregates and with RCA, and AAFAC were studied 
• LCA on the level of concrete life cycles was performed for specific scenarios 
• The best overall environmental performance was shown by AAFAC and HVFAC with 

RCA 
• The worst overall environmental performance was shown by RAC with a cement binder 


