Proceedings of the 7th International Conference on HYDROINFORMATCS 2006

4th to 8th September 2006 Nice, FRANCE

Edited by Philippe Gourbesville Jean Cunge Vincent Guinot Shie-Yui Liong

HYDROINFORMATICS 2006

4 – 8 September 2006 Nice, FRANCE

Innovate & Share!

VOLUME 2

Editors

Philippe Gourbesville Jean Cunge Vincent Guinot Shie-Yui Liong

Published by

Research Publishing Services H12F Double Tank Colony, K.K. Nagar, Chennai 600 078, India e-mail: enquiries@researchpubonline.com

Singapore office: #3 Kerbau Road, Singapore 219159

HYDROINFORMATICS

(In 4 Volumes, with CD-ROM) Proceedings of the 7th International Conference

Copyright ©2007 Research Publishing Services.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

ISBN 81-903170-3-2 ISBN 81-903170-1-6(set) Hosted by

Jointly Organised by

International Association of Hydraulics Engineering and Research (IAHR)

International Association of Hydrological Sciences (IAHS)

International Water Association (IWA)

Association Scientifique et Technique pour l'Eau et l'Environment (ASTEE)

Société Hydrotechnique de France (SHF)

Hydroinformatics Society, (Singapore)

Tropical Marine Science Institute

Local Organising Committee

Conference Chairman

Dr. Philippe GOURBESVILLE University of Nice - Sophia Antipolis, France

Members

Dr. Jean CUNGE EuroAquae European MSc Hydroinformatics Course, France Dr. Vincent GUINOT University of Montpellier 2 - Maison des Sciences de l'Eau, France Dr. Daniel DUBAND Société Hydrotechnique de France, France Mr Yves DOMINONI University of Nice - Sophia Antipolis, France Dr. Shie-Yui LIONG National University of Singapore, Singapore Dr. Jean Pierre LABORDE University of Nice - Sophia Antipolis, France

Financial Support

University of Nice – Sophia Antipolis Région Provence Alpes Côte d'Azur Conseil Général des Alpes Martimes City of Nice

Secretariat

Integrated Meetings Specialist Pte Ltd

Blk 998 Toa Payoh North, #07-18/19 Singapore 318993 Tel: (65) 6356 4727, Fax: (65) 6356 7471 Email: secretariat@hic2006.org www.inmeet.com.sg Dr. Michael ABBOT European Institute for Industrial Leadership, Belgium
Dr. Vladan BABOVIC WL Delft Hydraulics, The Netherlands
Dr. James BALL University of New South Wales, Australia
Dr. Alastair BARNETT Hydra Software, New Zealand
Dr. Robert CARR DHI Water & Environment Pty Ltd, Australia
Dr. Viswanathan CHANDRAMOULI India Institute of Technology, Guwahati, India
Dr. Gye-Woon CHOI University of Incheon, Korea
Dr. Ian CLUCKIE University of Bristol, UK
Dr. B. DEDUS Proning DHI, Croatia
Dr. Roger FALCONER Cardiff University, UK
Dr. David FORTUNE HR Wallingford, UK
Dr. Pilar GARCIA-NAVARRO University of Zaragoza, Spain

International Advisory Committe

Dr. K. GEORGAKAKOS Hydrologic Research Centre, USA

Dr. Orazio GIUSTOLISI Politecnico Di Bari, Italy

Dr. Manuel GOMEZ Polytechnic University of Catalonia, Spain

Dr. Peter GOODWIN University of Idaho, USA

Dr. Rainer HELMIG T.U. Berlin, Germany

Dr. Jorg IMBERGER University of Western Australia, Australia

Dr. Forrest HOLLY Iowa Institute of Hydraulic Research, USA

Dr. Peter HOLZ Brandenburg University of Technology at Cottbus, Germany

Dr. Shaohua Marko HSU Feng-Chia University, Taiwan

Dr. Istvan IJJAS Budapest University of Technology and Economics, Budapest

Dr. Hadibah ISMAIL University of Technology Malaysia, Malaysia

Dr. Toshiharu KOJIRI Kyoto University, Japan

Dr. Vedrana KUTIJA University of Newcastle upon Tyne, UK

Mr. Stefan LARSON Aquamatrix, Australia

Dr. Joseph H.W. LEE The University of Hong Kong, China

Dr. Gwo-Fong LIN National Taiwan University, Taiwan

Dr. Peter LOUCKS Cornell University, USA Dr. Henrik MADSEN DHI Water & Environment, Denmark Dr. Barbara MINSKER University of Illinois Urbana Champagne, USA Dr. Arthur E. MYNETT WL Delft Hydraulics, The Netherlands Dr. N. NIZAM University of Gadjah Mada, Yogakarta, Indonesia Dr. V.T.V. NGUYEN McGill University, Canada Dr. Jacob ODGAARD University of Iowa, USA Dr. Phillip O'KANE National University of Ireland, Ireland Dr. Eugenio ONATE Universitat Politecnica de Catalunya, Spain Dr. Erik PASCHE Technical University of Hamburg-Harburg, Germany Dr. Roland K. PRICE UNESCO-IHE Institute of Water Education, The Netherlands Dr. Dan ROSBJERG Institute of Environmental and Resources, Denmark Dr. Dragan SAVIC University of Exeter, UK Dr. Soon-Bo SHIM Chungbuk National University, Korea Dr. Dimitri SOLOMATINE UNESCO-IHE Institute of Water Education, The Netherlands Dr. Kaoru TAKARA Kyoto University, Japan Dr. Jianhua TAO Tianjin University, China Dr. Tawachai TINGSANCHALI Asian Institute of Technology, Thailand Dr. Adri VERWEY WL Delft Hydraulics, The Netherlands Dr. Jun XIA Institute of Geographic Sciences & Natural Resources Research, China Dr. Anatoly ZEILIGUER Moscow State University of Environmental Engineering, Russia Dr. Evzen ZEMAN DHI Hydroinform, Czech Republic

Innovate & share!

