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Summary 

In the paper, an algorithm to track a moving delamination front of arbitrary shape is proposed, which 

allows considering of arbitrary meshes composed of 4- and 9-node quadrilateral finite elements. The 

proposed model is developed in the context of a layered finite element plate model. To prevent 

interlaminar penetration of adjacent layers in the delaminated region, a contact algorithm proposed by the 

authors is adopted. The model performance is demonstrated by re-analyses of the Double-Cantilever-

Beam problem, for which analytical solutions exist, and by transient analyses of laminated composite 

plates with propagating delamination fronts. 

Keywords: propagation, composite plate, layered finite element, transient analysis 

Резиме 

У овом раду приказан је алгоритам за праћење промене фронта деламинације, који омогућава 

примену произвољних мрежа четвороугаоних коначних елемената са 4 или 9 чворова. Предложени 

модел заснован је на слојевитим коначним елементима плоче. Како би се спречило преклапање 

слојева у зони деламинације, усвојен је контактни алгоритам који су предложили аутори. Примена 

модела показана је на примеру двоструке конзоле (за коју већ постоји аналитичко решење), као и у 

динамичкој анализи ламинатних композитних плоча са фронтом деламинације који се шири. 

Кључне речи: пропагација, композитна плоча, слојевити коначни елемент, динамичка анализa
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1. INTRODUCTION 

Laminated composites play an important role in 

the construction of efficient and lightweight 

structures and components in mechanical, 

aeronautical and civil engineering. Examples are 

high performance parts of aircrafts, wind turbines, 

ships, cars etc. However, structural defects of such 

structures (usually in the form of delamination) 

lead to a considerable reduction of the loading 

capacity of the composite member. An overview 

on this common problem of composite structures is 

given in [1]. 

The finite element model based on the Generalized 

Layerwise Plate Theory (GLPT) [2] is capable to 

conveniently describe the independent motion of 

the adjacent layers in the delaminated zone. Using 

the GLP Theory, the relative displacements 

between the upper and lower portions of the 

composite laminate in the delaminated zone can be 

achieved, allowing placing an interface element 

between adjacent "layers" in the plate formulation. 

This formulation also allows the calculation of 

three components GI, GII and GIII of the Strain 

Energy Release Rate (the energy dissipated during 

the propagation of delamination per unit of a newly 

created delaminated area). In order to predict 

delamination growth, the calculated Gi components 

are compared with the interlaminar fracture 

toughness, which is experimentally obtained 

material property. 

In previous investigations, the authors developed a 

numerical model based on the GLPT for the 

numerical analysis of free vibrations [3, 4] and the 

transient response [5] of delaminated composite 

and sandwich plates and shells. Although a number 

of computational strategies exist for the modeling 

of delamination growth (see [6] and references 

therein), the propagating delamination was not 

considered in [3, 5]. 

In this paper, the step-by-step propagation of the 

previously imposed delaminated zone is accounted 

using the Virtual Crack Closing Technique 

(VCCT) [7, 8], which is an approximate method 

derived from the more fundamental Crack Closure 

Technique (CCT), assuming that the strain energy 

released during the delamination growth is equal to 

the work required to close the crack to its original 

length (see [9] and references herein). The 

presented method extends the algorithm previously 

proposed by Xie et al. [10, 11] and applied by 

Hosseini-Toudeshky et al. in Refs. [20-22], which 

was restricted to structured finite element meshes 

of quadrilateral elements. In this work the VCCT 

approach is extended to the unstructured meshes of 

linear and quadratic quadrilateral finite elements. 

Our algorithm [12] has been implemented in a 

recently developed MATLAB code for the static 

and dynamic analysis of damaged composite plates 

[13]. For the generation of the numerical models 

and the post-processing of the results, the Pre- and 

Post-processing program GiD [14] is used. 

2. LAYERED FINITE ELEMENT MODEL 

In the paper, we consider laminated composite 

plates made of n orthotropic laminae. Although not 

necessary, it is convenient to adopt the mid-plane 

 of the laminate as reference x-y plane of the 

problem. The z-axis is oriented orthogonal to the x-

y plane according to a right handed orthonormal 

coordinate system. The plate thickness is denoted 

as h (see Figure 1), while the thickness of the k
th
 

lamina is denoted as hk. The plate is supported 

along the portion Гu of the boundary Г and loaded 

with loading q acting perpendicular to the mid-

plane of the laminate. Note that the previously 

imposed delaminated zone DEL may change its 

shape during the loading process, while debonding 

of the boundary nodes is only possible along free 

plate boundaries. However, the growth of the 

delamination cannot change the essential boundary 

conditions along Dirichlet boundaries Гu. 

