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solving some of the environmental problems of concrete production. 
However, design guidelines for deflection control of reinforced RAC 
members have not yet been proposed. This study presents a 
comprehensive analysis of the applicability of the fib Model Code 2010 
(MC2010) deflection control model to reinforced RAC beams. Three 
databases of long-term studies on natural aggregate concrete (NAC) and 
RAC beams were compiled and meta-analyses of deflection predictions 
by MC2010 were performed. First, the MC2010 deflection control model 
was tested against a large database of long-term tests on NAC beams. 
Second, a database of RAC and companion NAC beams was compiled 
and initial and long-term deflections were calculated using the MC2010 
model. It was shown that deflections of RAC beams are significantly 
underestimated relative to NAC beams. Previously proposed 
modifications for MC2010 equations for shrinkage strain and creep 
coefficient were used, and new modifications for the modulus of elasticity 
and empirical coefficient β were proposed. The improved MC2010 
deflection control model on RAC beams was shown to have equal 
performance to that on companion NAC beams. The proposals presented 
in this paper can help engineers to more reliably perform deflection 
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1 ABSTRACT

2 Recycled aggregate concrete (RAC) has emerged as a viable solution for solving some of the environmental 

3 problems of concrete production. However, design guidelines for deflection control of reinforced RAC 

4 members have not yet been proposed. This study presents a comprehensive analysis of the applicability of the 

5 fib Model Code 2010 (MC2010) deflection control model to reinforced RAC beams. Three databases of long-

6 term studies on natural aggregate concrete (NAC) and RAC beams were compiled and meta-analyses of 

7 deflection predictions by MC2010 were performed. First, the MC2010 deflection control model was tested 

8 against a large database of long-term tests on NAC beams. Second, a database of RAC and companion NAC 

9 beams was compiled and initial and long-term deflections were calculated using the MC2010 model. It was 

10 shown that deflections of RAC beams are significantly underestimated relative to NAC beams. Previously 

11 proposed modifications for MC2010 equations for shrinkage strain and creep coefficient were used, and new 

12 modifications for the modulus of elasticity and empirical coefficient β were proposed. The improved MC2010 

13 deflection control model on RAC beams was shown to have equal performance to that on companion NAC 

14 beams. The proposals presented in this paper can help engineers to more reliably perform deflection control of 

15 reinforced RAC members.

16 Keywords:

17 Recycled aggregate concrete; reinforced concrete beam; deflection; database; Model Code 2010
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1 1. Introduction

2 The focus of this paper is on deflection control of cracked reinforced concrete (RC) beams, used to 

3 check one of the most important Serviceability Limit States (SLS) in all modern design codes and guidelines 

4 .1–3 Although deflection control has gained importance over the past decades 4, it is still among the most 

5 complex limit states of RC structures to model.

6 This is largely because of the large number of influencing factors such as the geometrical properties of 

7 the member, moduli of elasticity of concrete and reinforcement, concrete tensile strength, area and distribution 

8 of reinforcement, load intensity and history, stiffness reduction caused by cracking and tension stiffening, 

9 member structural system, and moment redistribution in statically indeterminate systems caused by stiffness 

10 reduction, shrinkage, and creep.5 However, the research of factors influencing deflection has overtaken the 

11 advance in producing calculation and prediction models capable of using this attained knowledge. Hence, 

12 more attention must be given to the calculation models themselves.

13 In the area of deflection control, as in RC design in general, the fib Model Code 20101 (MC2010) is a 

14 globally leading document. Its current version is built upon decades of experience and tradition from the CEB-

15 FIP Model Code 19786 and 1990.7 Today, the fib (International Federation for Structural Concrete) is in the 

16 process of producing a new version, the fib Model Code 2020.8 In order to maintain its status of an innovative 

17 and visionary document, the new Model Code 2020 should include design provisions for new materials, such 

18 as ‘green concretes.’

19 Green concrete is a wide group of sustainable alternatives to traditional cement concrete, typically 

20 produced using waste and/or recycled materials. Since concrete is globally produced in amounts greater than 

21 20 billion tons annually,9 it causes significant impact on the environment. The first significant environmental 

22 impact of concrete is through the global annual production of cement which is responsible for 7–10% of all 

23 anthropogenic CO2 emissions.10 The second significant impact of concrete is through its end-of-life. What 

24 remains after a concrete structure is demolished is construction and demolition waste (CDW): in the EU, 

25 approximately 850 million tons of CDW are generated annually, accounting for 46% of total waste 

26 generated,11 while concrete can constitute more than 40% of CDW.

27 One of the most investigated solutions for producing green concrete is recycling concrete waste in order 

28 to produce recycled concrete aggregate (RCA) for use in the production of recycled aggregate concrete 
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1 (RAC). Since concrete is composed of natural aggregates bound by hardened cement mortar, after crushing 

2 concrete waste, the produced RCA is composed of natural aggregate particles with a certain amount of 

3 ’residual cement mortar’ attached. This mortar influences most of RCA properties: RCA usually has higher 

4 porosity, lower density, and greater water absorption compared with natural aggregates (NA).12–14 When RAC 

5 is produced, typically only coarse RCA is used (particles size >4 mm). So far, RAC has mostly been applied 

6 in non-structural applications15; however, it is recognized that the potential of RCA can be maximally 

7 exploited only if it is used for producing structural RAC.

8 Overall, RAC has been extensively and comprehensively studied. Most of the research has focused on 

9 short-term mechanical and durability-related properties. Comprehensive literature reviews analysing these 

10 properties of RAC compared with companion natural aggregate concrete (NAC)—usually designed with the 

11 same effective water-cement (w/c)eff ratio (w/c ratio not taking into account additional water added for RCA 

12 absorption)—were published in recent years.16,17 Researchers have also studied ways of predicting RAC 

13 properties that can be incorporated into design codes. For the modulus of elasticity, Silva et al.18 provided a 

14 comprehensive literature review and suggested a predictive expression as an extension of Eurocode 2.2 Tošić 

15 et al.19,20 provided empirical equations for predicting the shrinkage strain and creep coefficient of RAC as an 

16 extension of MC2010.

17 Ultimate Limit State (ULS) behaviour of RAC structural members has also been extensively studied, 

18 from studies on beams and columns, 21–23 to push-over and shaking-table tests on almost full-scale RAC frame 

19 structures.24,25 Studying the flexural and shear behaviour of reinforced RAC beams, Tošić et al.26 presented a 

20 meta-analysis of performed experiments and demonstrated that RAC beams could be reliably designed 

21 according to existing Eurocode 2 provisions. Having all these recommendations and guidelines is necessary 

22 for engineers to confidently and reliably design RAC structures. However, one aspect of RAC design is still 

23 lacking – SLS and deflection control, precisely the area in which RAC structural behaviour is expected to 

24 differ mostly from companion NAC behaviour.27

25 There are only a small number of long-term tests on reinforced RAC beams.28–35 Unfortunately, most of 

26 the studies are published as conference proceedings and do not offer sufficient information for detailed 

27 analysis. The studies vary in RCA properties (with water absorption, w.a., 1.9–6.0%), geometric properties of 

28 the beams (with 2000–3700-mm spans, 200–300-mm cross-section depths, 0.5–1.6% reinforcement ratios) 
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1 and duration of sustained load (118–1000 days). The authors generally find larger deflections and greater 

2 crack widths in RAC beams compared with companion NAC beams with an identical (w/c)eff ratio.32–35 Even 

3 though some authors33–35 have tested the applicability of existing deflection control models (ACI 318 and 

4 Eurocode 2)2,3, so far, this was only done on own experimental results – with a too small number of results for 

5 any definitive conclusion.

6 Therefore, the aim of this study is to perform a comprehensive meta-analysis of existing experimental 

7 results on the deflections of reinforced RAC beams and investigate the applicability of the MC2010 deflection 

8 control model to reinforced RAC beams. First, the performance of the MC2010 deflection control model was 

9 assessed on a large database of NAC beams, in order to verify its accuracy and precision. Second, a database 

10 of RAC and companion NAC beams was compiled and the relative performance of the MC2010 deflection 

11 control model was assessed on them. Finally, corrections of the MC2010 deflection control model for RAC 

12 beams were proposed in order to improve the model’s performance to be equivalent to that for companion 

13 NAC beams. The results of the study offer engineers a safe deflection control procedure for RAC members, 

14 thus completing all structural design aspects for RAC members.

15 2. Deflection control according to the fib Model Code 2010

16 2.1. Methodology of calculating deflections according to MC2010

17 The MC2010 approach to modelling deflections of RC members is based on the fact that there are two 

18 distinct states of an RC cross-section: state 1, i.e. the uncracked state, in which the full area of the concrete 

19 cross-section is effective; and state 2, i.e. the fully cracked state, in which concrete in tension is ignored – the 

20 cross-section is composed of reinforcement in tension and concrete in compression and is said to be fully 

21 cracked.36 Basic assumptions of deflection calculation are that (1) concrete in tension is ignored, (2) plane 

22 cross-sections are assumed to remain plane, (3) strains in concrete and reinforcement are assumed to be 

23 compatible, and (4) both materials are assumed to be ideally linear elastic.