Hydroinformatics, a cross-disciplinary field of study, combines technological, human sociological and more general environmental interests, including an ethical perspective. It covers the application of information technology in the widest sense to problems of the aquatic environment and of the water resources management. Its aim is to equip professionals, practitioners, engineers, managers and decision makers working in water related arenas, with available information and technology, to make rapid and robust decisions as they address the increasing challenge of ensuring a sustainable water environment and adequate water resources for the generations to come. This field is expanding rapidly, as shown by the significant increase in the number of participants and exciting papers presented over the past six conferences (Delft in 1994; Copenhagen in 1996; Zurich in 1998; Iowa in 2000; Cardiff in 2002 and Singapore in 2004).

Preface

The 7th International Conference on Hydroinformatics is held from 4 to 7 September 2006 in Nice, France. The conference, returning to Europe after the Asian edition in Singapore, sees a growing interest of the water community for Hydroinformatics. This is a significant step in the continuous effort of three international associations – the International Association of Hydraulic Engineering and Research (IAHR), the International Association of Hydrological Sciences (IAHS) and the International Water Association (IWA) - associated for the first time with the Société Hydrotechnique de France (SHF) to actively promote and accelerate both research and applications of hydroinformatics in the world. This conference, held in Nice on the French Riviera, serves as a perfect venue for practitioners, engineers, researchers, scientists, managers and decision makers from Asian and Americas to meet with their European counterparts to exchange about the most advanced developments in the hydroinformatics field and the urgent water related issues.

The editors and the organizers were honoured to have had the opportunity to organize the conference under the High Patronage of Monsieur Jacques Chirac, President of the French Republic.

The response to the call for abstract for Hydroinformatics 2006 has been overwhelming as over 620 abstracts were received. After a rigorous process of reviewing the abstracts and the full papers, about 400 papers from over 60 countries are published in four volumes of these proceedings.

Preface

The papers are grouped in 19 topics covering physical simulation modelling; statistical, correlative and transfer function modelling; rule-based modelling; verification, validation and confirmation of numerical models; management of modelling results uncertainty; advanced applications in real-time control, forecasting systems in meteorology and hydrology; data assimilation techniques; simulators; case studies; web-enabled information and modelling systems; geographic information systems and imaging; data acquisition, modelling and management systems; optimisation techniques; engineering study - decision makers relationships and hydroinformatics support interfaces; decision support and water management systems; uncertainty and risk analysis in decision-making; virtual institutes, collaborative engineering and web platforms experience; international graduate programmes experience; continuous professional education and long life learning experience.

For the first time and in the way to innovate and share, special sessions focused on "hot topics" – *European Water Framework Directive, Experience in Flood Management and Urban Waters Management* - have been introduced to increase and promote the interactions between the practitioners/engineers and the researchers/scientists. The success of this call demonstrates the interest and demand for this needed dialog.

These volumes represent the sum of the efforts invested by the authors, members of the advisory committee, and members of the organizing committee. The editors are also grateful for the assistance of the anonymous reviewers who worked tirelessly behind the scene to maintain the quality of the papers. We hoped that the proceedings will serve as a reference source on hydroinformatics for practitioners, engineers, researchers, scientists, managers and decision makers.

> P. GOURBESVILLE, J.CUNGE, V.GUINOT & S.Y. LIONG Nice, 1st September 2006

The editors wish to express their deep appreciation to members of the advisory committee, members of the organizing committee, and reviewers in ensuring high quality papers for HIC2006.

The financial support from the University of Nice – Sophia Antipolis, Région Provence Alpes, Côte d'Azur, the Conseil Général des Alpes Maritimes and the City of Nice is gratefully acknowledged.

Integrated Meeting Specialist Pte Ltd, a professional conference organizer, plays an integral part in the smooth running of the conference. We thank Ms. LEE Fong and Mr. Ivan BOO for their professional work.

The editors would like also to thank all the staff of the University of Nice – Sophia Antipolis and from the Acropolis Conference Center who were involved in the organization and management of the conference.

A special thank is given to the EuroAquae students who have offered a very significant support during the conference.

Volume 1	1
Volume 2	789
Volume 3	1575
Volume 4	2365
Author Index	AI-i

Sand States	「「「「」「「」」、「「」」、「「」」	Table of		. An c	an Anne Mith	· · ·
· · · · · ·		lable of	Contents			
	and a state of the Second				and the second second	

Local Organising Committee	vi
International Advisory Committee	vii
Preface	ix
Acknowledgements	xi

Volume 2

Theme 1.2: Data-Driven Modelling (Continued from Volume 1)