 

Figure 1.Laminated composite plate with 

embedded delaminated zone DEL 

The Generalized Laminated Plate Theory (GLPT) 

[15] allows the independent interpolation of in-

plane and out-of-plane displacement components 

and relative displacements of adjacent layers in 

three orthogonal directions. Piece-wise linear 

variation of in-plane displacement components and 

constant transverse displacement through the 

thickness are imposed (plane stress state). Based 

on the assumptions of the Generalized Laminated 

Plate Theory [2-5, 16], the displacement field of an 

arbitrary point (x,y,z) of the laminate at the 

arbitrary time instant t is given as: 
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In Eqs. (1), u(x,y,t), v(x,y,t) and w(x,y,t) are the 

displacement components in the mid-plane of the 

laminate in directions x, y and z, respectively, 

u
I
(x,y,t) and v

I
(x,y,t) are the relative displacements 

of the I
th
 numerical layer in directions x and y, 

respectively, and U
I
(x,y,t), V

I
(x,y,t) and W

I
(x,y,t) 

are the jump discontinuities in the displacement 

field in the I
th
 delaminated interface in three 

orthogonal directions. N is the number of interfaces 

between the layers including St and Sb, while ND 

represents the number of interfaces in which 

delamination is present. W
I
 is the Crack Opening 

Displacement (COD) which is constraint by the 

non-penetration condition W
I
0 in the I

th
 numerical 

layer. Ф
I
(z) are selected to be linear layerwise 

continuous functions of the z-coordinate. H
I
(z) are 

Heaviside step functions which describe the 

delamination kinematics in the I
th
 delaminated 

layer [2]. 

The linear strain field associated with the 

previously shown displacement field can be found 

in [2, 3, 16]. It serves as the basis for the derivation 

of 3+2N+3ND governing differential equations 

which define the strong form of the GLPT. The 

primary variables of the problem are u, v, w, u
I
, v

I
, 

U
I
, V

I
 and W

I
. To reduce the 3D model to the plate 

model, the z-coordinate is eliminated by the 

explicit integration of stress components multiplied 

with the corresponding functions Ф
I
(z) or H

I
(z), 

introducing the stress resultants which can be 

found in [16]. 

Based on the Generalized Laminated Plate Theory, 

the C
0
 layered finite element model consisting of 

the mid-plane, I=1,...,N numerical layers through 

the plate thickness (except the middle plane) and 

finally I=1,...,ND numerical layers in which 

delamination can occur is derived [16]. Note that 

only translational displacement components are 

adopted as generalized displacements. 

3. MODELING OF CRACK PROPAGATION 

In this work, the displacement field obtained in the 

conventional finite element calculation is used for 

the computation of the three modes of the Strain 

Energy Release Rate along the delamination front 

using the Virtual Crack Closure Technique, which 

requires the calculation of the delamination 

opening behind the front, the nodal forces in the 

nodes along the front and the virtually closed area 

in front of the existing delamination. The method 

is based on the assumptions of the Virtual Crack 

Closure Technique which are elaborated in [7, 8, 

12]. Note that there exists the previously imposed 

delamination area between two layers of the 

laminated composite plate, which is conveniently 

imposed by selecting the nodes in which structural 

debonding exist (see Figure 2a). The post-

processing algorithm presented in this paper should 

be applied in all nodes of the finite element model 

after the each calculation step. The procedure is 

repeated for all delaminated zones in the plate. 

3.1 Detection of delamination front 

To start, the algorithm detects the ideally bonded 

nodes in the vicinity of each a priori imposed 

delaminated node (red dots in Figure 2a). The 

detected nodes are intact nodes defining the 

undamaged area of the plate. Nodes dividing the 

undamaged from the delaminated plate area are the 

nodes which define the delamination front (blue 

dots in Figure 2b). The delaminated zone is 

encapsulated by the polygonal line connecting the 

nodes along the delamination front (blue line in 

Figure 2b). 