24 The MC2010 deflection control model—just as the one in previous Model Codes—is founded on the 

25 hypothesis that ‘members that are expected to crack, but may not be fully cracked, will behave in an 

26 intermediate manner between the uncracked and fully cracked conditions.’1 In its most rigorous form, the 

27 model is based on the interpolation of curvatures calculated in states 1 and 2 at a number of sections along the 

28 member and on the subsequent calculation of deflections by numerical integration. The interpolation is 
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1 performed using a distribution coefficient ζ, taking into account the tension stiffening effect. For the case of 

2 bending without an axial force, ζ is defined as

𝜁 = { 1 ― 𝛽 ∙ (𝑀𝑐𝑟

𝑀 )
2

   for 𝑀 ≥ 𝛽 ∙ 𝑀𝑐𝑟

0                              for 𝑀 < 𝛽 ∙ 𝑀𝑐𝑟

(1)

3 where β is a coefficient accounting for the influence of the duration of loading or repeated loading

𝛽 = 1.0   for single, short ― term loading

   𝛽 = 0.5   for sustained or repeated loading
(2)

4 Further in Equation (1), Mcr is the cracking moment; and M is the moment acting on the cross-section.  

5 The cracking moment should be calculated as 

𝑀𝑐𝑟 = 𝑊𝑖,1 ∙ 𝑓𝑐𝑡𝑚 (3)

6 where W1,i is the section modulus of the uncracked transformed section, taking into account the reinforcement 

7 contribution through the ratio of the steel and concrete moduli of elasticity αe; and fctm is the concrete mean 

8 tensile strength. It should be noted from Equation (1) that the cracked zone of a member is not given by Mcr, 

9 but by √β·Mcr. The idea behind the coefficient β is to roughly reduce the cracking moment, or more precisely 

10 tensile strength, in order to take into account several phenomena such as the effects of restrained shrinkage, 

11 cracking caused by previous loading and creep. In this sense, β = 1 is only appropriate for first loading of a 

12 completely uncracked member. For long-term effects, β = 0.5 reduces the importance and effect of properly 

13 selecting the tensile strength by basically reducing fctm by approximately 30%.37

14 Curvatures are interpolated using the following equation:

(1
𝑟)

𝑒𝑓𝑓
= 𝜁 ∙ (1

𝑟)
2

+ (1 ― 𝜁) ∙ (1
𝑟)

1
(4)

15 where (1/r)eff is the effective/interpolated curvature, while (1/r)1 and (1/r)2 are curvatures in states 1 and 2, 

16 respectively. The curvatures in states 1 and 2 are composed of a component due to load (1/r)load and a 

17 component due to shrinkage (1/r)cs and are calculated as

(1
𝑟)

𝑛
=

𝑀 ∙ 𝑙2

𝐸𝑐,𝑒𝑓 ∙ 𝐼𝑖,𝑛
+ 𝜀𝑐𝑠(𝑡,𝑡𝑠) ∙ 𝛼𝑒 ∙

𝑆𝑖,𝑛

𝐼𝑖,𝑛
;  𝑛 = 1, 2 (5)
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1 where Ii,n is the moment of inertia of the transformed section in state 1 or 2; Si,n is the first moment of area of 

2 the reinforcement about the transformed section’s centroid (in state 1 or 2); and εcs(t,ts) is the concrete 

3 shrinkage strain at time t with drying initiation at time ts. The effect of creep is taken into account using the 

4 effective modulus of elasticity Ec,ef:

𝐸𝑐,𝑒𝑓 =
𝐸𝑐𝑚

1 + 𝜑(𝑡,𝑡0) (6)

5 where φ(t,t0) is the creep coefficient of concrete loaded at time t0, at time t, and Ecm is the modulus of elasticity 

6 of concrete at 28 days. The effective modulus of elasticity also defines the modular ratio αe = Es/Ec,ef where Es 

7 is the modulus of elasticity of reinforcement (that may be taken as 200 GPa).

8 The shrinkage strain and creep coefficient in Equations (5) and (6) should be calculated using the 

9 MC2010 shrinkage and creep prediction models which will not be presented here in detail.1 Beside this 

10 rigorous approach, MC2010 also offers a simplified procedure for calculating deflections, stating that ‘in most 

11 cases, it will be acceptable to compute the deflections twice, assuming the whole member to be in the 

12 uncracked condition and in the fully cracked condition, and then interpolate.’ In other words, the distribution 

13 coefficient ζ is calculated only once, usually for the cross-section subjected to the maximum bending moment 

14 Mmax:

𝜁𝑠𝑖𝑚𝑝. = {1 ― 𝛽 ∙ ( 𝑀𝑐𝑟

𝑀𝑚𝑎𝑥)2

   for 𝑀𝑚𝑎𝑥 ≥ 𝛽 ∙ 𝑀𝑐𝑟

0                              for 𝑀𝑚𝑎𝑥 < 𝛽 ∙ 𝑀𝑐𝑟

(7)

15 This distribution coefficient is then applied directly to interpolating deflections:

𝑎𝑠𝑖𝑚𝑝. = 𝜁 ∙ 𝑎2 + (1 ― 𝜁) ∙ 𝑎1 (8)

16 In Equation (8), a1 and a2 are the deflections of the member in states 1 and 2, respectively:

𝑎𝑛 = 𝐾 ∙
𝑀𝑚𝑎𝑥 ∙ 𝑙2

𝐸𝑐,𝑒𝑓 ∙ 𝐼𝑖,𝑛
+ 𝛿𝑐𝑠 ∙ 𝜀𝑐𝑠(𝑡,𝑡𝑠) ∙

𝑆𝑖,𝑛 ∙ 𝑙2

𝐼𝑖,𝑛 ∙ 8 ;  𝑛 = 1, 2 (9)

17 where K is a coefficient depending on the static system (0.104 for a simply supported beam under uniformly 

18 distributed loading and 0.107 for a simply supported beam in four point bending in thirds of the span), and δcs 

19 is a coefficient dependent on the member’s support conditions (=1 for a simply supported beam). This 
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1 simplified approach always provides conservative results, but rarely more than 10% greater than the ones 

2 obtained by the rigorous procedure.38

3 2.2. Performance assessment of MC2010 deflection control on a large database of NAC beams

4 Before studying the applicability of the MC2010 deflection control model to reinforced RAC members, 

5 it was necessary to assess the model’s performance on ordinary RC (i.e. NAC) members. For this purpose, a 

6 large number of experimental results of long-term tests on NAC members were needed. The largest database 

7 of such tests was compiled by Espion in 1988.39 It contains 397 long-term results from 45 different research 

8 campaigns. Beside this database, only a few studies performed afterwards have been well-conceptualized and 

9 well-documented, e.g. the experimental programme of Gilbert and Nejadi from 2004.40 Since the database by 

10 Espion contains a large number of different research campaigns—ranging from simply supported to 

11 continuous beams, rectangular and T-shaped cross-sections, different load conditions, etc.—some criteria had 

12 to be applied in order to reduce the number of results to a smaller but more reliable database. Hence, the 

13 following criteria were applied:

14  Studies carried out after 1945 (mostly because of construction technology and cement production);

15  Simply supported RC beams with rectangular cross-sections;

16  Deformed bars used as reinforcement;

17  Four-point bending or uniformly distributed load tests (because of the similar shape of the bending 

18 moment diagram, most common in real members);

19  The total imposed load caused cracking immediately after loading, i.e. beams were cracked 

20 throughout the entire experiment (this was considered most representative of realistic in-service 

21 behaviour of reinforced concrete members);

22  The concrete compressive stress-to-strength at loading age ratio, σc(t0)/fcm(t0), was smaller than 0.6 

23 immediately after loading (in order to enable the application of the MC2010 creep prediction 

24 model);

25  Compressive strength between 20 and 50 MPa;

26  Cross-section height greater than 100 mm;

27  L/d ratio smaller than 40; and 

28  Loading (t0) earlier than 90 days.
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1 After applying these criteria, 11 studies from Espion’s database were selected: Washa and Fluck 

2 (1952)41, P.C.A. (1950)42, Sattler (1956)43, Hajnal-Konyi (1963)44, Branson and Metz (1963)45, Pauw and 

3 Meyers (1964)46, Lutz et al. (1967)47, Jaccoud and Favre (1982)48, Bakoss et al. (1983)49, Van Nieuwenberg 

4 (1984)50, Clarke et al. (1988)51, together with the study by Gilbert and Nejadi (2004).40 In total, 12 research 

5 campaigns were selected, yielding 52 beams in total, each with an initial deflection, a0, and a long-term ‘final’ 

6 deflection, at, corresponding to the end of experimental measurements, i.e. 104 data points. The database with 

7 all the gathered data is provided as Supporting Information to this paper. 

8 It should be noted that, throughout this study, the term ‘final’ deflection refers to the deflection at the 

9 end of experimental measurements. The term is introduced for the sake of simplicity, because of different ages 

10 of final experimental measurements in different experiments. It does not refer to any type of final or ‘ultimate’ 

11 deflection, since no such concept exists; the absence of bound of basic creep (as reflected in the MC2010 

12 model1) means that, theoretically, deflections can increase indefinitely.

13 The ranges of the most important parameters in the database (labelled NAC-1) are given in Table 1 

14 where b and d are the beam cross-section width and effective depth, respectively, L is the beam span, ρ1 and ρ2 

15 are the tensile (bottom) and compressive (top) reinforcement ratios, respectively, t0 is the age at loading and t 

16 is the age at final measurement (measured from loading age), and Mmax/Mcr is the maximum applied moment-

17 to-cracking moment ratio with Mcr calculated using Equation (3). A relatively wide range of all parameter 

18 values can be seen, indicating good representativeness of the NAC-1 database.

19 The next step of the analysis was to calculate the deflections of all 52 beams (both initial and final). All 

20 mechanical and time-dependent properties necessary for this calculation (modulus of elasticity, tensile 

21 strength, shrinkage strain, and creep coefficient) were calculated using MC2010 expressions based on 

22 compressive strength. If aggregate type was not provided in the studies, for the purposes of calculating the 

23 modulus of elasticity, quartzite aggregates were assumed. In other words, the aggregate-dependent coefficient 

24 αE was taken as 1.0:

𝐸𝑐𝑚 = 21500 ∙ 𝛼𝐸 ∙ (𝑓𝑐𝑚

10 )
1 3

(10)

25 Both the modulus of elasticity and tensile strength were calculated for each beam’s loading age, as 

26 Ecm(t0) and fctm(t0), respectively. Unfortunately, for most studies, relative humidity (RH) and temperature—
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1 necessary for calculating shrinkage strain and creep coefficient—were not provided, but were taken as values 

2 cited by Espion for each study.39

3 Deflections were calculated using numerical integration of curvatures in 50 cross-sections across the 

4 length of each beam, using an Excel spreadsheet. For the beams with a σc(t0)/fcm(t0) ratio greater than 0.4 (there 

5 were 29 such cases)—the limit of linear creep in MC2010—long-term deflections were calculated by first 

6 dividing the cross-section into the part with σc(t0)/fcm(t0) < 0.4 and σc(t0)/fcm(t0)  >0.4 at time t0, and 

7 subsequently applying the MC2010 linear creep coefficient φ(t,t0) and nonlinear creep coefficient φσ(t,t0) to 

8 each part, respectively, in calculating the effective modulus, Equation (6). This approach has been applied 

9 successfully before and is demonstrated in more detail in the studies by Reybrouck et al. and Tošić et al.35,52

10 After calculating all 104 deflections, a calculated-to-experimental deflection ratio, acalc/aexp, was 

11 determined for each value. The statistical descriptors (mean value μ, standard deviation σ, and coefficient of 

12 variation CoV) are given in Table 2, for the entire database and separately for initial and final deflections. 

13 Very good agreement of calculated and measured values of deflections can be seen overall. The mean value of 

14 the acalc/aexp ratio of 1.11 for the entire database is somewhat conservative, however, considering all of the 

15 assumptions made in the calculations (both for mechanical and time-dependent properties) and the scatter of 

16 results (CoV of 26.8%), the result is very good.

