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10.00  Отварање Годишњег сусрета 
10.15-11.00 Владимир Грујић, Symmetric and quasisymmetric enumerators 
11.00-11.15 Пауза 
11.15-12.00 Марко Радовановић, Recurrence formulas for Kostka and inverse Kostka numbers 
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15.15-16.00 Зоран Пуцановић, On the connection between the topological graph theory and the 
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10.20-10.50 Лука Милићевић, Blocking points in general position  
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10.20-10.50 Јелена Ивановић, A simple permutoassociahedron 
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11.40-12.10 Ђорђе Баралић, Universal simplicial complexes inspired by toric topology 
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Апстракти-Abstracts 
 
Ђорђе Баралић, Математички институт САНУ 
Universal simplicial complexes inspired by toric topology 
 
Let  be the field F  or the ring Z..We study combinatorial and topological properties of the 

universal complexes X (  and K (  whose simplices are certain unimodular subsets of	 . 
We calculate their f -vectors, show that they are shellable but not shifted, and find their 
applications in toric topology and number theory. Using discrete Morse theory, we detect 
that X( , K(  and the links of their simplicies are homotopy equivalent to a wedge of 
spheres specifying the exact number of spheres in the corresponding wedge decompositions. 
This is a generalisation of Davis and Januszkiewicz's result that 	K (Z   and K (Z  are ( 2)-
connected simplicial complexes. This is joint work with Jelena Grbić and Aleksandar Vučić. 
 
Јелена Грбић, Универзитет у Саутхемптону, Велика Британија 
Toric Topology from homotopy theory point of view 
 
At the beginning of this millennium, Toric Topology has been recognised as a new branch of 
Topology closely related to Algebraic Geometry, Combinatorics and Algebra. Initially problems 
of Toric Topology were motivated by the study of toric geometry. The approach I take departs 
from geometry and brings in the tools and techniques of homotopy theory. That allows one to 
generalise the fundamental concepts  of Toric Topology which will further have applications to 
geometric group theory, robotics and applied mathematics. 
 
Владимир Грујић, Математички факултет Београд 
Symmetric and quasisymmetric enumerators 
 
Wе present classical and new enumerator functions that appear in algebraic combinatorics and 
topology. The most famous is the Stanley chromatic function of a graph. 
 
Јелена Ивановић, Архитектонски факултет у Београду 
A simple permutoassociahedron 
 
In the early 1990s, a family of combinatorial CW-complexes named permutoassociahedra was 
introduced by Kapranov, and it was realized by Reiner and Ziegler as a family of convex 
polytopes. The polytopes in this family are `hybrids’ of permutohedra and associahedra. Since 
permutohedra and associahedra are simple, it is natural to search for a family of simple 
permutoassociahedra, which is still adequate for a topological proof of Mac Lane's coherence. 
Such a family was presented in the paper \textit{A simple permutoassociahedron} co-authored 
with Zoran Petrić and Ðorđe Baralić. 



 
Јелена Катић, Дарко Милинковић, Јована Николић, Математички факултет Београд 
Spectral invariants in Floer theory 
 
We will present the construction, properties and applications of spectral invariants in Floer 
theory. We will also describe the construction of spectral invariants for an open subset of the 
base in a cotangent bundle. 
 
Един Лиђан, Универзитет у Бихаћу, Босна и Херцеговина 
Homology groups of generalized polyomino type tilings 
 
A polyomino is a plane geometric figure formed by joining one or more equal squares edge to 
edge and it may be regarded as a finite subset of the regular square tiling with a connected 
interior. Polyomino tilling problem asks is it possible to properly cover a finite region 
M consisting of cells with polyomino shapes from a given set	 . There are a numerous 
generalizations of this question towards symmetrical and asymmetrical tillings, higher dimension 
analogs, polyomino types in other regular lattice grids (triangular, hexagonal), etc. However, the 
problem in all cases in general is NP-hard and we can give definite answer only in limited 
number of cases. 
In the talk we study problem of tilling a surface S subdivided in finite `combinatorial' grid which 
may fail to be regular with finite set of  polyomino like shapes T and define the homology group 	

. We present some new results based on results of Conway, Lagarias and Reid, together 
with illustrating examples explaining the application of the homology group of generalized 
polyomino type tillings in combinatorial and topological context. This is joint work with Ðorđe 
Baralić. 
 