 

Figure 2. Detection of the delamination front (blue 

line) according to the debonded nodes (red nodes) 

The main advantage of the presented method is its 

possibility to calculate the orientation of the 

normal vector n  defining the direction of the 

delamination growth. In the majority of the 

previously proposed models [6, 9, 17, 18], this 

orientation is assumed a priori. The delamination 

front in node N is defined by two vectors ( 1v  and 

2v ) pointing away from point N to two adjacent 

points on the delamination front, and dividing the 

bonded nodes from the debonded ones [12]. After 

the determination of the vectors 1v  and 2v , the 

vector normal to the delamination front at node N 

is derived as a unit vector along the symmetry line 
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defined by 1v  and 2v . Having determined the 

normal vector n , its corresponding tangent vector 

t  is computed based on the vector x yn n i n j 

as y xt n i n j   . The vector k  is the vector 

perpendicular to the delamination plane. Three unit 

vectors ( , , )n t k form a base of the local coordinate 

system, in which all Gi components are calculated. 

 

Figure 3. Normal vectors determined at the nodes 

along the delamination front and the local 

coordinate system ( , , )n t k   

3.2 Determination of the virtually closed area 

To determine GI, GII and GIII, the virtually closed 

area A is calculated using 6 control points for every 

node N along the delamination front, according to 

the procedure presented in [12]. The control points 

P1-P3 are known after the calculation of the vectors 

1v  and 2v , while the control points P4 and P5 are 

derived based on the status of the nodes in the 

vicinity of current node N. Finally, the point P6 is 

derived based on the intersection of directions n , 

1v , 2v and the locations of points P4 and P5. After 

the six control points P1-P6 are determined, the 

virtually closed area is calculated using the 

polyarea MATLAB function. Note that an overlap 

of the virtually closed areas corresponding to the 

adjacent nodes on the delamination front is a priori 

prevented. 

3.3 Calculation of the Strain Energy Release Rates 

After the virtually closed area is determined one 

needs to compute the forces in the nodes on the 

crack front, as well as the delamination openings 

behind the crack front. The forces and the 

displacements are calculated in the global 

coordinate system and further transformed in the 

local coordinate system ( , , )n t k located in node N, 

to reflect the true crack opening mechanism. The 

delamination openings behind the crack front are 

calculated in the point P0, which is anti-symmetric 

to the point P6 with respect to the node N. When 

the point P0 is defined (see Figure 4), the required 

jump displacement components are evaluated from 

the nodal values of the finite element in which the 

point P0 is located. 

 

Figure 4. Six control points to determine the 

virtually closed area A 

3.4 Delamination propagation criterion 

The three components of the strain energy release 

rate GI, GII and GIII are approximated as the 

product of the nodal forces at node N (point P1) 

and the delamination openings at point P0, in the 

region of the virtually closed area A. Once the Gi 

components are calculated, a mixed-mode fracture 

criterion for delamination propagation is applied: 

1I II III
d

Ic IIc IIIc

G G G
E

G G G
      (2) 

GIc, GIIc and GIIIc are the critical values of the strain 

energy release rate corresponding to Mode I, Mode 

II and Mode III fracture, respectively. If the above 

criterion is satisfied, the status of the considered 

node on the delamination front is changed and the 

node in which the criterion is satisfied is referred 

as a propagating node. After moving to the next 

calculation step, the new front is set and the 

calculation of the Gi components in all nodes along 

the delamination front is repeated for the same 

level of loading. 

However, the assumption that propagating nodes 

are only those in which the criterion (2) is satisfied 

may be quite conservative due to the fact that the 

assumption of the similarity of the crack before 

and after the propagation is violated [19]. The 

proposed method can be easily modified to 

establish new node-to-node propagation 

mechanisms (in order to accelerate the solution 

process and preserve the self-similarity assumption 

of the VCCT). For details, see Orifici et al. [18]. 

As previously mentioned, debonding of the 

boundary nodes is only possible for free (F) plate 

boundaries, without the possibility to change the 

previously prescribed essential boundary 

conditions along Гu (e.g. along clamped (C) 

boundaries). In the proposed method, as soon as 
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the delamination front reaches the plate boundary 

the adjacent nodes in the vicinity of the 

propagating node are also released (see Ref. [18]). 

The algorithm is repeated until there are no more 

propagating nodes in the current step of the 

analysis. Subsequently, the analysis continues with 

the next time or loading increment. 