17 However, it is more interesting to analyse initial and final deflections separately since they are actually 

18 calculated using different models – the model for calculating final deflections includes shrinkage and creep, 

19 whereas the model for calculating initial deflections does not; furthermore, the value of the β coefficient in 

20 Equation (2) is different. When looked at separately, an excellent performance of the MC2010 model can be 

21 seen for final deflections – a mean value of the acalc/aexp ratio of 1.05 and a CoV of 15.1%. The performance of 

22 the model is worse for initial deflections (mean of 1.17 and CoV of 32.4%). However, precisely measuring 

23 ’initial’ deflections can also be problematic and lead to errors. Because of this, and the fact that initial 

24 deflections are less important than long-term ones for RC structures, this result is also considered very good.

25 The performance of the model was also explored graphically, as shown in Figure 1 where the acalc/aexp 

26 ratio was plotted against compressive strength, tensile reinforcement ratio, L/d ratio and load level (Mmax/Mcr 

27 ratio), separately for initial and final deflections. From the figure, practically no significant correlation of the 

28 acalc/aexp ratio with any of the analysed parameters can be seen, meaning that the model behaves equally well 
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1 over the entire range of parameter values in the NAC-1 database. There is a slight negative correlation of the 

2 acalc/aexp ratio to the tensile reinforcement ratio, and the model is less precise for lower reinforcement ratios. 

3 Such reinforcement ratios are indicative of members loaded in service close to their cracking moment, and this 

4 is a case for which the model’s lower reliability is already known;37 nonetheless, the correlation is not 

5 significant.

6 For comparison purposes, deflections were also calculated using the simplified MC2010 method. As 

7 expected, the obtained results were more conservative compared with the rigorous method – the mean acalc/aexp 

8 ratio for the simplified approach was 1.29 and 1.09 for initial and final deflections, respectively (compared 

9 with 1.17 and 1.05 for the rigirous method). Nonetheless, this is a good result for a simplified method, and is 

10 on the safe side, as should be the case with any simplification.

11 From the analysis in this section, it was concluded that the MC2010 deflection control model has a very 

12 good performance on NAC beams and does not require any modifications. Therefore, the unaltered version of 

13 the model was used in the subsequent analysis of RAC beams carried out in the following section.

14 3. Applicability of the fib Model Code 2010 deflection control to RAC members

15 3.1. Databases of RAC and companion NAC beams

16 Detailed databases of long-term tests on reinforced RAC and companion NAC beams were compiled. 

17 As stated in the Introduction, there are only a small number of long-term tests on RAC beams28–35 and, 

18 furthermore, most of the studies are published as conference proceedings and do not offer sufficient 

19 information for a detailed analysis.

20 The only studies that provide sufficiently detailed results of their research campaigns are those of 

21 Knaack and Kurama33, Tošić et al.,35 and Seara-Paz et al.34 In these three studies, 30 beams were studied in 

22 total: 10 NAC and 20 RAC beams. Knaack and Kurama33 tested:

23  six NAC beams (UT-0-7, UT-0-28, UC-0-7, UC-0-28, CC-0-7, CC-0-28), 

24  six beams with 50% of RCA (i.e. RAC50: UT-50-7, UT-50-28, UC-50-7, UC-50-28, CC-50-7, 

25 CC-50-28), and 

26  six beams with 100% of RCA (i.e. RAC100: UT-100-7, UT-100-28, UC-100-7, UC-100-28, 

27 CC-100-7, CC-100-28) were studied. 
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1 The beams were divided according to whether they were loaded so as to crack immediately after 

2 loading, or to crack some time after loading (first letter in the label – U/C); whether they had only tensile, or 

3 both tensile and compressive reinforcement (second letter in the specimen label – T/C); RCA percentage (first 

4 number in the label – 0/50/100); and whether they were loaded after 7 or 28 days (last number in the label – 

5 7/28).

6 In the study by Tošić et al.,35 two NAC (NAC7, NAC28) and two RAC100 beams (RAC7, RAC28) 

7 were tested by loading them after 7 and 28 days (as indicated by the number in the specimen name). 

8 Seara-Paz et al.34 tested:

9  two NAC beams (H50-0, H65-0), 

10  two beams with 20% of RCA (i.e. RAC20: H50-20, H65-20), 

11  two RAC50 beams (H50-50, H65-50), and 

12  two RAC100 beams (H50-100, H65-100). 

13 The beams were divided according to the (w/c)eff ratio (0.50 and 0.65 for beams H50 and H65, 

14 respectively), and RCA percentage (indicated by the number in the specimen’s name).

15 All of the beams were simply supported and loaded in four-point bending. The RCA used in these 

16 studies was crushed concrete waste in the studies of Knaack and Kurama33 and Tošić et al.35, whereas the 

17 RCA in the study of Seara-Paz et al.34 was mostly concrete waste (85%) with approximately 10% of asphalt 

18 particles. The water absorption of RCA was in the range of 3.9–6.1%, indicating good to moderate quality.

19 However, for the purposes of this study, not all of these beams were considered in the analysis. First, 

20 one RAC beam from the study of Tošić et al.35 (RAC100 beam loaded after 7 days, RAC7) had a σc(t0)/fcm(t0) 

21 ratio greater than 0.6 and was excluded since the MC2010 nonlinear creep coefficient could no longer be 

22 applied. Second, two RAC beams from the study of Knaack and Kurama33 did not report long-term deflection 

23 values, only initial deflections (beams CC-50-28 and UT-100-7); therefore, they were also excluded. Finally, 

24 the two RAC20 beams from the study of Seara-Paz et al.34 were excluded (beams H50-20 and H65-20) since 

25 this was the only study that investigated a RCA replacement percentage of 20% – the number of results was 

26 too small for analysis and these two beams were also excluded. In the end, this led to two new databases: a 

Page 13 of 43 Structural Concrete

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

13

1 ’Companion-NAC’ database and a ’RAC’ database. These databases with all the gathered data are also 

2 provided as Supporting Information to this paper.

3 The Companion-NAC database contains 10 beams and 20 data points (10 initial and 10 final 

4 deflections). The ranges of the most important parameters in this database are given in Table 3. It can be seen 

5 that most of the parameters of the Companion-NAC beams also fall within the corresponding parameter 

6 ranges in the NAC-1 database (with somewhat smaller cross-sections and higher compressive strengths). 

7 However, one significant difference is the load level (Mmax/Mcr) which has values lower than 1.0 in the 

8 Companion-NAC database, signifying uncracked beams. This is due to four beams tested by Knaack and 

9 Kurama33 which were designed not to crack immediately after loading, but to crack over time, i.e. these initial 

10 deflections are in the uncracked state, whereas their final deflections are in the cracked state. They were kept 

11 in the database since this is a situation that can occur in practice (e.g. RC slabs loaded close to their cracking 

12 load) and the MC2010 model’s performance should also be assessed in such cases.

13 The RAC database contains 15 beams and 30 data points (15 initial and 15 final deflections). The 

14 ranges of the most important parameters in this database are also given in Table 3. The geometric properties 

15 and reinforcement ratios of RAC beams are the same as in companion NAC beams. RAC compressive 

16 strength is slightly lower, as expected of RAC and NAC produced with the same (w/c)eff ratios. There were 

17 also seven RAC beams from the study of Knaack and Kurama33 which were designed not to crack 

18 immediately after loading, but to crack over time (four RAC50 and three RAC100 beams).

19 A direct comparison of deflections between RAC and companion NAC beams is not straightforward 

20 since different studies used different variables (load level, σc(t0)/fcm(t0) ratio, etc.), and RAC and companion 

21 NAC did not have identical mechanical properties. Nonetheless, generally, RAC beams had slightly larger 

22 deflections than companion NAC beams and this difference tended to increase over time. For the 30 RAC 

23 beams in the database, a ratio of RAC-to-companion NAC beam deflections, aRAC/aNAC, was calculated and the 

24 results are shown in Table 4. It can be seen that, overall, deflections of RAC beams are 14% larger than those 

25 of companion NAC beams with significant scatter. When divided into initial and final deflections, an 

26 increasing trend of deflection ’divergence’ can be seen – the ratio increases from an average of 1.09 to 1.19.
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1 Although the number of experimental results in the databases is not so large, at this time, these are the 

2 most reliable and usable results. The databases still allow a meaningful analysis of the MC2010 deflection 

3 control model and this was carried out as the next step in the study.

4 3.2. Performance of the MC2010 deflection control on companion NAC and RAC beams

5 Following the same procedure described in Section 2.2, deflections were calculated for RAC and 

6 companion NAC beams. In this step, all RAC properties were calculated from compressive strength using 

7 default MC2010 expressions, i.e., assuming that expressions for NAC are valid (even for shrinkage and 

8 creep). Since the NA type was known in these three studies, appropriate αE coefficients were used in Equation 

9 (10). Again, as in Section 2.2, the calculated-to-experimental deflection ratio, acalc/aexp, was determined using 

10 the rigorous MC2010 method. 

11 For the companion NAC beams, statistical descriptors of the acalc/aexp ratio are given in Table 5. The 

12 results are very similar to those of the NAC-1 database, with slightly lower CoVs (as expected from a smaller 

13 number of studies) and a larger mean acalc/aexp ratio for initial deflections (1.33 compared with 1.17 for the 

14 NAC-1 database). This can be explained by the presence of the initially uncracked beams tested by Knaack 

15 and Kurama,33 two out of four of which were wrongly predicted by the MC2010 model to be cracked – 

16 leading to much higher calculated initial deflections compared with measured ones. At the same time, the 

17 NAC-1 database does not contain such beams. Once this is taken into account, the performance of the 

18 MC2010 deflection control model can be considered the same on both NAC databases, as expected. Again, the 

19 simplified method was also tested and again led to more conservative results – the mean acalc/aexp ratio for the 

20 simplified approach was 1.46 and 1.12 for initial and final deflections (compared with 1.33 and 1.01 for the 

21 rigirous method).

22 For the RAC beams, statistical descriptors of the acalc/aexp ratio are also provided in Table 5. Here, it can 

23 clearly be seen that the MC2010 deflection control model significantly underestimates RAC deflections. For 

24 initial deflections, even though the acalc/aexp ratio is greater than 1.0, this is not a conservative result since the 

25 corresponding value for the companion NAC beams was 1.33 (three of the seven initially uncracked beams 

26 tested by Knaack and Kurama33 were also wrongly predicted as cracked). However, the greatest 

27 underestimation is in the final deflections – the mean acalc/aexp ratio is only 0.77. In both the initial and final 

28 deflections, there are no significant differences relative to RCA content: for initial deflections the mean 
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1 acalc/aexp ratio values for RAC50 and RAC100 beams are 1.14 and 1.08, respectively, whereas for final 

2 deflections they are 0.78 and 0.76, respectively. Therefore, treating all RAC beams as one database is 

3 justified. The simplified method also provides similar results – a mean acalc/aexp ratio of 1.22 and 0.86 for 

4 initial and final deflections.