Лука Милићевић, Математички институт САНУ 
Blocking points in general position 
 
Erdős and Purdy asked the following question: given a set   of  points in the plane, no three 
collinear, how many new points do we need to take so that each line spanned by   contains a 
new point? It is easy to see that we always need at least  new points for odd	 , and 1 new 
points for even	 . Erdős and Purdy remarked that there are examples which require less than n 
new points. In this talk, we show that this remark is in fact false; for all 5, we need at least  
new points. The proof is based on a classification theorem for some related arrangements of lines 
in the plane, which is the other main result presented in this talk. 
 
Зоран Петровић, Математички факултет Београд 
Associating simplicial complexes to commutative rings 
 



In order to better understand structure of a commutative ring, it is sometimes convenient to 
associate a simplicial complex to this ring. Some methods of doing this will be presented. In 
orderto establish topological properties of the associated complexes some basic methods of 
algebraic topology are used as well as discrete Morse theory. This is joint work with Nela 
Milošević. 
 
 
Зоран Пуцановић, Грађевински факултет Београд 

 
 
Let  be a commutative ring with identity and	 ∗ 	the set of its nontrivial ideals. The 
intersection graph of ideals  is defined as follows: 

V( : ∗ ,   E( : , : ∩ ∅ , 

where V(  and E(  denotes the set of the vertices (edges) of the graph . We try to 
establish some connections between commutative ring theory and topological graph theory, by 
study of the genus of the intersection graph of ideals and classify all graphs of genus 1 and genus 
2 that are intersection graphs of ideals of some commutative rings. 
 
Марко Радовановић, Математички факултет Београд 
Recurrence formulas for Kostka and inverse Kostka numbers 
 
In the algebra of symmetric functions the change from the basis given by Schur functions to the 
basis given by elementary symmetric functions involves Kostka numbers. These numbers are 
known to be hard to compute. Alternatively, these numbers may be seen in the cohomology of 
Grassmannians in the change from the basis given by Schubert classes to the one given by 
products of Chern classes. Therefore, obtaining suitable formulas for calculating in these bases 
produces relations between (inverse) Kostka numbers. In this talk we use this approach toward 
(inverse) Kostka numbers using quantum cohomology of Grassmannian. To be more precise,we 
constract a Grőbner basis for the ideal that determines quantum 
cohomology of Grassmannians as given by Siebert and Tian, and use it to obtain some 
recurrence formulas for (inverse) Kostka numbers. Some applications of these formulas will 
alsobe presented. 
This is joint work with Zoran Petrović. 
 
 
Соња Телебаковић, Математички факултет Београд 
On the Brauerian Representation and 1-dimensional Topological Quantum Field Theories 
 

On the connection between the topological graph theory and the theory of commutative rings



In this lecture we show that every 1-dimensional topological quantum field theory, regarded as a 
symmetric monoidal functor between the category of 1-cobordisms and the category of matrices, 
coincides with the Brauerian representation up to multiplication by invertible matrices. Since the 
Brauerian functor is faithful, we extend our faithfulness result to all 1-TQFT.  This means that 
different 1-cobordisms correspond with distinct matrices. 
 
 
 
Александар Вучић, Математички факултет Београд 
Orthogonal shadows and index of Grassmann manifolds 
 

In this paper we study the Z/2	action on real Grassmann manifolds 	and 	given 
by taking (appropriately oriented) orthogonal complement. We completely evaluate the related 
Z/2	Fadell--Husseini index utilizing a novel computation of the Stiefel-Whitney classes of the 
wreath product of a vector bundle. These results are used to establish the following geometric 
result about the orthogonal shadows of a convex body: For n=2a(2b+1), 2 1, C a 
convex body in , and k real valued functions ,…, continuous on convex bodies in , 
with respect to the Hausdorff metric, there exists a subspace V⊆ 	 such that projections of C 
to V and its orthogonal complement  have the same value with respect to each function , 
which is  (pV(C))=	  (p (C)) for all 1≤i≤k. This is joint work with Ðorđe Baralić, Pavle 
Blagojević and Roman Karašev. 
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Basic definitions

Basic definitions and motivation

Definition 1
Let R be a commutative ring with identity and I∗(R) the set of its
nontrivial ideals. The intersection graph of ideals G(R) is defined as
follows:

V (G(R)) := I∗(R), E (G(R)) := {{I1, I2} : I1 ∩ I2 6= 0},

V (G(R)) (E (G(R))) denotes the set of the vertices (edges) of G(R).