4. ALGORITHM FOR PREVENTION OF 

THE INTERLAMINAR PENETRATION 

During the transient response of laminated 

composite plates with delamination, a small gap 

may be formed between the adjacent layers in the 

delaminated zone. During the motion of the plate 

the embedded delamination may open and close, 

causing the so-called ''breathing phenomenon'' [5]. 

Having in mind that in the presented numerical 

model a Crack Opening Displacement is stored in a 

discrete degree of freedom W
I
 (which generally can 

reach negative value and cause the penetration of 

the adjacent layers), the node-to-node frictionless 

contact algorithm is enforced in every solution 

step. The details of the implementation of the 

algorithm are provided in [5]. Note that the contact 

prevention is activated both in the scenario in 

which delamination propagation is allowed, as well 

as in the case of the stationary delamination. 

5. NUMERICAL EXAMPLES 

5.1 Double-Cantilever-Beam problem 

The first validation example is concerned with the 

well-known Double-Cantilever-Beam (DCB) 

problem shown in Figure 5. The specimen is 

assumed to be made of T300/976 graphite/epoxy 

material with the graphite fibers oriented along the 

length of the plate (index 1). The following 

material properties are used in the analysis: 

E1=139.3GPa, E2=E3=9.72GPa, G23=3.45GPa, 

G12=G13=5.58GPa, =0.29. The critical values of 

the Strain Energy Release Rates are adopted from 

Ref. [20] as GIc=87.6N/m and GIIc=GIIIc=315.2N/m. 

The cantilever plate is discretized using different 

mesh densities (5010 and 7516) of linear (4-

node) and quadratic (9-node) layered finite 

elements with reduced integration. The boundary 

conditions are prescribed along the clamped edge 

by constraining all degrees of freedom along the 

edge nodes. A delamination zone DEL is 

prescribed as shown in Figure 5. 

In the first part of this example, the plate is loaded 

by applying Crack Opening Displacements (COD) 

in 50 steps in equal increments of =0.1mm (see 

Figure 5). For comparison, the analytical solution 

of the Double Cantilever Beam test based on the 

Bernoulli beam theory and Linear Elastic Fracture 

Mechanics is used [17, 23, 24]: 

 
3/2

11
e 3

0 1

3 2
R ,

2 3

Ic

l del

bG E IE I
R

a E I


  

   (3) 

In Eq. (3), Rel is the linear part of the R- diagram, 

Rdel is the nonlinear part of the R- diagram 

(during the propagation of the delamination),  is 

the prescribed displacement along the free edge of 

the cantilever, I is the moment of inertia of one 

part of the cantilever, h is the height of one 

delaminated part of the cantilever, b=25.4mm is the 

width of the cantilever, a0=30mm is the prescribed 

delamination length and GIc is the critical value of 

the Strain Energy Release Rate for Mode I. The 

reaction force is measured in the edge nodes and 

plotted versus the COD in Figure 6.  

 

Figure 5. DCB benchmark: Geometry, boundary 

conditions and prescribed delaminated zone DEL 

 

Figure 6. Reaction force versus COD in the Double 

Cantilever Beam for different element types 

(red: 5010 elements, green: 7516 elements) 

Figure 6 shows the comparisons of the numerical 

and the analytical results of the DCB test for 
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different mesh densities of the linear and quadratic 

finite elements. All models generally displayed 

similar behavior regardless of the mesh size, 

resulting in i) a linear part of the load-displacement 

diagram until the initiation of the delamination 

growth and ii) a nonlinear part where the 

delamination growth is accompanied by the 

reduction in the load-carrying behavior. 

Mesh refinement generally results in a smoother 

load-displacement curve because of the shorter 

distances between two consecutive delamination 

fronts. Obviously, the elastic branch of the force-

displacement curve is slightly softer in the finite 

element solutions in comparison with the analytical 

solution based on the Bernoulli beam model 

(transverse shear deformation is neglected). In 

addition, the analytical solution accounts only for a 

single elasticity modulus E1 (E2 = E3 = E1), which 

also makes the analytical solution slightly stiffer. 

Slightly higher values of the reaction force are 

detected for linear elements – for the quadratic 

ones the model underestimates the critical forces 

corresponding to the onset of delamination 

propagation as compared to the analytical solution 

due to the same reasons as mentioned above. The 

study of influence of the mesh density on the GI 

distribution along the width of the cantilever plate 

is presented in [12] and will not be discussed here. 