Spatial Pattern Identification of Soil Moisture based on Self-Organizing Neural Networks	791
X. Zhang and X. Y. Song	
Assessing Model Prediction Limits using Fuzzy Clustering and Machine Learning	799
D. L. Shrestha, J. Rodriguez, R. K. Price and D. P. Solomatine	
Statistical Rainstorm Tracking using Short-Time Interval Rainfall Data S. Kim and J. H. Heo	807
Genetic Programming as a Model Induction Engine for Characterizing the Evapotranspiration Process	815
K. Parasuraman, A. Elshorbagy and S. K. Carey	
Watershed Similarity Analysis using Unsupervised-Supervised Neural Networks	823
B. B. Hsieh, M. T. Fong, M. R. Jourdan and J. D. Jorgeson	

xiv Contents	
Numerically Optimized Empirical Modeling of Highly Dynamic, Spatially Expansive, and Behaviorally Heterogeneous Hydrologic Systems — Part 2	831
J. Stewart, M. Mitro, E. A. Roehl Jr. and J. Risley	
Theoretical Comparisons between Simple and Weighted Average Combining Forecasts	839
Y. O. Kim and D. I. Jeong	
Prediction of the Scour Depth around Bridge Abutments by using ANN	847
N. Şarlak, S. Tiğrek and Y. Kayatürk	
Assimilation of Satellite Altimetry Data into Malacca-Strait Current Model	855
V. Babovic, R. Uittenbogaard and H. Van Den Boogaard	
Application of the M5 Machine Learning Method for the Development of the Low Flow Forecasting Model	863
L. Stravs and M. Brilly	
Assessment of Longitudinal Dispersion Coefficient by Means of Different Neural Networks	871
A. Piotrowski, P. M. Rowiński and J. J. Napiórkowski	
Learning More about the Rising Limb of the High Flow Waves by using Machine Learning Methods	879
L. Stravs and M. Brilly	
Optimization of Base Flow Separation Algorithm for Modular Data-Driven Hydrologic Models	886
G. A. Corzo and D. P. Solomatine	
Time Series Data Mining: Techniques for Anomalies Detection in Water Supply Network Analysis	894
R. Gueli, M. Mongiovi, A. Ferro, R. Giugno, A. Pulvirenti and G. Marati	
Prediction of Short-Term Water Consumption with Box-Jenkins Models A. M. R. Bakker	902

.

Contents	xv
Confidence Intervals of Quantile for the Generalized Logistic Distribution <i>H. Shin and J. H. Heo</i>	910
Features Extraction from Primary Clarifier Data using Unsupervised Neural Networks (Kohonen Self Organising Map) R. Rustum and A. J. Adeloye	918
Visualization and Data Mining Tools Applied to Algal Biomass Prediction in Illinois Streams <i>P. Bajcsy, R. Kooper, L. Marini, D. Clutter and M. Markus</i>	926
Application of the Environmental Zoning Factors in Deep-Long Reservoir by Data Mining Techniques S. Y. Park and N. C. Jung	934
Algal Bloom Prediction in Tolo Harbor by Genetic Programming K. W. Chau and N. Muttil	942
Estimating the Sequent Depth of a Moving Hydraulic Jump: A Neural Network Approach A. Parvaresh Rizi, S. Kouchakzadeh and A. Ashrafzadeh	950
Derivation of a Bedload Sediment Transport Formula using Artificial Neural Networks D. Caamaño, P. Goodwin and M. Manic	958
Advances in Neural Network Hydrological Modelling: An Adaptive Co-Evolutionary Approach A. J. Heppenstall, L. M. See and R. J. Abrahart	966
Derivation of Tide Fluctuation from a Global Ocean Tide Model and Totaltide Software C. D. Doan, S. Y. Liong, H. K. Choo and E. S. Chan	974
Theme 1.3: Rule-Based Modelling and Systems	

A Hybrid Technique for Optimisation of Branched Urban	985
Water Systems	
R. Farmani, D. A. Savic and G. A. Walters	

xvi Contents	
A Neuro-Fuzzy Expert System for Flood Forecasting in Real-Time A. Moghaddamnia, I. D. Cluckie and D. Han	993
Dynamic Neuro-Fuzzy Local Modeling System: Springs Flow Prediction Influenced by Hydropower Station Operation T. Y. S. Hong and P. A. White	1001
A Neuro-Fuzzy Based Approach to Wave Modeling M. H. Kazeminezhad, S. J. Mousavi and A. Etemad-Shahidi	1009
Macroalgae Harvesting Policy based on a Fuzzy Criticality Index E. Giusti and S. Marsili-Libelli	1017
Search of Anti-Accident Function for Flood Flow Management by Water Reservoir V. V. Ilinich	1025
Daily Streamflow Forecasting using Genetic Algorithm Based Neurofuzzy Approach P. Pinthong, A. Das Gupta, M. S. Babel and S. Weesakul	1032
Modeling of Algal Population Dynamics using Cellular Automata and Fuzzy Rules H. Li, A. E. Mynett and Q. W. Chen	1040
Application of Cellular Automata Modelling to Analyze the Dynamics of Hyper-Concentrated Stream Flows on Loamy Plateaux (Paris Basin, North-West France) J. Douvinet, D. Delahaye and P. Langlois	1048
Theme 2.1: Verification, Validation and Confirmation of Numerical Models	
Geometry Measurement Versus Roughness Calibration: Application to Amazon River	1059
G. Belaud, J. P. Baume, B. Le Guennec and J. M. Martinez	
Technology of Identification of Two-Dimensional Functions Describing the Morphometry and Hydraulics of River Channel in One-Dimensional Model of Unsteady Flow	1067