Since the ideal structure reflects ring properties, it is natural to study
various properties of this graph.

We primarily concentrate on the question of its genus.
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Basic definitions

Motivation

By a surface we mean a compact connected topological space such that
each point has a neighborhood homeomorphic to an open disc in R2.

We denote by Sn the surface obtained from the sphere S0 by adding n
handles. Genus of a graph G , denoted by γ(G) is minimum n such that G
can be embedded in Sn.

S1 S2

The idea is to completely classify all graphs of genus 1 and genus 2 that
are intersection graphs of ideals of some commutative rings.
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Basic definitions

Genus

• An embedding of a graph G into some topological space S is a
homeomorphism between the geometric realization of G and a
subspace of S i.e. drawing of G on S with no edge crossings.

• An embedding of G into S is cellular if each component of S \ G
(each face) is homeomorphic to an open disc in R2.
• It is known that every minimum genus embedding of G in Sn is

cellular, so when we say that a graph is embedded in a surface, we
will assume that it is cellularly embedded.
• An embedding in which all faces have boundary consisting of exactly

3 edges is called a triangulation.
• Since G is a simple graph, every face has at least 3 boundary edges

and every edge is a boundary of 2 faces; so, 2e ≥ 3f , with equality if
and only if G is a triangulation of the surface.
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Basic definitions

Some formulas

• Euler’s formula: If n, e and f , are the number of vertices, edges, and
faces in a cellular embedding of G in Sg , then

n − e + f = 2− 2g .

• Ringel & Youngs:

γ(K n) =
⌈(n − 3)(n − 4)

12

⌉
, n ≥ 3.

• Ringel: γ(Km,n) =
⌈(m − 2)(n − 2)

4

⌉
, m, n ≥ 2.

• Ringel & Jungerman: Let δ(Sg ) be the number of triangles in a
minimal triangulation of Sg . Then

δ(Sg ) = 2
⌈

7 +
√

1 + 48g
2

⌉
+ 4(g − 1), (g 6= 2), δ(S2) = 24.
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Genus of the graph G(R)

Some useful results

• Genus of G(R) is finite =⇒ R is Artinian ring.

• γ(G(R)) <∞ =⇒ R ∼= R1 × · · · × Rn, Ri are local Artinian rings.

• γ(G(R)) = 1 =⇒ G(R) does not contain K 8.

• γ(G(R)) = 2 =⇒ G(R) does not contain K 9.

• γ(G(R)) <∞ and (R,M) is local ring =⇒ R/M is a finite field.

• (R,M) is local and M is minimally generated with k elements
=⇒ dim(M/M2) = k (over R/M).
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=⇒ dim(M/M2) = k (over R/M).
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Genus of the graph G(R)

Toroidality of G(R)
Theorem 2
Let R be a commutative ring with identity. Then, γ(G(R)) = 1 if and only
if it is isomorphic to one of the following graphs:

K 5, K 6, K 7, Γ[1, 2, 3, 4, 5, a], Γ[1, 2, 3, 4, 5, 6, 7]− {36, 37, 46, 47},

Γ[1, 2, 3, 4, 5, 6, 7, d ], Γ[1, 2, 3, 4, 5, a, b], Γ[1, 2, 3, 4, 5, 6, a, b, c], Γ−{3d}.

Graph Γ
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Genus of the graph G(R)

Sketch of Proof

• n ≥ 3 =⇒ γ(G(R)) 6= 1. If at least one of the rings Ri is not a field,
then γ(G(R)) > 1 (G(R) contains forbidden subgraph K 8 or is
non-consistent with Euler’s formula). Otherwise, G(R) is planar.

• n = 2 i.e. R ∼= R1 × R2.
If R1 and R2 are fields, then G(R) is planar.

If one of the rings is neither a field nor a PIR, then γ(G(R)) > 1.