 

Figure 7. Reaction force versus COD in the Double 

Cantilever Beam for different sizes of the applied 

displacement increments 

Figure 7 illustrates the reaction force versus the 

crack opening displacement of the cantilever plate 

discretized using 5010 linear elements, for 

different increments of the applied displacement 

along the free edge of the cantilever. It is obvious 

that the reduction of the increment improves the 

agreement with the analytical solution in the 

nonlinear portion of the chart, while the influence 

on the elastic branch is marginal. 

The re-analyses of the Double Cantilever Beam 

benchmark example demonstrated the capability of 

the proposed plate model to describe both pre- and 

post-propagation behavior of laminated composite 

plate in quasi-static conditions. 

5.2 Transient analysis of laminated composite plate 

with a propagating delamination 

In this part we investigate the transient response of 

laminated composite plates with centrally located 

embedded delaminations of different shape (square 

or circular). Clamped square composite plates with 

a side length L=600mm and a thickness h=10mm, 

composed of four layers (hk=2.5mm) of carbon-

epoxy material in a symmetric stacking sequence 

(0/90/90/0), are considered. Delaminations are 

prescribed between layers 3-4 (see Figure 8). The 

material properties of carbon/epoxy layers are [11]: 

E1=109.34GPa, E2= 8.82GPa, G23=3.20GPa, 

G12=G13=4.32GPa, 12=13=0.342, 23=0.520, 

=1500kg/m
3
, GIc=306 N/m, GIIc=632N/m and 

GIIIc=817N/m.  

 

Figure 8. 4-layers (0/90/90/0) cross-ply laminated 

composite plates with embedded delaminations 

A uniformly distributed transverse loading 

q=75kPa is prescribed in the form of a step pulse 

lasting for T=16ms, with a time step t=0.5ms (see 

[12] for details). The plates are discretized using 

linear finite elements with the average element size 

of 20mm. The numerical models are generated 

using the GiD Pre- and Post-processing program 

(see Figure 9). The element matrices and vectors 
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are calculated using the reduced Gauss-Legendre 

quadrature to avoid shear locking (see [3] for 

details). The extended study of the influence of the 

mesh density on transient response of delaminated 

composite plates using the presented model is 

elaborated in [12]. Note that the mesh refinement 

does not have a strong influence on the transient 

response if delamination propagation algorithm is 

not included [12], resulting only in slightly lower 

amplitudes and higher frequencies of the 

delaminated segment. 

The transient response is analyzed numerically for 

the following scenarios: i) composite plate without 

a delamination (intact plate), ii) the plate with an 

embedded delaminated zone of different shapes, 

allowing for delamination growth and, iii) the plate 

with an embedded delaminated zone of different 

shapes, suppressing, however, further delamination 

(the last model is proposed by authors in [5]). The 

time histories of the transverse deflection of a 

delaminated layer 4 (see Figure 8) in the center of 

the plate are plotted in Figure 10 (t=0.5ms) for 

different shapes of delamination and different 

scenarios explained above.  

Obviously, due to the presence of an embedded 

delaminated zone, in the case without delamination 

propagation as well as in the case, in which 

delamination growth is enabled, the debonded 

layer 4 independently oscillates from the intact rest 

of the plate (layers 1-2-3), resulting in the increase 

of the amplitudes and the reduction of the 

frequency in comparison with the intact plate 

(solid black line in Figure 8).  

Considering case ii) (solid blue and red lines in 

Figure 10), the plate response is considerably 

changed during the transient motion of the plate in 

comparison with the numerical model in which the 

delamination propagation is suppressed (dashed 

blue and red lines in Figure 10), referred before as 

case iii). The amplitudes as well as the period of 

 

Figure 9: Finite element discretizations for two different delamination shapes (red bullets - prescribed 

delaminated nodes, green bullets – delamination front) 

 

Figure 10: Temporal evolution of the central transverse deflection of the delaminated plate obtained for 

different delamination shapes and different scenarios regarding the delamination propagation algorithm, for 

t = 0.5ms (solid lines - with delamination growth, dashed lines - without delamination growth) 
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oscillations are increased in case ii) because of the 

stiffness degradation caused by the considerable 

increase of the delaminated area. 