A. V. Romanov and V. V. Ilinich

Contents	xvii
Calibrating a Large Scale Fractured Aquifer Model for Extreme Events Prediction using a Dual-Permeability Approach	1075
G. Lods, P. Gouze, A. Cartalade and R. Guérin	
Open Sources Model Codes: Critical Review on the Routing Modules of the Soil and Water Assessment Tool (SWAT)	1083
A. Van Griensven, K. Holvoet and J. Yang	
On the Estimation of Soil Moisture Parameters in Physically Based Hydrological Models	1091
M. Ostrowski and A. Klawitter	
Exploring Parameter Identifiability and Temporal Parameter Changes in Complex Hydrological Models	1099
G. Wriedt and M. Rode	
Validation of a Fully 3D Large Eddy Simulation Model to Predict Removal of a Neutrally Buoyant or a Dense Miscible Contaminant from a Bottom River Cavity by a Fully Turbulent Overflow	1107
K. Chang, G. Constantinescu and S. Park	
A Two Dimensional Hydrodynamic Model for the Study of Instream Flows in Rivers	1115
C. Álvarez, J. A. Juanes, J. A. Revilla and A. Garcia	
The Numerical Investigation of Two Algorithms of Surface-Tracking Method for Free Surface Calculation	1123
J. Zeng, G. Constantinescu and L. Weber	
Dike-Break Induced Flood Wave Propagation S. Roger, E. Büsse and J. Köngeter	1131
Three-Dimensional Modeling of Density Current in Straight Channel E. Aram and B. Firoozabadi	1139
Numerical Simulation of the Three-Dimensional Flow at the Confluence of the Sava and Danube Rivers D. <i>Dorflević and M. Ivetić</i>	1147

xviii Contents		
Entrainment in 3-D Density Currents	11	55
S. Hormozi, B. Firoozabadi and H. G. Jahromi		
Modeling Vertical Heat and Water Fluxes from AVHRR/NOAA-Based Information on Land Su		163
E. Muzylev, A. Uspensky, Z. Startseva and E. Vo	olkova	
Inter-Comparison of CFD Codes using Data fro Physical Model	om a Large-Scale 11	171
P. Naden, P. Rameshwaran, C. A. M. E. Wilson, D. R. Shukla and K. Shiono	R. Malki, D. A. Egarr,	
Sedimentary Oxygen Demand for Laminar and Boundary Layer	l Turbulent 11	179
M. Higashino, H. G. Stefan and B. L. O'Connor		
Reynolds Averaged Simulation of Turbid-Dens. A. Mehdizadeh and B. Firoozabadi	ity Current 11	187
Predictions of Event-Based Pesticide Flux at the A Model Evaluation Exercise	e Catchment Scale: 11	195
S. Madier, T. Leviandier and I. G. Dubus		
Fuzzy Knowledge-Based Curve Evaluation for Model Calibration	1-D River 12	203
J. P. Vidal and S. Moisan		
Numerical Modelling of Enteric Bacterial Conta Bathing Waters	amination in 12	211
L. Yang, B. L. Lin and R. Falconer		
Estimation of Chlorine Residual in a Drinking Distribution System	Water 12	219
F. Morga, D. Termini and G. Viviani		
Analysis of UMSICHT Water Hammer Benchm PSI using TRACE and RELAP5 Codes	nark Tests: Results from 12	227
W. Barten, A. Jasiulevicius, O. Zerkak and R. M	lacian-Juan	
Production of Compliant Complete Complete	Mathematical or 3	າວ⊏
Evaluation of Combine Sewer Overflow using Physical Modeling	Iviathematical and 12	235
J. Pollert, V. Bareš and K. Vrátný		

Contents	xix
Using Genetic Algorithms for Calibration of Water Distribution Models	1243
D. Kozelj, F. Steinman and P. Banovec	
Genetic Alogrithms for Calibrating a Catchment Modelling System with Spatially Variable Parameters <i>T. J. Fang and J. E. Ball</i>	1251
Theme 2.2: Management of Uncertainty of the Results of Models	<u>``</u>
An Approach to Assess Uncertainty of Sediment Transport Models B. Bhattacharya, R. K. Price and D. P. Solomatine	1261
Uncertainty Based Calibration of a New River Water Quality Model: Application to Urola River C. Martin, C. M. Cardona, A. Salterainn, E. Ayesa, I. Eguinoa and M. Garcia-Sanz	1269
Assessment of Parameter Uncertainty in Rainfall Runoff Modelling K. Schroeter, D. Muschalla and M. Ostrowski	1277
Info-Gap Analysis of Flood Model Calibration D. Hine and J. Hall	1285
Effects of Subbasin Size on Flow Simulation Uncertainty in Pyeonchang River Watershed, Korea J. H. Kim and D. H. Bae	1293
Efficient Approach to Evaluation of Ecological Model Uncertainty M. G. Erechtchoukova	1301
Comparison of Methods for Uncertainty Analysis of Hydrological Models C. J. Chen, D. Lal Shrestha, G. C. Perez and D. Solomatine	1309
Using Object Oriented Methods for Adaptive Hydrological Model Development and Uncertainty Estimation <i>C. Gattke and M. Pahlow</i>	1317

xx	Contents	
Drainage Mod	cceptability Threshold over an Integrated Urban el Uncertainty Mannina and G. Viviani	1325
Demand using	e Water Distribution Network with Uncertain Nodal Fuzzy Sets ievic, M. Ivetic and D. Prodanovic	1333
a Storm-Water A. Terfous, J.	o the 3D Modelling of the Suspended Sediment Flow in Tank by the Use of the Particle Image Velocimetry (PIV) <i>Vazquez, M. Dufresne, J. B. Poulet, A. Ghenaim,</i> <i>puyi and C. Vasile</i>	1341
Theme 2.3:	Advanced Application of Modelling	
Regional Wate	ther Forecasts and Operational Management of r Systems del and A. H. Lobbrecht	1351
Anthropogenia	ultivariate Forecasting of Hydrologic and c Responses to Meterological Forcing r. and T. Murray	1359
	od Frequency Estimation using Physically Based Model Weather Generator (with Estimation's Uncertainty)	1367
Combining We	t of Rainfall Prediction over the Odra-Catchment by eather Radar and a Numerical Weather Model , M. A. Rico-Ramirez, Y. Xuan and W. Szalinska	1375
a Distributed H	l-Time Forecasting with Radar Image Extrapolation and Hydrologic Model 7. Tachikawa and K. Takara	1383
Flood Forecast	d Reducing Forecast Uncertainty in Real-Time ing A. K. V. Falk, H. Madsen and J. Hartnack	1391
	ed Modelling in Ecosystem Dynamics t and Y. Morales	1399