5 A graphical comparison of the acalc/aexp ratio for RAC and companion NAC beams, relative to 

6 compressive strength, L/d ratio, tensile reinforcement ratio, and load level, is shown in Figure 2. First, the 

7 underestimation of RAC deflections, in absolute terms and relative to companion NAC, can clearly be seen for 

8 both the initial and final deflections, especially taking into consideration that experimental RAC beam 

9 deflections are generally larger than those of companion NAC beams (Table 4). Second, as in the case of the 

10 NAC-1 database, no significant correlation of the acalc/aexp ratio with any of the analysed parameters can be 

11 seen, i.e. the model behaves similarly over the entire range of parameter values.

12 Considering the above analysis, it is clear that RAC cannot be treated the same as NAC in all aspects of 

13 the MC2010 deflection control model (predicting mechanical, and time-dependent properties, as well as 

14 calculating deflections) and corrections must be applied. In the following section, specific extensions of the 

15 MC2010 model are proposed in order to enable its applicability to RAC deflection control.

16 4. Improvement of the fib Model Code 2010 deflection control for RAC members

17 4.1. Corrections for predicting RAC mechanical and long-term properties

18 The underestimation of RAC deflections, in absolute terms and relative to companion NAC beams, can 

19 have two causes. The first one is inadequate MC2010 equations for predicting the mechanical and time-

20 dependent properties of RAC (modulus of elasticity, tensile strength, shrinkage strain, and creep coefficient). 

21 The second one is an inadequate deflection control method itself, i.e. some inadequacy of Equation (1) for 

22 RAC beams. Finally, a combination of both causes is also possible.

23 It is already known that there are significant differences in mechanical and time-dependent properties 

24 between RAC and NAC and that default MC2010 equations for predicting these properties cannot be directly 

25 used for RAC. Therefore, the first step was to investigate whether changing only these expressions will lead to 

26 equal performance of MC2010 deflection control on RAC and companion NAC beams.
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1 Since it was previously shown that the tensile strength of RAC can be successfully predicted using 

2 Eurocode 2 equations (identical to MC2010),53 the equation for fctm was left unchanged. For deflections, 

3 especially initial deflections, the modulus of elasticity is of the greatest importance. The MC2010 equation for 

4 Ecm in Equation (10) already allows an adjustment for aggregate type through the αE coefficient (1.2 for basalt, 

5 1.0 for quartzite, 0.9 for limestone, and 0.7 for sandstone aggregates). Silva et al.18 previously showed, 

6 through a large meta-analysis, that Ecm for RAC is conservatively predicted if αE is taken as 0.7 (i.e. as for 

7 sandstone aggregates). Since this is a conservative proposal, in this study, the following equation was used to 

8 calculate the αE coefficient in Equation (10):

𝛼𝐸 = 1.0 ― 0.3 ∙
𝑅𝐶𝐴%

100 (11)

9 where RCA% is the percentage of coarse RCA in RAC. Equation (11) yields αE = 0.85 for RAC50 and 0.70 

10 for RAC100, in line with the conclusions of Silva et al.18

11 For the shrinkage strain and creep coefficient, Tošić et al.19,20 proposed an extension of the MC2010 

12 models for RAC by performing meta-analyses of previously published experimental results. The authors 

13 proposed correction coefficients to be applied as global scaling factors of shrinkage strain and creep 

14 coefficient calculated according to MC2010. 

𝜀𝑐𝑠,𝑅𝐴𝐶(𝑡,𝑡𝑠) = 𝜉𝑐𝑠,𝑅𝐴𝐶 ∙ 𝜀𝑐𝑠(𝑡,𝑡𝑠) (12)

𝜑𝑅𝐴𝐶(𝑡,𝑡0) = 𝜉𝑐𝑐,𝑅𝐴𝐶 ∙ 𝜑(𝑡,𝑡0) (13)

15 The correction coefficients are dependent on RAC compressive strength and RCA percentage:

𝜉𝑐𝑠,𝑅𝐴𝐶 = (𝑅𝐶𝐴%
𝑓𝑐𝑚 )

0.30

≥ 1.0 (14)

𝜉𝑐𝑐,𝑅𝐴𝐶 = 1.12 ∙ (𝑅𝐶𝐴%
𝑓𝑐𝑚 )

0.15

≥ 1.0 (15)

16 After recalculating RAC properties, deflections were again calculated for RAC beams using the 

17 rigorous method. The statistical descriptors of the new acalc/aexp ratios are given in rows 2–4 of Table 6. 

18 Applying these corrections improved the model’s performance, with practically no cost in terms of CoV. 

19 However, the mean values of the acalc/aexp ratio remain lower than those of the companion NAC beams (Table 

20 5), both for the initial and final deflections.
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1 The adopted corrections for the modulus of elasticity, shrinkage strain, and creep coefficient were 

2 derived from large databases of experimental results at the material level18–20. Although it might be possible to 

3 improve these expressions in the future, according to current results, they are an adequate solution, and since 

4 they are determined at the material level, no results at the structural level can be used to improve their 

5 adequacy. In this paper, any remaining difference between the deflection control model’s performance on 

6 RAC and companion NAC beams is hypothesized to be due to differences in structural behaviour. This 

7 hypothesis can only be tested in tensions stiffening experiments, which are very scarce for RAC54, i.e., at the 

8 moment, no definite conclusion can be made.

9 Hence, in this study, tension stiffening was presumed to be different in RAC and in companion NAC 

10 beams. The general approach of interpolating curvatures (or deflections), using the distribution coefficient ζ in 

11 Equation (1), remains valid since it has a strong physical meaning. However, the empirical coefficient β, 

12 defined by Equation (2), is not adequate for RAC beams. In the following section, besides the previously 

13 presented corrections for Ecm, εcs, and φ, a correction of the coefficient β will be presented.

14 4.2. Corrections for RAC deflection control

15 As shown earlier, for adequate RAC deflection control, it is not enough to correct only the mechanical 

16 and time-dependent properties. The deflection model itself must be improved. For this purpose, the empirical 

17 coefficient β is replaced by the new coefficient βRAC for RAC:

𝛽𝑅𝐴𝐶 = 0.75   for single, short ― term loading

   𝛽𝑅𝐴𝐶 = 0.25   for sustained or repeated loading
(16)

18 In other words, the β coefficient is reduced from 1.0 to 0.75 for calculating initial deflections and from 

19 0.5 to 0.25 for calculating long-term deflections. As explained in Section 2.1, √β actually represents a 

20 reduction of the cracking moment in Equation (1). Hence, this proposal for βRAC actually reduces the cracking 

21 moment by approximately 15% for single, short-term loading, and by 50% for sustained or repeated loading. 

22 Both reductions are aligned with experimental results: (1) for initial deflections, studies on flexural strength of 

23 RAC beams have reported lower cracking moments compared with companion NAC beams55 (due to the 

24 presence of two interfacial transition zones between aggregate and mortar in RAC); and (2) for final 

25 deflections, a larger reduction of the cracking moment is in line with larger shrinkage of RAC.
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1 Using Equation (16) (and all previously presented corrections), RAC deflections were recalculated 

2 using the MC2010 rigorous method and the new acalc/aexp ratios are given in rows 5–7 of Table 6. The choice 

3 of values for the βRAC coefficient was such that the mean acalc/aexp ratios for RAC beams are made identical to 

4 the ones for companion NAC beams, for both initial and final deflections. Even the CoVs are almost identical 

5 with the only difference being a slightly larger CoV for RAC final deflections.

6 Graphically, the results are shown in Figure 3, through a comparison of the acalc/aexp ratio for ’corrected’ 

7 RAC (labelled ’RAC+’ in the figure) and companion NAC beams, relative to compressive strength, L/d ratio, 

8 tensile reinforcement ratio, and load level. Now, it is clear that the ’clouds’ of points for NAC and RAC 

9 coincide completely. This demonstrates the equality of performance of the ’corrected’ MC2010 deflection 

10 control model on RAC beams and the ’original’ MC2010 deflection control model on NAC beams. The 

11 simplified model was also tested, and as expected, it yielded conservative results, similar to the ones for 

12 companion NAC beams – the mean acalc/aexp ratio for the simplified approach was 1.46 and 1.26 for initial and 

13 final deflections, respectively (compared with 1.46 and 1.12 for the companion NAC beams).

14 With the corrections presented in this paper, RAC members can reliably be designed for SLS. Together 

15 with the already demonstrated design of RAC members in terms of ULS, this completes all necessary 

16 structural design aspects for reinforced RAC members.

17 5. Conclusions

18 This study presented a comprehensive analysis of the applicability of the fib Model Code 2010 

19 deflection control model to reinforced RAC beams. For this purpose, three databases of long-term studies on 

20 NAC and RAC beams were compiled and meta-analyses of deflection predictions by MC2010 were 

21 performed. The following conclusions were drawn from this study:

22  Very good performance of the MC2010 deflection control model (rigorous method of numerical 

23 integration of curvatures) was demonstrated in terms of predicting initial and long-term deflections 

24 from a database of 52 NAC beams. This included both equations for predicting mechanical and 

25 time-dependent properties, as well as the deflection control model itself. The mean value of the 

26 calculated-to-experimental deflection ratio, acalc/aexp, was calculated as 1.17 and 1.05 for initial and 

27 final deflections, respectively.
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1  Only three long-term experimental campaigns of RAC beams were found with reliable and 

2 sufficient data for a meta-analysis. A database of RAC and companion NAC beams was compiled. 

3 The companion NAC database comprised 10 beams, whereas the RAC database comprised 15 

4 beams (7 RAC50 and 8 RAC 100 beams).

5  The performance of the MC2010 deflection control model on companion NAC beams was found to 

6 be similar to that of the larger NAC database – the mean value of the acalc/aexp ratio was 1.33 and 

7 1.01 for initial and final deflections, respectively. However, when using the default expressions of 

8 the MC2010 model for RAC beams, deflections are significantly underestimated compared with 

9 companion NAC beams – the mean value of the acalc/aexp ratio was 1.11 and 0.77 for initial and final 

10 deflections, respectively.

11  If modifications of MC2010 equations for the modulus of elasticity, shrinkage strain, and creep 

12 coefficient for RAC are applied, deflection predictions improve but still remain lower than those of 

13 the companion NAC beams. Therefore, the deflection control model itself must be modified.

