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Abstract: The capability of the smoothed-particle hydrodynamics (SPH) method to model supercritical flow in circular pipe bends is 
considered. The standard SPH method, which makes use of dynamic boundary particles (DBP), is supplemented with the original 
algorithm for the treatment of open boundaries. The method is assessed through a comparison with measured free-surface profiles in 
a pipe bend, and already proposed regression curves for estimation of the flow-type in a pipe bend. The sensitivity of the model to 
different parameters is also evaluated. It is shown that an adequate choice of the artificial viscosity coefficient and the initial particle 
spacing can lead to correct presentation of the flow-type in a bend. Due to easiness of its implementation, the SPH method can be 
efficiently used in the design of circular conduits with supercritical flow in a bend, such as tunnel spillways, and bottom outlets of 
dams, or storm sewers. 
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Introduction  

The smoothed-particle hydrodynamics (SPH) is 
the most popular meshfree particle method for fluid 
flow simulations. Although it was initially developed 
and used for astrophysical computations[1], nowadays, 
it is gaining increasing popularity in solving different 
engineering problems. A range of possible engineering 
applications can be found in Refs.[2-4]. Capabilities to 
model free-surface and non-Newtonian flows that are 
described with complex rheological models are the 
main advantages of SPH over Eulerian, grid-based 
methods in solving hydraulic engineering problems. 
The fact that it does not require free surface tracking 
and gridding techniques, makes it attractive for model- 
ling these flows. As a meshfree method, the SPH is 
especially suitable for the simulation of discontinuous 
free-surface flows, where free surface tracking and 
gridding are challenging tasks for grid-based methods. 
Since the numerical solution is sought for moving 
particles, the SPH method is computationally very 
demanding when compared with grid-based methods. 
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However, recent development of parallel computing 
techniques enabled faster computations and wider 
application of the method in solving engineering pro- 
blems[5]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Standing waves in the pipe bend 
 

A supercritical flow in a closed conduit bend is a 
good example for testing capabilities of the SPH me- 
thod in solving hydraulic engineering problems. The 
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supercritical bend flow may develop in tunnel spill- 
ways and bottom outlets of dams, in storm sewers and 
in diversion tunnels. Due to high uncertainty about 
flow conditions that might develop therein, bends are 
commonly avoided, even at the expense of an increase 
in the construction costs. 

The supercritical flow in a bend causes abrupt 
depth and velocity disturbances that spread further 
downstream (Fig.1). A positive standing wave deve- 
lops along the outer wall, and a negative wave deve- 
lops along the inner wall. In the case of a significant 
disturbance, the positive wave reaches the conduit in- 
vert and flow becomes helical (Fig.2(a)), or, for even 
larger disturbances, the flow turns to a choking flow 
(Fig.2(b)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 Helical and choking flow in the pipe bend 
 

The choking flow must be avoided, due to its 
periodicity, which is characterized by successive chan- 
ges from pressurized to free-surface flow, and the 
entrainment of large amount of air into flowing water. 
This reduces conduit capacity and provokes vibrations. 
Even though no-choking helical flow may be permissi- 
ble, it should be avoided for the design flow in order 
to stay on the safe side. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 An example of limit curves for onset of helical and cho- 

king flow[6] 
 

Previous experimental studies[6,7] have shown that 
the flow-type in the pipe bend depends on the defle- 
ction angle Θ , bend curvature /R D  and the flow 
characteristics upstream of the bend (i.e., the relative 

depth 0 /h D , and Froude number 4
0 0= /Fr Q gDh ). 

Moreover, relationships which predict conditions for 
the development of the helical and choking flows were 
defined (Fig.3). 

This paper aims at estimating a capability of the 
SPH method to predict the flow-type in the circular 
pipe bend. An open source code DualSPHysics[5,8,9] is 
modified for the purpose of modelling supercritical 
flow in circular pipe bends. The code is supplemented 
with an original algorithm which provides correct in- 
terpretation of the upstream boundary condition. The 
modified code is tested and verified against the experi- 
mental data. 