Contents	xxi
Inferring Environmental System Dynamics from Time Series Data D. Mancarella, A. Doglioni, V. Simeone and O. Giustolisi	1407
Investigation the Value of Hydrologic Model Complexity and Spatial Information using Multicriteria Methods D. P. Boyle, G. Lamorey, S. Bassett, G. Pohll, P. Krause and S. Kralish	1415
Integrating 3D Hydrodynamic Transport and Ecological Plant Models of the Savannah River Estuary using Artificial Neural Network Models <i>E. A. Roehl, R. C. Daamen, P. A. Conrads and W. M. Kitchens</i>	1423
Pattern Analysis and Evolutionary Model Induction of Fecal Coliform Dynamics in an Urban Sewer System B. C. Paik and T. Y. S. Hong	1431
Parameter Estimation in Shallow Water Equations based on Surrogate Neural Network Models and Genetic Algorithms J. M. Hervouet and J. M. Martinez	1439
Combined Neural Network and Ensemble Kalman Filter Application for Discharge and Water Level Forecasting in the River Rhine S. G. Aguilar, G. Y. El Serafy and A. E. Mynett	1447
About the Modeling of Weirs and other Hydraulic Structures with Two-Dimensional Polynomials in One Dimensional Flow Simulation U. Teschke and S. Rath	1455
Uncoupled 3D Lattice Animation: A New Visualisation of Floodplain Inundation Events A. G. Barnett	1463
A Distributed Hydrological Modelling Approach to Flow Forecasting of a Large River Basin 5. Maskey and R. Venneker	1471
Development of Combined Watershed and Ground-Water Models in Korea N. W. Kim, I. M. Chung, Y. S. Won and J. Lee	1479
Real-Time Analysis of Water Supply and Distribution Systems <i>P. Ingeduld and E. Zeman</i>	1487

xxii Contents	
Development of a Real-Time Turbidity Monitoring and Modelling System for a Reservoir S. W. Chung, S. W. Yoon and I. H. Ko	1495
Application of Data Reconciliation on an Irrigation Canal N. Bedjaoui, X. Litrico, A. Lourosa and J. Ribot-Bruno	1503
Use of Computational Fluid Dynamics Technique to Instrument CSOs G. Lipeme-Kouyi, J. Vazquez, N. Le Nouveau and P. Battaglia	1511
On Stochastic Modeling of Daily Rainfall Process V. T. V. Nguyen and A. Hussain	1519
Parameter Scale Analysis in Runoff Modelling in Semi-Arid Regions of Brazil with the Model NAVMO	1527
E. E. De Figueiredo, H. B. L. Júnior, O. M. Furtunato and A. M. C. Crispim	
Long-Term Runoff Simulations with the Model NAVMO for Regional Analyses in Semi-Arid Regions of Brazil	1535
E. E. De Figueiredo, O. M. Furtunato, A. S. O. Nunes and A. M. C. Crispim	
Generalised Cross-Covariance Analysis for Uncertainty Estimation of Shifts in Time Series	1543
H. F. P. Van Den Boogaard, R. E. Uittenbogaard and A. E. Mynett	
Global and Distributed Modelling of Runoff in Northern Algeria M. Assaba, J. P. Laborde and F. Achour	1551
Distributed Rainfall-Runoff Modeling Application for the Urbanized Catchment	1559
K. D. Oh, B. H. Jun, W. S. Ahn, S. W. Park and S. H. Jang	
Earth Observation Data Assimilation in Marine Forecasting J. V. T. Sørensen, A. C. Erichsen, O. S. Petersen, L. B. Hansen and L. Nyborg	1567
Author Index	AI-i

NUMERICAL SIMULATION OF THE THREE-DIMENSIONAL FLOW AT THE CONFLUENCE OF THE SAVA AND DANUBE RIVERS

DEJANA ĐORĐEVIĆ

Faculty of Civil Engineering, University of Belgrade, Bulevar kralja Aleksandra 73 Belgrade, 11000, Serbia & Montenegro

MARKO IVETIĆ

Faculty of Civil Engineering, University of Belgrade, Bulevar kralja Aleksandra 73 Belgrade, 11000, Serbia & Montenegro

In this paper, the confluence hydrodynamics at the mouth of the Sava and Danube Rivers in the city of Belgrade is analysed by means of the three-dimensional numerical model. The confluence offers excellent possibilities for such investigation as the two morphological features typical for a river confluence are present: bed elevation discordance at the entrance to the confluence and the scour hole in the post-confluence channel. The results are discussed in terms of the secondary flow pattern. Since the non-deformable bed is assumed, the nature of the river bed – flow interaction is analysed in terms of a non-dimensional bed shear stress and a re-suspension number distributions for different flow conditions in the confluence.