14  When the empirical coefficient β (used for calculating the tension stiffening distribution coefficient 

15 ζ) is modified to 0.75 for single, short-term loading and 0.25 for sustained or repeated loading, the 

16 ‘corrected’ MC2010 deflection control model has equal performance on RAC beams to that of the 

17 original model on companion NAC beams. This is true for both the rigorous method of integrating 

18 curvatures and the simplified method of directly interpolating deflections (which provides 

19 sufficiently conservative results).

20 With the corrections presented in this paper, more reliable deflection control of RAC members is 

21 possible. Nonetheless, the study has some limitations: although they contain the best available results, the 

22 companion NAC and RAC databases are still small; only simply supported beams were analysed; only 

23 rectangular beam cross-sections were analysed; a narrow range of load levels was analysed; and the duration 

24 of the available experiments is relatively short. In order to verify the modifications proposed in this study, 

25 more long-term tests on RAC and companion NAC beams will be needed, broadening the scope of the 

26 databases. The ones used in this study are provided as Supporting Information, enabling other researchers to 

27 expand them in the future.
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5 Notations

6 αe modular ratio of steel and concrete

7 αE coefficient that takes into account the effect of the aggregate type on the modulus of elasticity of 

8 concrete

9 β coefficient accounting for the influence of the duration of loading or repeated loading

10 βRAC β coefficient for RAC

11 δcs shrinkage deflection coefficient dependent on the static system

12 εcs concrete shrinkage strain

13 εcs,RAC shrinkage strain of RAC

14 ζ distribution coefficient for interpolating deformation variables (curvature, deflections, etc.)

15 μ mean value

16 ξcc,RAC correction coefficient for RAC creep coefficient

17 ξcs,RAC correction coefficient for RAC shrinkage strain

18 σ standard deviation

19 σc concrete compressive stress

20 φ concrete creep coefficient

21 φRAC creep coefficient of RAC

22 φσ non-linear concrete creep coefficient

23 (1/r)i curvature in state 1 or 2

24 (1/r)eff effective curvature

25 a0 initial deflections

26 acalc calculated deflections

27 aexp experimentally measured deflections

28 ai deflections in state 1 or 2
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1 asimp. deflections calculated using the simplified MC2010 method

2 at long-term deflections

3 CoV coefficient of variation

4 Ec,ef concrete effective modulus

5 Ecm concrete modulus of elasticity

6 fctm concrete mean tensile strength

7 Ii,n moment of inertia of the transformed section in state 1 or 2

8 K bending deflection coefficient dependent on the static system

9 M moment acting on an RC cross-section

10 Mcr cracking moment

11 Mmax maximum bending moment acting on RC member

12 RCA% percentage of coarse RCA in RAC

13 Si,n first moment of area of the reinforcement about the transformed section’s centroid in state 1 or 2

14 t time

15 t0 loading age

16 ts end of curing

17 (w/c)eff effective water-cement ratio

18 Wi,1 section modulus of an uncracked transformed RC section
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1 List of figures:

2 Figure 1. Relationship between the acalc/aexp ratio and a) compressive strength, b) span-effective depth ratio, c) 
3 tensile reinforcement ratio, and d) load level, for the NAC-1 database

4 Figure 2. Relationship between the acalc/aexp ratio and a) compressive strength, b) span-effective depth ratio, c) 
5 tensile reinforcement ratio, and d) load level, for the Companion-NAC and RAC databases

6 Figure 3. Relationship between the acalc/aexp ratio and a) compressive strength, b) span-effective depth ratio, c) 
7 tensile reinforcement ratio, and d) load level, for companion NAC and ’RAC+’ beams
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1 List of tables:

2 Table 1. Range of parameters in the NAC-1 database

Database No. of 
beams

No. of 
deflections

b
(mm)

d
(mm)

fcm 
(MPa)

L
(mm)

L/d
(–)

ρ1 
(%)

ρ2 
(%)

t0 
(days)

t 
(days)

Mmax/Mcr 
(–)

σc(t0)/fcm(t0)
(–)

NAC-1 52 104 100–
750

95–
300

21.5–
39.6

1829–
6400

10.7–
39.9

0.44–
2.64

0.00–
1.67 14–53 60–1734 1.12–4.08 0.20–0.58

3
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1 Table 2. Statistical descriptors of the acalc/aexp ratio for the NAC-1 database

Database Deflections n μ σ CoV 
(%)

All 104 1.11 0.30 26.8
Initial 52 1.17 0.38 32.4NAC-1
Final 52 1.05 0.16 15.1

2
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1 Table 3. Range of parameters in the Companion-NAC and RAC databases

Database No. of 
beams

No. of 
deflections

RCA
(%)

b
(mm)

d
(mm) fcm (MPa) L

(mm)
L/d
(–)

ρ1 
(%)

ρ2 
(%) t0 (days) t 

(days)
Mmax/Mcr 
(–)

σc(t0)/fcm(t0)
(–)

Companion-
NAC 10 20 0 30.5–60.7 0.81–3.35 0.10–0.58

RAC 15 30 50, 100
150–200 169–249

28.1–51.8

3200–
3700 13.7–18.9 0.58–1.32 0.00–0.47 7–42 119–1000

0.68–2.52 0.10–0.45
2
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1 Table 4. Statistical descriptors of the aRAC/aNAC ratio for RAC and companion NAC measured beam 
2 deflections

aRAC/aNAC
ratio Deflections n μ σ CoV 

(%)
All 30 1.14 0.32 27.6
Initial 15 1.09 0.34 31.4

RAC-
Companion 
NAC Final 15 1.19 0.29 24.3

3
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1 Table 5. Statistical descriptors of the acalc/aexp ratio for the Companion-NAC and RAC databases

Database Deflections n μ σ CoV 
(%)

All 20 1.17 0.26 22.4
Initial 10 1.33 0.25 18.9Companion-

NAC Final 10 1.01 0.15 15.2
All 30 0.94 0.28 29.4
Initial 15 1.11 0.24 21.8RAC
Final 15 0.77 0.20 25.9

2
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1 Table 6. Statistical descriptors of the corrected acalc/aexp ratios for the RAC database

Database Corrections Deflections n μ σ CoV 
(%)

All 30 1.06 0.29 26.9
Ecm, εcs, φ Initial 15 1.27 0.24 19.4

Final 15 0.90 0.24 26.1
All 30 1.17 0.29 25.0

RAC

Ecm, εcs, φ, β Initial 15 1.32 0.23 17.2
Final 15 1.02 0.21 20.6

2
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Figure 1. Relationship between the acalc/aexp ratio and a) compressive strength, b) span-effective depth 
ratio, c) tensile reinforcement ratio, and d) load level, for the NAC-1 database 

160x101mm (300 x 300 DPI) 
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Figure 2. Relationship between the acalc/aexp ratio and a) compressive strength, b) span-effective depth 
ratio, c) tensile reinforcement ratio, and d) load level, for the Companion-NAC and RAC databases 

160x98mm (300 x 300 DPI) 

Page 35 of 43 Structural Concrete

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 

Figure 3. Relationship between the acalc/aexp ratio and a) compressive strength, b) span-effective depth 
ratio, c) tensile reinforcement ratio, and d) load level, for companion NAC and ’RAC+’ beams 

160x101mm (300 x 300 DPI) 
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Study information Cross-section Reinforcement Mechanical properties Loading Deflection
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Author(s) Beam b (mm) h (mm) As1 (mm2) d (mm) ρ1 (%) As2 (mm2) d2 (mm) ρ2 (%) RH (%) T (ºC) ttest (days)
fcm(ttest)
(MPa) fcm  (MPa) L (mm) L/d MSW (Nm) KSW MDL (Nm) KDL

a (t-t0)
(mm) t0 (days) t-t0 (days)

1 0 Washa and Fluck (1952) A1/A4 203.2 304.8 852 257.2 1.63 852 47.6 1.63 50 21 14 25.00 27.73 6096 23.7 7192 0.104 18442 0.104 13.46 14 0
2 t Washa and Fluck (1952) A1/A4 203.2 304.8 852 257.2 1.63 852 47.6 1.63 50 21 14 25.00 27.73 6096 23.7 7192 0.104 18442 0.104 23.62 14 913
3 0 Washa and Fluck (1952) A2/A5 203.2 304.8 852 257.2 1.63 400 46.1 0.77 50 21 14 25.00 27.73 6096 23.7 7192 0.104 18442 0.104 15.75 14 0
4 t Washa and Fluck (1952) A2/A5 203.2 304.8 852 257.2 1.63 400 46.1 0.77 50 21 14 25.00 27.73 6096 23.7 7192 0.104 18442 0.104 32.26 14 913
5 0 Washa and Fluck (1952) A3/A6 203.2 304.8 852 257.2 1.63 0 0 0.00 50 21 14 25.00 27.73 6096 23.7 7192 0.104 18442 0.104 17.02 14 0
6 t Washa and Fluck (1952) A3/A6 203.2 304.8 852 257.2 1.63 0 0 0.00 50 21 14 25.00 27.73 6096 23.7 7192 0.104 18442 0.104 44.70 14 913
7 0 Washa and Fluck (1952) B1/B4 152.4 203.2 400 157.2 1.67 400 46 1.67 50 21 14 20.80 23.07 6096 38.8 3596 0.104 3663 0.104 23.37 14 0
8 t Washa and Fluck (1952) B1/B4 152.4 203.2 400 157.2 1.67 400 46 1.67 50 21 14 20.80 23.07 6096 38.8 3596 0.104 3663 0.104 51.05 14 913
9 0 Washa and Fluck (1952) B2/B5 152.4 203.2 400 157.2 1.67 200 46 0.84 50 21 14 20.80 23.07 6096 38.8 3596 0.104 3663 0.104 24.89 14 0