Let us prove the following: if R1 is not a field, then it is a PIR. Assume that its maximal ideal
M1 is not principal. Let x ∈ M1 and y ∈ M1 \ 〈x〉. Look at the ideals R1 × 0, M1 × 0, 〈x〉 × 0,
〈y〉 × 0, 〈x + y〉 × 0, M1 × R2, 〈x〉 × R2, 〈y〉 × R2, 〈x + y〉 × R2, and 0× R2. Estimating their
degrees (for example, the degree of 〈x〉 × 0 is at least 4), we get that at the minimal case there
is a subgraph of G(R) with 10 vertices and 31 edges. If this subgraph were embedded into a
torus, we would get f = 21, but this contradicts the fact that one must have 2e ≥ 3f .
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Genus of the graph G(R)

Sketch of Proof

R1 and R2 are PIRs with maximal ideals M1 = 〈x〉, M2 = 〈y〉, such
that x2 = 0, y2 = 0. The intersection graph G(R) is isomorphic to
Γ[1, 2, 3, 4, 5, 6, 7]− {36, 37, 46, 47} and γ(G(R)) = 1.

R1 and R2 are PIRs with maximal ideals M1 = 〈x〉, M2 = 〈y〉, such
that x2 6= 0 or y2 6= 0. Then G(R) contains K 8, so γ(G(R)) > 1.

If R1 is PIR with maximal ideal M = 〈x〉, such that x2 = 0 and R2 is
a field, then G(R) is planar.
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Genus of the graph G(R)

Sketch of Proof

If R1 is PIR with maximal ideal M = 〈x〉, such that x3 = 0 and R2 is
a field, then G(R) is isomorphic to Γ[1, 2, 3, 4, 5, a].

If R1 is PIR with maximal ideal M = 〈x〉, such that x4 = 0 and R2 is
a field, then G(R) is isomorphic to Γ[1, 2, 3, 4, 5, 6, 7, d ].

If R1 is PIR with maximal ideal M = 〈x〉, such that xk = 0, k ≥ 5
and R2 is a field, then G(R) contains K 8, so γ(G(R)) > 1.
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Genus of the graph G(R)

Sketch of Proof

From the previous analysis we get the following proposition.

Proposition 3
Suppose that R ∼= R1 × R2 is a product of two local Artinian rings. Then
γ(G(R)) = 1 in exactly one of the following cases:

1 One of the rings is a PIR (principal ideal ring) with maximal ideal M
such that M4 = 0 and the other ring is a field;

2 Both of the rings are PIRs and squares of their maximal ideals are
zero.
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Genus of the graph G(R)

Sketch of Proof

Lemma 4

If R is a local ring with maximal ideal M with two generators and G(R) is
toroidal, then M2 is a principal ideal.

Proof.
Let us suppose that M2( 6= 0) is not principal. So, there exist some elements
u, v ∈ M2 such that u 6∈ 〈v〉 and v 6∈ 〈u〉. It is clear that the ideals 〈u〉, 〈v〉,
〈u + v〉, and M2 are different. We know that M/M2 is a union of
one-dimensional subspaces. Since |M/M2| = |F |2, we conclude that there are
|F |+ 1 one-dimensional subspaces of M/M2; so there are at least 3 of them. We
get three ideals I1, I2, and I3 which contain M2( 6= 0). So, we have eight ideals:
M, I1, I2, I3, M2, 〈u〉, 〈v〉, 〈u + v〉. The first five ideals all have degree 7 and the
last three have degree (at least) 5. Looking at the subgraph of G(R) induced by
these ideals, we conclude that e ≥ 25. So, 2e − 3f = 2e − 3e + 24 = 24− e < 0,
which is impossible.
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Genus of the graph G(R)

Sketch of Proof

• n = 1. R is local Artinian ring, M 6= 0 is finitely generated, so we will
discuss with respect to the minimal number of generators (n).

If G(R) is toroidal, then M2 is principal ideal by Lemma 4.

If n = 2 i.e. M = 〈x , y〉 and G(R) is toroidal, then M3 = 0 and one
can choose generators x , y for M in such a way that M2 = 〈xy〉, where
x2 = y 2 = 0, or M2 = 〈x2〉, where xy = 0.

If M = 〈x , y〉, then γ(G(R)) = 1 if and only if M2 is a principal ideal
and |R/M| ≤ 4. The graph G(R) is isomorphic to one of the graphs
K 5, K 6, K 7, Γ[1, 2, 3, 4, 5, a, b], Γ[1, 2, 3, 4, 5, 6, a, b, c], or Γ− {3d}.

If n = 1 i.e. M = 〈x〉, then γ(G(R)) = 1 if and only if it is isomorphic
to one of the graphs K 5, K 6 or K 7.
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Genus of the graph G(R)

Genus two intersection graphs
A similar analysis with more tehnical details gives us the following theorem.