INTRODUCTION

A river confluence has always been a challenging subject for river hydrodynamics and morphodynamics investigations due to complex flow phenomena and processes occurring in both the confluence and the post-confluence channel. The complexity of the phenomena and processes arises from the strong three-dimensional flow effects resulting from the interaction of the incoming flows and the interaction thereof with the river bed. In the last decade, new methods and tools for investigation of complex flows were developed and/or the existing methods and tools were improved, offering opportunities to shed more light on the processes characteristic for a river confluence. The majority of investigations were, however, concerned with the laboratory models of confluences (references can be found elsewhere - Bradbrook et al. [2] and Đorđević & Jovanović [3]). There are only a few field investigations, mostly on the small rivers (Biron et al. [1], Bradbrook et al. [2], Rhoads & Sukhodolov [7], Đorđević & Jovanović [3]).

Unlike a river confluence, a laboratory model of a confluence assumes a simplified plan-form and cross-section geometry of the main river, tributary and post-confluence channels. Hence, not all relevant factors necessary for complete understanding of the confluence hydrodynamics can be encountered for with a laboratory model of a confluence.

The confluence of the Sava and Danube Rivers in the city of Belgrade is a typical example of an asymmetrical confluence with the shallower channel of the Danube River, no

significant increase in the post confluence channel width, and presence of the scour hole. With such a complex plan-form and bed morphology it was interesting to investigate the confluence hydrodynamics by using a three-dimensional numerical model. Simulations were performed for various combinations of the upstream hydrologic regimes of the confluent streams.

PROBLEM DESCRIPTION

The confluence of the Sava and Danube Rivers in the city of Belgrade is depicted in Fig. 1. The characteristic shape of the network is caused by the presence of the Great Island which divides the Danube River into the so called "Main channel" with the wider, almost straight channel, and a narrower secondary channel.

The subject of the present study is a portion of the confluence encircled in Fig. 1. It includes the Sava River (the main river in this case), and the branch of the Danube River (the tributary in this case). The confluence-site characteristics are summarized in the Table 1. The confluence hydrodynamics was analysed by covering a range of possible hydrological conditions at the confluence. A set of considered discharge combinations is given in Table 2.

NUMERICAL MODELLING

The three-dimensional numerical model (SSIIM2) used for the modeling is described elsewhere (Olsen [5&6]). The model solves the three-dimensional Reynolds averaged Navier-Stokes equations, with the standard k- ϵ turbulence-model closure. As this model assumes isotropic eddy viscosity, it should be calibrated when considering strongly anisotropic flows, such as the ones occurring in river confluence (Bradbook *et al.* [2])

Figure 1. Site location (left) and bed elevation contours (right)

Table 1. Summary of the confluence-site characteristics

River	Bank-full width [m]	Junction angle [°]	Bed elev. discordance
Sava River (Main river)	≈ 290		[m]
Second. channel of the Danube River (Tributary)	275	78	10
Sava River (post confluence ch.)	≈ 290		

Table 2. Analysed combinations of the upstream hydrologic regimes of the confluent streams

	Sava River	Danube River			-		
p* [%]	<i>Q_{MR}</i> [m ³ /s]	Q _{total} [m ³ /s]	Q_T [m ³ /s]	$D_R = Q_{MR} / Q_T$ [-]	<i>V_{MR}</i> [m/s]	<i>V_T</i> [m/s]	M _R ** [-]
0.56	600	5700	1130	0.53	0.21	0.46	0.24
6.59	400	2500	385	1.04	0.17	0.19	0.93
4.53	800	2800	455	1.76	0.32	0.22	2.56
2.60	1300	3500	615	2.11	0.49	0.27	3.84
2.59	1555	2480	395	3.94	0.61	0.18	13.34
0.66	2500	2800	400	6.25	0.91	0.17	33.46

* Probability of occurrence of discharge combination is denoted by p (Group of authors [4])

** The momentum-flux ratio is defined as $M_R = \rho V_{MR} Q_{MR} / \rho V_T Q_T$.

Since the field measurements of the flow field at the confluence of the Sava and Danube Rivers are still under way, no calibration is possible yet. Therefore, the original values of the *k*- ε model constants (C_µ, C_{ε1}, C_{ε2}, σ_k, and σ_ε) were used. For this reason, the presented numerical simulation results could only be used for the qualitative analyses.

The SSIIM2 model solves the governing equations using the finite-volume method on a three-dimensional non-orthogonal unstructured grid. This type of grid allows flow simulation in dendritic channel networks with complex bathymetry, characteristic for river confluences. The model uses SIMPLE method for the pressure term modelling and a second-order upwind scheme for discretisation of the convective terms. A wall law is used along solid boundaries.

In the present study, steady flow conditions were assumed. Symmetric boundary conditions were used for all variables at the surface and the outflow boundary. The water surface was fixed, which can be justified by the fact that the confluence of the Sava and Danube Rivers is under the strong influence of the Iron Gate Dam backwaters and the water

level may be considered nearly horizontal. At the inflow boundaries constant fluxes are specified. To ensure mass continuity, a constant flux is prescribed at the outflow boundary.