10 t Washa and Fluck (1952) B2/B5 152.4 203.2 400 157.2 1.67 200 46 0.84 50 21 14 20.80 23.07 6096 38.8 3596 0.104 3663 0.104 65.02 14 913
11 0 Washa and Fluck (1952) B3/B6 152.4 203.2 400 157.2 1.67 0 0 0.00 50 21 14 20.80 23.07 6096 38.8 3596 0.104 3663 0.104 26.42 14 0
12 t Washa and Fluck (1952) B3/B6 152.4 203.2 400 157.2 1.67 0 0 0.00 50 21 14 20.80 23.07 6096 38.8 3596 0.104 3663 0.104 86.36 14 913
13 0 Washa and Fluck (1952) D1/D4 304.8 127 516 101.6 1.67 516 25.4 1.67 50 21 14 22.10 24.51 3810 37.5 1756 0.104 4267 0.104 11.94 14 0
14 t Washa and Fluck (1952) D1/D4 304.8 127 516 101.6 1.67 516 25.4 1.67 50 21 14 22.10 24.51 3810 37.5 1756 0.104 4267 0.104 27.69 14 913
15 0 Washa and Fluck (1952) D2/D5 304.8 127 516 101.6 1.67 258 25.4 0.83 50 21 14 22.10 24.51 3810 37.5 1756 0.104 4267 0.104 14.22 14 0
16 t Washa and Fluck (1952) D2/D5 304.8 127 516 101.6 1.67 258 25.4 0.83 50 21 14 22.10 24.51 3810 37.5 1756 0.104 4267 0.104 33.78 14 913
17 0 Washa and Fluck (1952) D3/D6 304.8 127 516 101.6 1.67 0 0 0.00 50 21 14 22.10 24.51 3810 37.5 1756 0.104 4267 0.104 17.78 14 0
18 t Washa and Fluck (1952) D3/D6 304.8 127 516 101.6 1.67 0 0 0.00 50 21 14 22.10 24.51 3810 37.5 1756 0.104 4267 0.104 48.51 14 913
19 0 P.C.A. [18] in Espion (1988) 40NA 152 305 849 254 2.20 0 0 0.00 50 21 28 26.90 26.90 3048 12.0 1346 0.104 22267 0.107 4.25 28 0
20 t P.C.A. [18] in Espion (1988) 40NA 152 305 849 254 2.20 0 0 0.00 50 21 28 26.90 26.90 3048 12.0 1346 0.104 22267 0.107 10.00 28 242
21 0 P.C.A. [18] in Espion (1988) 60NA 152 305 1019 254 2.64 0 0 0.00 50 21 28 37.40 37.40 3048 12.0 1346 0.104 29641 0.107 4.90 28 0
22 t P.C.A. [18] in Espion (1988) 60NA 152 305 1019 254 2.64 0 0 0.00 50 21 28 37.40 37.40 3048 12.0 1346 0.104 29641 0.107 9.90 28 242
23 0 Sattler [11] in Espion (1988) a1/a2 100 160 100 134 0.75 0 0 0.00 55 21 32 26.70 26.27 4000 29.9 800 0.104 1962 0.104 15.83 32 0
24 t Sattler [11] in Espion (1988) a1/a2 100 160 100 134 0.75 0 0 0.00 55 21 32 26.70 26.27 4000 29.9 800 0.104 1962 0.104 32.21 32 84
25 0 Hajnal-Konyi [22] in Espion (1988) 8 127 190.5 142 160.3 0.70 0 0 0.00 82 21 35 37.00 36.04 6400 39.9 3097 0.104 1612 0.104 20.60 53 0
26 t Hajnal-Konyi [22] in Espion (1988) 8 127 190.5 142 160.3 0.70 0 0 0.00 82 21 35 37.00 36.04 6400 39.9 3097 0.104 1612 0.104 65.40 53 1734
27 0 Hajnal-Konyi [22] in Espion (1988) 10 127 190.5 142 160.3 0.70 0 0 0.00 82 21 35 37.00 36.04 4800 29.9 1742 0.104 2967 0.104 8.80 53 0
28 t Hajnal-Konyi [22] in Espion (1988) 10 127 190.5 142 160.3 0.70 0 0 0.00 82 21 35 37.00 36.04 4800 29.9 1742 0.104 2967 0.104 29.70 53 1734
29 0 Hajnal-Konyi [22] in Espion (1988) 12 127 190.5 142 160.3 0.70 0 0 0.00 82 21 35 37.00 36.04 3200 20.0 774 0.104 3935 0.104 4.30 53 0
30 t Hajnal-Konyi [22] in Espion (1988) 12 127 190.5 142 160.3 0.70 0 0 0.00 82 21 35 37.00 36.04 3200 20.0 774 0.104 3935 0.104 14.00 53 1734
31 0 Branson and Metz [23] in Espion (1988) SB3/B 101.6 127 214 101.6 2.07 0 0 0.00 50 21 28 35.40 35.40 2743 27.0 303 0.104 935 0.104 3.89 28 0
32 t Branson and Metz [23] in Espion (1988) SB3/B 101.6 127 214 101.6 2.07 0 0 0.00 50 21 28 35.40 35.40 2743 27.0 303 0.104 935 0.104 7.70 28 60
33 0 Branson and Metz [23] in Espion (1988) SB3/M 101.6 127 214 101.6 2.07 0 0 0.00 50 21 28 31.30 31.30 2743 27.0 303 0.104 935 0.104 3.99 28 0
34 t Branson and Metz [23] in Espion (1988) SB3/M 101.6 127 214 101.6 2.07 0 0 0.00 50 21 28 31.30 31.30 2743 27.0 303 0.104 935 0.104 7.50 28 60
35 0 Pauw and Meyers [26] in Espion (1988) R1 177.8 216 400 165.1 1.36 0 0 0.00 50 21 28 33.80 33.80 2286 13.8 627 0.104 7176 0.107 2.44 28 0
36 t Pauw and Meyers [26] in Espion (1988) R1 177.8 216 400 165.1 1.36 0 0 0.00 50 21 28 33.80 33.80 2286 13.8 627 0.104 7176 0.107 4.89 28 150
37 0 Pauw and Meyers [26] in Espion (1988) R2 177.8 216 568 165.1 1.94 0 0 0.00 50 21 28 33.60 33.60 2286 13.8 627 0.104 11228 0.107 3.22 28 0
38 t Pauw and Meyers [26] in Espion (1988) R2 177.8 216 568 165.1 1.94 0 0 0.00 50 21 28 33.60 33.60 2286 13.8 627 0.104 11228 0.107 6.16 28 150
39 0 Pauw and Meyers [26] in Espion (1988) R3 177.8 216 568 165.1 1.94 0 0 0.00 50 21 28 38.90 38.90 2286 13.8 627 0.104 9643 0.107 3.71 28 0
40 t Pauw and Meyers [26] in Espion (1988) R3 177.8 216 568 165.1 1.94 0 0 0.00 50 21 28 38.90 38.90 2286 13.8 627 0.104 9643 0.107 6.64 28 120
41 0 Pauw and Meyers [26] in Espion (1988) R4 177.8 216 774 165.1 2.64 0 0 0.00 50 21 28 38.70 38.70 2286 13.8 627 0.104 14607 0.107 4.66 28 0
42 t Pauw and Meyers [26] in Espion (1988) R4 177.8 216 774 165.1 2.64 0 0 0.00 50 21 28 38.70 38.70 2286 13.8 627 0.104 14607 0.107 7.89 28 120
43 0 Lutz et al. [29] in Espion (1988) SR 101.6 203.2 258 171.5 1.48 0 0 0.00 40 21 28 34.10 34.10 1829 10.7 216 0.104 7963 0.107 4.10 28 0
44 t Lutz et al. [29] in Espion (1988) SR 101.6 203.2 258 171.5 1.48 0 0 0.00 40 21 28 34.10 34.10 1829 10.7 216 0.104 7963 0.107 8.80 28 142
45 0 Lutz et al. [29] in Espion (1988) DR 101.6 203.2 258 171.5 1.48 258 25.4 1.48 40 21 28 34.10 34.10 1829 10.7 216 0.104 7963 0.107 4.20 28 0
46 t Lutz et al. [29] in Espion (1988) DR 101.6 203.2 258 171.5 1.48 258 25.4 1.48 40 21 28 34.10 34.10 1829 10.7 216 0.104 7963 0.107 6.80 28 142
47 0 Jaccoud and Favre (1982) A1 600 120 314 95 0.55 57 20 0.10 60 21 15 20.49 22.45 3100 32.6 2162 0.104 2787 0.104 8.42 15 0
48 t Jaccoud and Favre (1982) A1 600 120 314 95 0.55 57 20 0.10 60 21 15 20.49 22.45 3100 32.6 2162 0.104 2787 0.104 18.40 15 365
49 0 Jaccoud and Favre (1982) A2 600 120 314 95 0.55 57 20 0.10 60 21 15 24.14 26.45 3100 32.6 2162 0.104 2787 0.104 6.16 15 0
50 t Jaccoud and Favre (1982) A2 600 120 314 95 0.55 57 20 0.10 60 21 15 24.14 26.45 3100 32.6 2162 0.104 2787 0.104 17.50 15 365
51 0 Jaccoud and Favre (1982) A3 600 120 314 95 0.55 57 20 0.10 60 21 15 19.64 21.52 3100 32.6 2162 0.104 2787 0.104 8.12 15 0
52 t Jaccoud and Favre (1982) A3 600 120 314 95 0.55 57 20 0.10 60 21 15 19.64 21.52 3100 32.6 2162 0.104 2787 0.104 17.50 15 365
53 0 Jaccoud and Favre (1982) A4 600 120 314 95 0.55 57 20 0.10 60 21 15 36.13 39.59 3100 32.6 2162 0.104 2787 0.104 2.24 15 0
54 t Jaccoud and Favre (1982) A4 600 120 314 95 0.55 57 20 0.10 60 21 15 36.13 39.59 3100 32.6 2162 0.104 2787 0.104 8.05 15 365
55 0 Jaccoud and Favre (1982) A5 600 120 314 95 0.55 57 20 0.10 60 21 15 32.47 35.58 3100 32.6 2162 0.104 2787 0.104 3.12 15 0
56 t Jaccoud and Favre (1982) A5 600 120 314 95 0.55 57 20 0.10 60 21 15 32.47 35.58 3100 32.6 2162 0.104 2787 0.104 9.55 15 365
57 0 Jaccoud and Favre (1982) C12 750 160 565 131 0.58 57 26 0.06 60 21 28 29.40 29.40 3100 23.7 3604 0.104 6095 0.107 2.17 28 0
58 t Jaccoud and Favre (1982) C12 750 160 565 131 0.58 57 26 0.06 60 21 28 29.40 29.40 3100 23.7 3604 0.104 6095 0.107 8.29 28 510
59 0 Jaccoud and Favre (1982) C22 750 160 565 131 0.58 57 26 0.06 60 21 28 32.89 32.89 3100 23.7 3604 0.104 6095 0.107 2.00 28 0
60 t Jaccoud and Favre (1982) C22 750 160 565 131 0.58 57 26 0.06 60 21 28 32.89 32.89 3100 23.7 3604 0.104 6095 0.107 7.00 28 365
61 0 Jaccoud and Favre (1982) C13 750 160 565 131 0.58 57 26 0.06 60 21 28 30.93 30.93 3100 23.7 3604 0.104 9305 0.107 5.29 28 0
62 t Jaccoud and Favre (1982) C13 750 160 565 131 0.58 57 26 0.06 60 21 28 30.93 30.93 3100 23.7 3604 0.104 9305 0.107 13.28 28 510
63 0 Jaccoud and Favre (1982) C14 750 160 565 131 0.58 57 26 0.06 60 21 28 29.40 29.40 3100 23.7 3604 0.104 12520 0.107 8.48 28 0
64 t Jaccoud and Favre (1982) C14 750 160 565 131 0.58 57 26 0.06 60 21 28 29.40 29.40 3100 23.7 3604 0.104 12520 0.107 18.15 28 510
65 0 Jaccoud and Favre (1982) C24 750 160 565 131 0.58 57 26 0.06 60 21 28 31.97 31.97 3100 23.7 3604 0.104 12520 0.107 8.00 28 0
66 t Jaccoud and Favre (1982) C24 750 160 565 131 0.58 57 26 0.06 60 21 28 31.97 31.97 3100 23.7 3604 0.104 12520 0.107 17.52 28 510
67 0 Jaccoud and Favre (1982) C15 750 160 565 131 0.58 57 26 0.06 60 21 28 29.29 29.29 3100 23.7 3604 0.104 15725 0.107 11.02 28 0
68 t Jaccoud and Favre (1982) C15 750 160 565 131 0.58 57 26 0.06 60 21 28 29.29 29.29 3100 23.7 3604 0.104 15725 0.107 20.83 28 510
69 0 F.R.F.C. [45] in Espion (1988) I-72 150 280 308 250 0.82 0 0 0.00 60 21 28 33.50 33.50 2800 11.2 1029 0.104 21500 0.107 6.02 28 0
70 t F.R.F.C. [45] in Espion (1988) I-72 150 280 308 250 0.82 0 0 0.00 60 21 28 33.50 33.50 2800 11.2 1029 0.104 21500 0.107 10.29 28 1610
71 0 Bakoss et al. (1983) 1B2 100 150 226 130 1.74 0 0 0.00 60 21 28 39.00 39.00 3750 28.8 659 0.104 3250 0.107 8.94 28 0
72 t Bakoss et al. (1983) 1B2 100 150 226 130 1.74 0 0 0.00 60 21 28 39.00 39.00 3750 28.8 659 0.104 3250 0.107 25.02 28 500
73 0 Clarke et al. [46] in Espion (1988) A1 100 154 157.1 132 1.19 0 0 0.00 40 21 28 25.90 25.90 2100 15.9 212 0.104 3500 0.107 4.89 28 0
74 t Clarke et al. [46] in Espion (1988) A1 100 154 157.1 132 1.19 0 0 0.00 40 21 28 25.90 25.90 2100 15.9 212 0.104 3500 0.107 11.83 28 180
75 0 Clarke et al. [46] in Espion (1988) A2 100 152 157.1 130 1.21 0 0 0.00 40 21 28 25.90 25.90 2100 16.2 209 0.104 3500 0.107 5.09 28 0
76 t Clarke et al. [46] in Espion (1988) A2 100 152 157.1 130 1.21 0 0 0.00 40 21 28 25.90 25.90 2100 16.2 209 0.104 3500 0.107 11.92 28 180
77 0 Clarke et al. [46] in Espion (1988) B1 100 152 157.1 130 1.21 157.1 20 1.21 40 21 28 25.90 25.90 2100 16.2 209 0.104 3500 0.107 4.78 28 0
78 t Clarke et al. [46] in Espion (1988) B1 100 152 157.1 130 1.21 157.1 20 1.21 40 21 28 25.90 25.90 2100 16.2 209 0.104 3500 0.107 8.77 28 180
79 0 Clarke et al. [46] in Espion (1988) B2 100 154 157.1 132 1.19 157.1 20 1.19 40 21 28 25.90 25.90 2100 15.9 212 0.104 3500 0.107 4.30 28 0
80 t Clarke et al. [46] in Espion (1988) B2 100 154 157.1 132 1.19 157.1 20 1.19 40 21 28 25.90 25.90 2100 15.9 212 0.104 3500 0.107 8.55 28 180
81 0 Gilbert and Nejadi (2004) B1-a 250 340 402 300 0.54 0 0 0.00 40 21 28 24.80 24.80 3500 11.7 3254 0.104 21646 0.107 4.95 14 0
82 t Gilbert and Nejadi (2004) B1-a 250 340 402 300 0.54 0 0 0.00 40 22 28 24.80 24.80 3500 11.7 3254 0.104 21646 0.107 12.06 14 380
83 0 Gilbert and Nejadi (2004) B1-b 250 340 402 300 0.54 0 0 0.00 40 21 28 24.80 24.80 3500 11.7 3254 0.104 13746 0.107 1.98 14 0
84 t Gilbert and Nejadi (2004) B1-b 250 340 402 300 0.54 0 0 0.00 40 22 28 24.80 24.80 3500 11.7 3254 0.104 13746 0.107 7.44 14 380
85 0 Gilbert and Nejadi (2004) B2-a 250 325 402 300 0.54 0 0 0.00 40 21 28 24.80 24.80 3500 11.7 3110 0.104 21690 0.107 5.03 14 0
86 t Gilbert and Nejadi (2004) B2-a 250 325 402 300 0.54 0 0 0.00 40 22 28 24.80 24.80 3500 11.7 3110 0.104 21690 0.107 12.42 14 380
87 0 Gilbert and Nejadi (2004) B2-b 250 325 402 300 0.54 0 0 0.00 40 21 28 24.80 24.80 3500 11.7 3110 0.104 13690 0.107 2.06 14 0
88 t Gilbert and Nejadi (2004) B2-b 250 325 402 300 0.54 0 0 0.00 40 22 28 24.80 24.80 3500 11.7 3110 0.104 13690 0.107 7.87 14 380
89 0 Gilbert and Nejadi (2004) B3-a 250 325 603 300 0.80 0 0 0.00 40 21 28 24.80 24.80 3500 11.7 3110 0.104 31490 0.107 5.81 14 0
90 t Gilbert and Nejadi (2004) B3-a 250 325 603 300 0.80 0 0 0.00 40 22 28 24.80 24.80 3500 11.7 3110 0.104 31490 0.107 13.30 14 380
91 0 Gilbert and Nejadi (2004) B3-b 250 325 603 300 0.80 0 0 0.00 40 21 28 24.80 24.80 3500 11.7 3110 0.104 17690 0.107 1.97 14 0
92 t Gilbert and Nejadi (2004) B3-b 250 325 603 300 0.80 0 0 0.00 40 22 28 24.80 24.80 3500 11.7 3110 0.104 17690 0.107 7.90 14 380
93 0 Gilbert and Nejadi (2004) S1-a 400 155 226 130 0.44 0 0 0.00 40 21 28 24.80 24.80 3500 26.9 2373 0.104 4437 0.104 7.14 14 0
94 t Gilbert and Nejadi (2004) S1-a 400 155 226 130 0.44 0 0 0.00 40 22 28 24.80 24.80 3500 26.9 2373 0.104 4437 0.104 25.10 14 380
95 0 Gilbert and Nejadi (2004) S1-b 400 155 226 130 0.44 0 0 0.00 40 21 28 24.80 24.80 3500 26.9 2373 0.104 2907 0.104 2.72 14 0
96 t Gilbert and Nejadi (2004) S1-b 400 155 226 130 0.44 0 0 0.00 40 22 28 24.80 24.80 3500 26.9 2373 0.104 2907 0.104 19.90 14 380
97 0 Gilbert and Nejadi (2004) S2-a 400 155 339 130 0.65 0 0 0.00 40 21 28 24.80 24.80 3500 26.9 2373 0.104 7497 0.104 11.80 14 0
98 t Gilbert and Nejadi (2004) S2-a 400 155 339 130 0.65 0 0 0.00 40 22 28 24.80 24.80 3500 26.9 2373 0.104 7497 0.104 32.50 14 380
99 0 Gilbert and Nejadi (2004) S2-b 400 155 339 130 0.65 0 0 0.00 40 21 28 24.80 24.80 3500 26.9 2373 0.104 4437 0.104 4.43 14 0