The delamination shape severely influences the 

time point of the initiation of delamination 

propagation: for the square delamination (blue 

lines in Figure 10), the delamination propagation 

begins at approximately t=5.5ms, while for the 

circled delamination shape (red lines in Figure 10), 

the propagation starts at app. t=3.0ms. The time 

point of the start of the delamination growth is 

detected in Figure 10 as a time point in which 

considerable difference in time history plot occurs. 

Finally, the initial circled delamination is of higher 

area compared with the square one, which 

expectedly lead to the softer response and earlier 

initiation of delamination propagation (difference 

between blue and red solid lines in Figure 10). 

 

Figure 11. Propagation of the initial square 

delamination (red bullets - delaminated nodes, 

green bullets – initial delamination front, blue 

bullets – final delamination front - t=16ms) 

 

Figure 12. Propagation of the initial circle 

delamination (red bullets - delaminated nodes, 

green bullets – initial delamination front, blue 

bullets – final delamination front - t=16ms) 

The final shapes of the delaminated zone at time 

point t=16ms for both prescribed delaminations are 

illustrated in Figures 11 and 12. It is obvious that 

in both cases the prescribed delamination (green 

bullets in Figures 11 and 12) tends to form an 

elliptical shape (blue bullets in Figures 11 and 12). 

The final elliptical shape is formed because of the 

orthotropic behavior of the composite plate, having 

the considerably lower properties in x- direction of 

layer 3 (90
o
). The symmetry in the final 

delamination shape is influenced by the structured 

mesh of finite elements. 

6. CONCLUSIONS 

A layered finite element model for static and 

dynamic computational analysis of delaminated 

composite plates has been presented. The model 

has been implemented both for linear and quadratic 

quadrilateral layered plate elements. Interlaminar 

penetration between delaminated layers has been 

prevented by considering contact conditions 

between the individual layers. A delamination 

propagation algorithm has been implemented 

based upon the Virtual Crack Closure Technique to 

allow for the change of the embedded delaminated 

zone. The proposed model has been verified and 

validated by means of analytical solution of the 

Double Cantilever Beam test. In addition, the 

model has been applied to the numerical analysis 

of the transient response of graphite-epoxy 

composite plates with embedded delaminated 

zones of different shape. The difference between 

the presented models with the activated algorithm 

for delamination propagation, in comparison with 

the authors’ previously derived model in which the 

delamination growth was not considered, is 

highlighted. The conclusions have been 

summarized as follows: 

• In the Double Cantilever Beam test, slightly 

higher values of the reaction force have been 

obtained, if the model is discretized using the 

linear elements in comparison with the 

quadratic interpolation. For the quadratic 

elements the model underestimates the forces 

corresponding to the onset of a delamination 

growth as compared to the presented 

analytical solution based on the Bernoulli 

beam theory. Finally, the elastic branch of the 

force-displacement curve is softer in the 

presented numerical solution in comparison 

with the analytical one, because of the 

incorporation of the transverse shear 

deformation and the orthotropic behavior of 

the plate in the numerical solution. 

• In the presence of an embedded delaminated 

zone under dynamic loading, the debonded 

layer oscillates independently from the intact 

rest of the plate, resulting in an increase of the 
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amplitudes and the reduction of the frequency 

in comparison with the intact plate. This holds 

for the case without the delamination 

propagation, as well as for the case in which 

the delamination growth is enabled. 

• Delamination growth severely influences the 

transient response of the delaminated plate. 

As soon as a delaminated zone embedded in a 

composite plate starts to extend when 

subjected to dynamic loading, the frequency 

reduces and the amplitude increases 

considerably as compared to the case, where 

the growth of the delaminated zone is 

suppressed. 

• The shape of the prescribed delamination 

influences the transient response of the 

delaminated segment, as well as the time 

point of the initiation of the delamination 

growth. If the prescribed delaminated area is 

higher, the growth of the delamination starts 

earlier. This also leads to the softer transient 

response characterized by the increase of 

amplitudes as well as of the period.  

Future work in this field includes the extension of 

the presented algorithm to the arbitrary meshes of 

linear (3-node) and quadratic (6-node) layered 

finite elements, as well as the implementation of 

the cohesive law between the initially bonded 

node-pairs, to simulate the process of debonding 

more accurately. The thermo-mechanical coupling 

(the transient response of the delaminated 

composite plates under the temperature change) 

should also be considered. 
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