Computational domain included channels of the main river and the tributary in the length of 1 km each, and 1 km of the post-confluence channel. The length of 1 km along each confluent stream ensured no influence of the upstream boundary condition on the flow pattern in the confluence. The non-orthogonal unstructured grid consisted of two non-orthogonal structured grids – one along the main river and the post-confluence channel (block1) and the other along the tributary (block 2). A grid sensitivity analysis was performed first. Four different grid densities were considered. Blocks with the following dimensions comprised the coarsest grid: $41 \times 11 \times 11$ (block 1) and $19 \times 6 \times 11$ (block 2). Dimensions of another two meshes of intermediate density were: $81 \times 11 \times 11$ (block 2) for the first and $101 \times 16 \times 11$ (block 1) and $46 \times 12 \times 11$ (block 2) for the second one. The finest grid consisted of the blocks with the dimensions: $201 \times 31 \times 11$ (block 1) and $96 \times 26 \times 11$ (block 2).

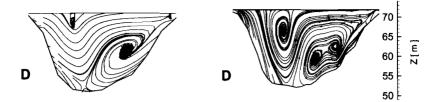
Since the bed material in the tributary is finer than the bed material in the main river $(d_{50,T} = 2 \text{ mm}, d_{50,MR} = 8 \text{ mm})$, non-uniform roughness was used. The roughness was defined according to the given grain sizes.

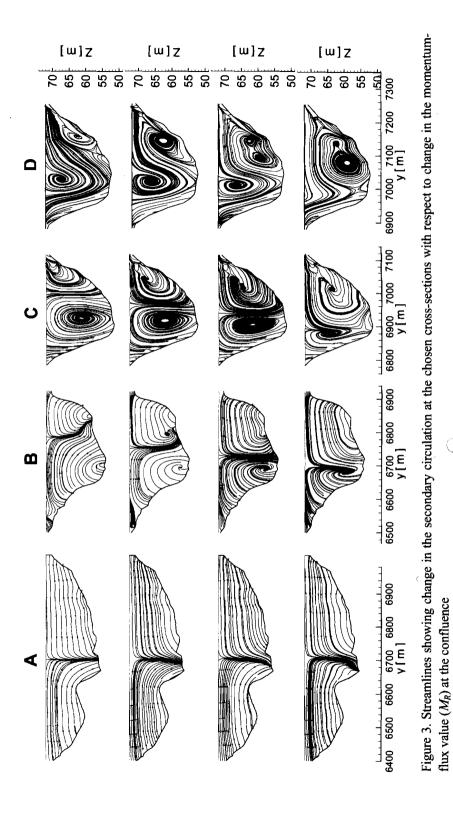
RESULTS AND DISCUSSION

The confluence hydrodynamics is analysed by observing the forms of the secondary circulation at chosen cross-sections at the confluence and in the post-confluence channel (Fig. 1). Since a non-deformable bed was assumed, changes in the non-dimensional bed shear stress and the re-suspension number distributions with respect to change in the M_R value are also discussed.

Results of the grid sensitivity analysis shall be presented, first. Cross-section surface streamlines are used to illustrate the secondary flow circulation, A case when two counterrotating vortices are formed in the post-confluence channel ($M_R = 3.84$) is used for the comparison. As can be seen from Figure 2, a number of mesh elements in the main flow direction remarkably influences the secondary circulation pattern in the post-confluence channel. In the two coarser grids change in the bed slope in the main-stream direction, responsible for the alignment of the main-flow streamlines and consequently the distribution of the dynamic pressure and the type of the secondary circulation pattern, is not properly resolved (Fig. 2 left). By increasing a number of elements in the main-stream direction, a more realistic flow pattern resulting from the topographic steering is obtained (Fig. 2 right). In what follows, only results pertaining to the finest grid are discussed.

Due to limited space, development of the secondary circulation through the confluence and the post-confluence channel is presented only for four of the six analysed discharge combinations of the confluent streams (Fig. 3). Secondary flow patterns for the M_R values 2.56 and 3.84 are similar. The same holds for the M_R values 13.34 and 33.46. Changes in the M_R value influence the secondary flow pattern in the following. For $M_R < 1.0$, a single large dominating clock-wise vortex is formed in the upstream part of the post-confluence




Figure 2. Streamlines showing secondary circulation in the cross-section D - grid sensitivity analysis. Results obtained for the coarsest grid (left) and the finest grid (right)

channel, due to fast realignment of the dominant-flow streamlines, which is in accordance with the similar investigations (Bradbook *et al.* [2]). Further downstream, the vortex gradually diminishes. For the M_R values close to 1.0 and up to, say 13.5, two counterrotating vortices are formed since the dominant-flow streamlines are not completely aligned along the considerable portion of the post-confluence channel. With further increase in the M_R value ($M_R > 13.5$), the main river dominates and the left vortex gradually diminishes, still leaving a clear dividing line between the two flows, which moves towards the left bank.

Changing flow conditions at the confluence influence the interaction between the flow and the river bed. This also assumes different conditions for sediment load movement including settlement and re-suspension of the sediment particles. The effects of change in the M_R value on the transport competency of the post-confluence channel are presented only for the particle size d = 0.28 mm, which may change between the bed and suspended load. The results are presented for the considered particle size in the form of contour lines of the non-dimensional bed shear stress (Fig. 4) and the re-suspension number u^*/W (Fig. 5). The finer particles are always in suspension, while the coarser ones are always at the river bed in the form of the bed load. As can be seen, particles of d = 0.28 mm are in suspension in the main river and in the central portion of the post-confluence channel (scour hole) only for the highest M_R value ($M_R = 33.46$), whereas for the M_R values less than, say 30, they move as the bed load. Transition area, in which the change in dominance of the confluent streams occurs $(0.90 \le M_R \le 2.6)$, is characterized by a reduction of the total area available for the bed load movement. For $M_R = 2.56$ movement is localized in the scour hole of the post-confluence channel and the bar along the right bank of the main river, whereas for the M_R value around 1.0 there is no movement at all. Reestablishment of the bed load transport starts when the tributary takes the dominance over the main river.