100 t Gilbert and Nejadi (2004) S2-b 400 155 339 130 0.65 0 0 0.00 40 22 28 24.80 24.80 3500 26.9 2373 0.104 4437 0.104 21.90 14 380
101 0 Gilbert and Nejadi (2004) S3-a 400 155 452 130 0.87 0 0 0.00 40 21 28 24.80 24.80 3500 26.9 2373 0.104 8977 0.104 10.70 14 0
102 t Gilbert and Nejadi (2004) S3-a 400 155 452 130 0.87 0 0 0.00 40 22 28 24.80 24.80 3500 26.9 2373 0.104 8977 0.104 29.80 14 380
103 0 Gilbert and Nejadi (2004) S3-b 400 155 452 130 0.87 0 0 0.00 40 21 28 24.80 24.80 3500 26.9 2373 0.104 5967 0.104 5.04 14 0
104 t Gilbert and Nejadi (2004) S3-b 400 155 452 130 0.87 0 0 0.00 40 22 28 24.80 24.80 3500 26.9 2373 0.104 5967 0.104 22.90 14 380
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Study information Cross-section Reinforcement Mechanical properties Loading Deflection
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Author(s) Beam b (mm) h (mm) As1 (mm2) d (mm) ρ1 (%) As2 (mm2) d2 (mm) ρ2 (%) RH (%) T (ºC) ttest (days)
fcm(ttest)
(MPa) fcm  (MPa) L (mm) L/d MSW (Nm) KSW MDL (Nm) KDL

a (t-t0)
(mm) t0 (days) t-t0 (days)