Theorem 5
Let R be a commutative ring with identity. Then, γ(G(R)) = 2 if and only
if G(R) is isomorphic to one of the following graphs:
K 8, Γ′, Γ′′[1, . . . , 8, v5, v6]−{13, 17}, Γ′′[1, . . . , 8, v1, . . . , v5]−{7v5, 3v5}.
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Graph Γ′′ :

On the connection between the topological graph theory and the theory of commutative ringsDecember 25, 2017 14 / 21



Genus of the graph G(R)

Genus two intersection graphs
A similar analysis with more tehnical details gives us the following theorem.
Theorem 5
Let R be a commutative ring with identity. Then, γ(G(R)) = 2 if and only
if G(R) is isomorphic to one of the following graphs:
K 8, Γ′, Γ′′[1, . . . , 8, v5, v6]−{13, 17}, Γ′′[1, . . . , 8, v1, . . . , v5]−{7v5, 3v5}.

v1

v2
v3
v4

v5

v6

1 5 4d 1
2

3
1
4
5
d
1

3
2

1781
6b

ac1

8
7
1 cab6

Graph Γ′′ :

On the connection between the topological graph theory and the theory of commutative ringsDecember 25, 2017 14 / 21



Genus of the graph G(R)

Genus two intersection graphs
A similar analysis with more tehnical details gives us the following theorem.
Theorem 5
Let R be a commutative ring with identity. Then, γ(G(R)) = 2 if and only
if G(R) is isomorphic to one of the following graphs:
K 8, Γ′, Γ′′[1, . . . , 8, v5, v6]−{13, 17}, Γ′′[1, . . . , 8, v1, . . . , v5]−{7v5, 3v5}.

v1

v2
v3
v4

v5

v6

1 5 4d 1
2

3
1
4
5
d
1

3
2

1781
6b

ac1

8
7
1 cab6

Graph Γ′′ :

On the connection between the topological graph theory and the theory of commutative ringsDecember 25, 2017 14 / 21



Genus of the graph G(R)

Graph Γ′

• The present work suggests that finding the genus of the intersection
graph of a ring is in general a very difficult problem.

Even for embeddings of intersection graphs in S2 the list of forbidden
subgraphs contains graphs that are neither complete nor complete
bipartite. Thus we needed to establish the nonexistence of certain
embeddings that are consistent with Euler’s formula.

Some of these results were obtained by study of face-size distribution
of graph embeddings, which is in general very difficult.

As indicated, for example by graph Γ′, obtaining an embedding of the
intersection graph is not always a straight-forward task.
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Genus of the graph G(R)

Note on graph Γ′

Proposition 6
Let R be a commutative Artinian ring. If in decomposition one has n ≥ 3,
then γ(G(R)) = 2 if and only if G(R) is isomorphic to Γ′.

Sketch of Proof. 1
n ≥ 4: Then G(R) contains a subgraph which is non-consistent with
Euler’s formula.

n = 3 and Ri are fields =⇒ G(R) is planar.

n = 3 and exactly two local rings, say R1, R2 are not fields. Then
G(R) contains a forbidden subgraph K 9.

n = 3, exactly two local rings, say R2, R3 are fields and M2
1 6= 0.

Then G(R) contains a forbidden subgraph K 9.

On the connection between the topological graph theory and the theory of commutative ringsDecember 25, 2017 16 / 21



Genus of the graph G(R)

Note on graph Γ′

Proposition 6
Let R be a commutative Artinian ring. If in decomposition one has n ≥ 3,
then γ(G(R)) = 2 if and only if G(R) is isomorphic to Γ′.

Sketch of Proof. 1
n ≥ 4: Then G(R) contains a subgraph which is non-consistent with
Euler’s formula.

n = 3 and Ri are fields =⇒ G(R) is planar.

n = 3 and exactly two local rings, say R1, R2 are not fields. Then
G(R) contains a forbidden subgraph K 9.

n = 3, exactly two local rings, say R2, R3 are fields and M2
1 6= 0.

Then G(R) contains a forbidden subgraph K 9.