CONCLUSIONS

In this paper the confluence hydrodynamics at the mouth of the Sava and Danube Rivers was analysed by means of the three-dimensional numerical model. Comparison of the results obtained for different combinations of the upstream hydrologic regimes of the confluent streams led to the following conclusions.

1152 7th International Conference on Hydroinformatics – HIC 2006 – [Volume 2]

Figure 4. Contour lines showing change in the non-dimensional bed shear stress distribution with respect to the change in the M_R value at the confluence (d = 0.28 mm)

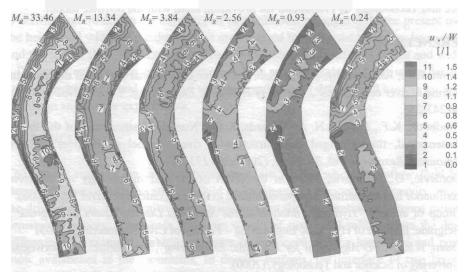


Figure 5. Contour lines showing change in the re-suspension number distribution with respect to the change in the M_R value at the confluence (d = 0.28 mm)

1. Grid density in the main-stream direction remarkably influences the type of the secondary flow pattern. To get a clear picture of the secondary circulation in the post-confluence channel, the number of elements in the main-stream direction must be sufficient to resolve all topographic features which govern the flow in the confluence and the post-confluence channel.

2. Decreasing the M_R value below say 0.90, and increasing above, say 30, causes, for the considered plan-form of the confluence, fast realignment of the dominant-flow streamlines of the two confluent streams, which results in the formation of a single secondary circulation vortex in the post-confluence channel. For the intermediate M_R values realignment of the dominant-flow streamlines is not as fast as in the previous cases, and the two counter-rotating vortices are formed.

3. In the case of the non-deformable bed assumption, change in the non-dimensional bed shear stress and re-suspension number distributions with respect to change in the M_R value at the confluence may indicate what type of interaction between the flow and the river bed can be expected. For the M_R values greater than 3.8, intensive bed load transport along the main river and the post-confluence channel and very likely erosion in the post-confluence channel may be expected. For $M_R > 33.0$ even a re-suspension of the particles of d = 0.28 mm may occur. For $0.90 < M_R < 2.6$, deposition of the particles of $d \ge 0.28$ mm takes place along the main river and the post-confluence channel. The bed load movement terminates for the M_R values around 1.0, whereas for $M_R < 0.9$ bed load transport in the post-confluence channel is reestablished.

Acknowledgments

The authors wish to thank Professor N.R. Olsen from the Norwegian University of Science and Technology of Trondheim for providing them with the SSIIM2 model.

REFERENCES

- Biron, P.M., Ramamurthy, A.S. & Han, S., "Three-dimensional numerical modeling of mixing at river confluences", *Journal of Hydraulic Engineering*, Vol.130, No.3, (2004), pp 243-253.
- [2] Bradbook, K.F., Lane, S.N. & Richards, K.S., "Numerical simulation of the threedimensional, time-averaged flow structure at river channel confluences", *Water Resources Research*, Vol. 36, No.9, (2000), pp 2731-2746.
- [3] Đorđević, D., Jovanović, M., "On the effect of the bed morphology on the river confluence hydrodynamics", (paper submitted to the Int. Conference River Flow 2006).
- [4] Group of authors, "Hydraulic analysis of the Sava and Danube Rivers in Belgrade", Belgrade: Institute of Hydraulic Engineering – Faculty of Civil Engineering, (2005)
- [5] Olsen, N.R., "CFD Algorithms for Hydraulic Engineering", Trondheim: The Norwegian University of Science and Technology, (2000).
- [6] Olsen, N.R., "A three-dimensional numerical model for simulation of sediment movements in water intakes with multi-block option – User's Manual", Trondheim: The Norwegian University of Science and Technology, (2004).
- [7] Rhoads, B.L. & Sukhodolov, A.N., "Field investigation of the three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities", *Water Resources Research*, Vol.37, No.9, (2001), pp 2393-2410.

If ydroinformatics is a relatively new discipline concerned with the application of Information Technology for the planning, management, and protection of the water environment. Its aim is to allow environmental managers and engineers to make rapid and robust decisions as they address the increasing challenges of ensuring a sustainable water environment and adequate water resources for the future generations.

This publication contains about 400 high quality papers contributed by authors from over 60 countries. The proceedings present many exciting new findings in emerging subjects, as well as their applications, such as: physical simulation modelling; statistical, correlative and transfer function modelling; rule-based modelling; verification, validation and confirmation of numerical models; management of modelling results uncertainty; advanced applications in RTC, forecasting systems in meteorology and hydrology; data assimilation techniques; simulators; case studies; Web-enabled information and modelling systems; Geographic Information System and imaging; data acquisition, modelling and management systems; optimisation techniques; engineering study - decision makers relationships and hydroinformatics support interfaces; decision support and water management systems; uncertainty and risk analysis in decision-making; virtual institutes, collaborative engineering and Web platforms experience; international graduate programmes experience; continuous professional education and long life learning experience.

These proceedings will provide an excellent reference to researchers, practitioners, graduate students and all those interested in the field of water and hydroinformatics.

Hydroinformatics 2006 provided an excellent opportunity for engineers, environmental managers and scientists to meet and exchange ideas in this rapidly developing field.

SEARCH PUBLISHING

ISBN 81-903170-1-6 (Set)