1 0 Tošić et al. (2018) NAC7 160 200 157 169 0.58 57 29 0.21 48.7 21.3 28 30.50 30.50 3200 18.9 1024 0.104 6645 0.107 9.17 7 0
2 t Tošić et al. (2018) NAC7 160 200 157 169 0.58 57 29 0.21 48.7 21.3 28 30.50 30.50 3200 18.9 1024 0.104 6645 0.107 18.94 7 450
3 0 Tošić et al. (2018) NAC28 160 200 157 169 0.58 57 29 0.21 48.7 21.3 28 30.50 30.50 3200 18.9 1024 0.104 5853 0.107 8.11 28 0
4 t Tošić et al. (2018) NAC28 160 200 157 169 0.58 57 29 0.21 48.7 21.3 28 30.50 30.50 3200 18.9 1024 0.104 5853 0.107 16.51 28 450
5 0 Knaack and Kurama (2015) UT-0-28 150 230 397 200 1.32 0 0 0.00 44.3 23 28 32.60 32.60 3700 18.5 1476 0.104 3013 0.091 0.86 28 0
6 t Knaack and Kurama (2015) UT-0-28 150 230 397 200 1.32 0 0 0.00 44.3 23 28 32.60 32.60 3700 18.5 1476 0.104 3013 0.091 5.00 28 119
7 0 Knaack and Kurama (2015) UT-0-7 150 230 397 200 1.32 0 0 0.00 44.3 23 28 50.30 50.30 3700 18.5 1476 0.104 3021 0.091 0.74 7 0
8 t Knaack and Kurama (2015) UT-0-7 150 230 397 200 1.32 0 0 0.00 44.3 23 28 50.30 50.30 3700 18.5 1476 0.104 3021 0.091 4.62 7 119
9 0 Knaack and Kurama (2015) UC-0-28 150 230 397 200 1.32 142 30 0.47 44.3 23 28 49.30 49.30 3700 18.5 1476 0.104 3013 0.091 0.66 28 0

10 t Knaack and Kurama (2015) UC-0-28 150 230 397 200 1.32 142 30 0.47 44.3 23 28 49.30 49.30 3700 18.5 1476 0.104 3013 0.091 3.51 28 119
11 0 Knaack and Kurama (2015) UC-0-7 150 230 397 200 1.32 142 30 0.47 44.3 23 28 42.00 42.00 3700 18.5 1476 0.104 3021 0.091 0.94 7 0
12 t Knaack and Kurama (2015) UC-0-7 150 230 397 200 1.32 142 30 0.47 44.3 23 28 42.00 42.00 3700 18.5 1476 0.104 3021 0.091 5.11 7 119
13 0 Knaack and Kurama (2015) CC-0-28 150 230 397 200 1.32 142 30 0.47 44.3 23 28 40.20 40.20 3700 18.5 1476 0.104 7918 0.091 3.15 28 0
14 t Knaack and Kurama (2015) CC-0-28 150 230 397 200 1.32 142 30 0.47 44.3 23 28 40.20 40.20 3700 18.5 1476 0.104 7918 0.091 10.19 28 119
15 0 Knaack and Kurama (2015) CC-0-7 150 230 397 200 1.32 142 30 0.47 44.3 23 28 46.50 46.50 3700 18.5 1476 0.104 7893 0.091 3.40 7 0
16 t Knaack and Kurama (2015) CC-0-7 150 230 397 200 1.32 142 30 0.47 44.3 23 28 46.50 46.50 3700 18.5 1476 0.104 7893 0.091 10.69 7 119
17 0 Seara-Paz et al. (2018) H50-0 200 300 402 249 0.81 100.6 47 0.20 75 15 28 60.7 60.70 3400 13.7 2168 0.104 31550 0.101 11.73 42 0
18 t Seara-Paz et al. (2018) H50-0 200 300 402 249 0.81 100.6 47 0.20 75 15 28 60.7 60.70 3400 13.7 2168 0.104 31550 0.101 18.39 42 1000
19 0 Seara-Paz et al. (2018) H65-0 200 300 402 234 0.86 100.6 32 0.22 75 15 28 46.9 46.90 3400 14.5 2168 0.104 22710 0.101 6.71 42 0
20 t Seara-Paz et al. (2018) H65-0 200 300 402 234 0.86 100.6 32 0.22 75 15 28 46.9 46.90 3400 14.5 2168 0.104 22710 0.101 11.58 42 1000
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Study information Cross-section Reinforcement Mechanical properties Loading Deflection
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Author(s) Beam RCA (%) b (mm) h (mm) As1 (mm2) d (mm) ρ1 (%) As2 (mm2) d2 (mm) ρ2 (%) RH (%) T (ºC) ttest (days)
fcm(ttest)
(MPa) fcm  (MPa) L (mm) L/d MSW (Nm) KSW MDL (Nm) KDL

a (t-t0)
(mm) t0 (days) t-t0 (days)

1 0 Tošić et al. (2018) RAC28 100 160 200 157 169 0.58 57 29 0.21 48.7 21.3 28 28.10 28.10 3200 18.9 1024 0.104 5414 0.107 6.23 28 0
2 t Tošić et al. (2018) RAC28 100 160 200 157 169 0.58 57 29 0.21 48.7 21.3 28 28.10 28.10 3200 18.9 1024 0.104 5414 0.107 14.69 28 450
3 0 Knaack and Kurama (2015) UT-50-28 50 150 230 397 200 1.32 0 0 0.00 44.3 23 28 43.60 43.60 3700 18.5 1476 0.104 3013 0.091 0.91 28 0
4 t Knaack and Kurama (2015) UT-50-28 50 150 230 397 200 1.32 0 0 0.00 44.3 23 28 43.60 43.60 3700 18.5 1476 0.104 3013 0.091 5.38 28 119
5 0 Knaack and Kurama (2015) UT-50-7 50 150 230 397 200 1.32 0 0 0.00 44.3 23 28 40.20 40.20 3700 18.5 1476 0.104 3013 0.091 0.94 7 0
6 t Knaack and Kurama (2015) UT-50-7 50 150 230 397 200 1.32 0 0 0.00 44.3 23 28 40.20 40.20 3700 18.5 1476 0.104 3013 0.091 6.96 7 119
7 0 Knaack and Kurama (2015) UC-50-28 50 150 230 397 200 1.32 142 30 0.47 44.3 23 28 49.60 49.60 3700 18.5 1476 0.104 3021 0.091 0.86 28 0
8 t Knaack and Kurama (2015) UC-50-28 50 150 230 397 200 1.32 142 30 0.47 44.3 23 28 49.60 49.60 3700 18.5 1476 0.104 3021 0.091 4.70 28 119
9 0 Knaack and Kurama (2015) UC-50-7 50 150 230 397 200 1.32 142 30 0.47 44.3 23 28 43.60 43.60 3700 18.5 1476 0.104 3013 0.091 0.84 7 0

10 t Knaack and Kurama (2015) UC-50-7 50 150 230 397 200 1.32 142 30 0.47 44.3 23 28 43.60 43.60 3700 18.5 1476 0.104 3013 0.091 5.99 7 119
11 0 Knaack and Kurama (2015) CC-50-7 50 150 230 397 200 1.32 142 30 0.47 44.3 23 28 40.00 40.00 3700 18.5 1476 0.104 7893 0.091 4.14 7 0
12 t Knaack and Kurama (2015) CC-50-7 50 150 230 397 200 1.32 142 30 0.47 44.3 23 28 40.00 40.00 3700 18.5 1476 0.104 7893 0.091 12.90 7 119
13 0 Knaack and Kurama (2015) UT-100-28 100 150 230 397 200 1.32 0 0 0.00 44.3 23 28 41.40 41.40 3700 18.5 1476 0.104 3013 0.091 1.24 28 0
14 t Knaack and Kurama (2015) UT-100-28 100 150 230 397 200 1.32 0 0 0.00 44.3 23 28 41.40 41.40 3700 18.5 1476 0.104 3013 0.091 7.39 28 119
15 0 Knaack and Kurama (2015) UC-100-28 100 150 230 397 200 1.32 142 30 0.47 44.3 23 28 48.20 48.20 3700 18.5 1476 0.104 3021 0.091 0.97 28 0
16 t Knaack and Kurama (2015) UC-100-28 100 150 230 397 200 1.32 142 30 0.47 44.3 23 28 48.20 48.20 3700 18.5 1476 0.104 3021 0.091 5.94 28 119
17 0 Knaack and Kurama (2015) UC-100-7 100 150 230 397 200 1.32 142 30 0.47 44.3 23 28 40.60 40.60 3700 18.5 1476 0.104 3021 0.091 1.27 7 0
18 t Knaack and Kurama (2015) UC-100-7 100 150 230 397 200 1.32 142 30 0.47 44.3 23 28 40.60 40.60 3700 18.5 1476 0.104 3021 0.091 7.62 7 119
19 0 Knaack and Kurama (2015) CC-100-28 100 150 230 397 200 1.32 142 30 0.47 44.3 23 28 43.80 43.80 3700 18.5 1476 0.104 7918 0.091 5.11 28 0
20 t Knaack and Kurama (2015) CC-100-28 100 150 230 397 200 1.32 142 30 0.47 44.3 23 28 43.80 43.80 3700 18.5 1476 0.104 7918 0.091 12.27 28 119
21 0 Knaack and Kurama (2015) CC-100-7 100 150 230 397 200 1.32 142 30 0.47 44.3 23 28 38.50 38.50 3700 18.5 1476 0.104 7918 0.091 4.60 7 0
22 t Knaack and Kurama (2015) CC-100-7 100 150 230 397 200 1.32 142 30 0.47 44.3 23 28 38.50 38.50 3700 18.5 1476 0.104 7918 0.091 14.68 7 119
23 0 Seara-Paz et al. (2018) H50-50 50 200 300 402 249 0.81 100.6 47 0.20 75 15 28 51.8 51.80 3400 13.7 2168 0.104 21940 0.101 7.87 42 0
24 t Seara-Paz et al. (2018) H50-50 50 200 300 402 249 0.81 100.6 47 0.20 75 15 28 51.8 51.80 3400 13.7 2168 0.104 21940 0.101 14.08 42 1000
25 0 Seara-Paz et al. (2018) H50-100 100 200 300 402 249 0.81 100.6 47 0.20 75 15 28 42.9 42.90 3400 13.7 2168 0.104 23530 0.101 6.80 42 0
26 t Seara-Paz et al. (2018) H50-100 100 200 300 402 249 0.81 100.6 47 0.20 75 15 28 42.9 42.90 3400 13.7 2168 0.104 23530 0.101 15.20 42 1000
27 0 Seara-Paz et al. (2018) H65-50 50 200 300 402 234 0.86 100.6 32 0.22 75 15 28 42.2 42.20 3400 14.5 2168 0.104 17130 0.101 4.96 42 0
28 t Seara-Paz et al. (2018) H65-50 50 200 300 402 234 0.86 100.6 32 0.22 75 15 28 42.2 42.20 3400 14.5 2168 0.104 17130 0.101 9.63 42 1000
29 0 Seara-Paz et al. (2018) H-65-100 100 200 300 402 234 0.86 100.6 32 0.22 75 15 28 32.4 32.40 3400 14.5 2168 0.104 18100 0.101 4.59 42 0
30 t Seara-Paz et al. (2018) H-65-100 100 200 300 402 234 0.86 100.6 32 0.22 75 15 28 32.4 32.40 3400 14.5 2168 0.104 18100 0.101 11.34 42 1000
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