On the connection between the topological graph theory and the theory of commutative ringsDecember 25, 2017 16 / 21



Genus of the graph G(R)

Note on graph Γ′

Proposition 6
Let R be a commutative Artinian ring. If in decomposition one has n ≥ 3,
then γ(G(R)) = 2 if and only if G(R) is isomorphic to Γ′.

Sketch of Proof. 1
n ≥ 4: Then G(R) contains a subgraph which is non-consistent with
Euler’s formula.

n = 3 and Ri are fields =⇒ G(R) is planar.

n = 3 and exactly two local rings, say R1, R2 are not fields. Then
G(R) contains a forbidden subgraph K 9.

n = 3, exactly two local rings, say R2, R3 are fields and M2
1 6= 0.

Then G(R) contains a forbidden subgraph K 9.

On the connection between the topological graph theory and the theory of commutative ringsDecember 25, 2017 16 / 21



Genus of the graph G(R)

Note on graph Γ′

Proposition 6
Let R be a commutative Artinian ring. If in decomposition one has n ≥ 3,
then γ(G(R)) = 2 if and only if G(R) is isomorphic to Γ′.

Sketch of Proof. 1
n ≥ 4: Then G(R) contains a subgraph which is non-consistent with
Euler’s formula.

n = 3 and Ri are fields =⇒ G(R) is planar.

n = 3 and exactly two local rings, say R1, R2 are not fields. Then
G(R) contains a forbidden subgraph K 9.

n = 3, exactly two local rings, say R2, R3 are fields and M2
1 6= 0.

Then G(R) contains a forbidden subgraph K 9.

On the connection between the topological graph theory and the theory of commutative ringsDecember 25, 2017 16 / 21



Genus of the graph G(R)

Note on graph Γ′

Proposition 6
Let R be a commutative Artinian ring. If in decomposition one has n ≥ 3,
then γ(G(R)) = 2 if and only if G(R) is isomorphic to Γ′.

Sketch of Proof. 1
n ≥ 4: Then G(R) contains a subgraph which is non-consistent with
Euler’s formula.

n = 3 and Ri are fields =⇒ G(R) is planar.

n = 3 and exactly two local rings, say R1, R2 are not fields. Then
G(R) contains a forbidden subgraph K 9.

n = 3, exactly two local rings, say R2, R3 are fields and M2
1 6= 0.

Then G(R) contains a forbidden subgraph K 9.

On the connection between the topological graph theory and the theory of commutative ringsDecember 25, 2017 16 / 21



Genus of the graph G(R)

Note on graph Γ′

Sketch of Proof. 2
n = 3, R2, R3 are fields, M2

1 = 0, M1 = 〈x1, . . . , xk〉 and k ≥ 2. Then
G(R) contains a forbidden subgraph K 9.

Therefore, M1 is a principal ideal, say M1 = 〈x〉, and x2 = 0.

The intersection graph G(R) contains ten vertices:

v1 = 〈x〉 × 0× 0, v2 = 〈x〉 × R2 × 0, v3 = 〈x〉 × 0× R3,
v4 = 〈x〉 × R2 × R3, v5 = R1 × 0× 0, v6 = R1 × R2 × 0,
v7 = R1 × 0× R3, v8 = 0× R2 × 0, v9 = 0× 0× R3 and
v10 = 0× R2 × R3.

We obtain that G(R) is isomorphic to Γ′ (isomorphism is given by
vi 7→ i), which can be embedded in S2 as shown on next figure.
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Some additional results

Some additional results

On lower bounds for the genus of the intersection graphs
of nonlocal rings

Theorem 7
Let R be a commutative Artinian ring and Ri local Artinian rings such
that R ∼= R1 × · · · ×Rk , where k ≥ 2. Genus of the intersection graph of a
nonlocal ring R is at least

min
{
α

8 · N
2k−2

k · (N1/k − α)− N
2 + 1, β · N2 − N

2 + 1, (N − 6)(N − 8)
48

}
,

where N = |V (G(R))|, α = 2k
(

1
3

) k−1
k and β = 3k−2k−1

4·(2·3k−2k+1−1)2 .
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Some additional results

Some additional results

As we can see, creating the full list of nonisomorphic genus g graphs, for
arbitrary g , that are intersection graphs of some rings is (probably)
unrealistic.

The following theorem tells us that for g > 0 this list is at least finite.

Theorem 8
For every g > 0, there are only finitely many nonisomorphic graphs of
genus g that are intersection graphs of some rings.
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Thank you for your attention
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