The SPH method is applied to the so-called “clear” 
water flow, i.e., the flow with no air entrained. Since 
the significant entrainment of air can be expected only 
after the flow becomes helical, it seems appropriate to 
use the one-phase flow assumption to estimate the in- 
ception of the helical flow. With this assumption com- 
putations are markedly less demanding. 

One experimental dataset[6] is used for model 
calibration, and another one[6,7] for its verification. 
Special attention is paid to the sensitivity analysis, in 
which the quality of the model performance is assessed 
by varying artificial viscosity coefficient and initial 
particle spacing. 
 
 
1. Numerical model 

The DualSPHysics code based on the standard 
SPH method is used in this study. This version of the 
SPHysics code is developed for GPU computations. A 
more detailed explanation of this code can be found in 
Refs.[5,8,9]. 

As it is already known the SPH method uses a set 
of particles to present a moving fluid. Hence, the SPH 
method solves equations of fluid dynamics that are 
written using material derivatives. The method applied 
in this study solves the continuity and the momentum 
equations in this form 
 
D =
Dt

ρ ρ− ∇ ⋅ v , D 1= + +
Dt ρ

− ∇
v P g P          (1) 

 
where v  is the velocity, ρ  and P  are the density 
and the pressure respectively, g  is the gravity acce- 
leration and Π  is the viscosity term. Time deriva- 
tives of the density are computed for each particle ( )i  
using SPH interpolation rules. The numerical proce- 
dure is based on the interpolation of the weighting 
function W  that is used as follows 
 
D =
D

i
j ij ij

j
m W

t
ρ

∇∑ v ,  
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where j  refers to all particles located at a distance 
less than 2h  from the particle i  (in this study 

0=h p∆ , where 0p∆  is the initial spacing between 
particles), jm  is the mass of the particle j  and ijv  
is the relative velocity of particle j  with respect to 
particle i , ijΠ  is the artificial viscosity term proposed 
by Monaghnan[10]: 
 

= ij ij
ij

ij

cα µ
ρ

−
Π , 0ij ij <v r                     (3a) 

 
= 0ijΠ , 0ij ij >v r                          (3b) 

 
where ijr  is the relative position vector of the particle 

j  with respect to i , 2= ( ) /( + 0.01 )ij ij ij ij ijh hµ v r r r , 

= ( + ) / 2ij i jc c c  ( c  is the speed of sound in water, 
which is calculated as a square root of the partial deri- 
vative of pressure with respect to density), α  is a 
free parameter that is problem dependent (the common 
value is of the order of 10‒1). The formulae used for 
the weighting function are: 
 

2 3
3

1 3 3( , ) = = 1 +
2 4abW q h q q

h
−

π
, 0 1q≤ ≤      (4a) 

 
3

3

1 1( , ) = = (2 )
4abW q h q

h
−

π
, 1 2q≤ ≤          (4b) 

 

3

1( , ) = = 0abW q h
hπ

, 2q ≥                   (4c) 

 

where = /ijq r h . 
In the standard SPH method, the fluid is treated 

as weakly compressible, and the pressure is calculated 
from the equation of state. This approach is compu- 
tationally less demanding than the incompressible fluid 
model, where Poisson equation has to be solved. The 
following equation of state (Taitʼs equation) is used 
 

0

= 1P B
γ

ρ
ρ

  
 − 
   

                          (5) 

 
where = 7γ  is the polytropic constant, 2

0 0= /B c ρ γ  
is a constant related to the bulk viscosity,       

0 =ρ 1 000 kg/m3 is the density of the fluid at the free 

surface, and 0c  is the speed of sound at the free sur- 
face. The speed of sound could be artificially reduced 
in order to enable a larger time step. 

The SPH simulations with the presented equa- 
tions are followed by pressure oscillations. To avoid 
this spurious effect the following correction, so-called 
“smoothing of density” may be periodically applied 
 

= j
i j ij

j j

m
Wρ ρ

ρ∑ 

                            (6) 

 
This formulation is known as Shepardʼs filter[11]. 

The kernel weighting function is corrected as follows 
 

= ij
ij

j
ij

j j

W
W m

W
ρ∑

                             (7) 

 
In this study, the filtering was repeated after 35 steps. 
Results have shown, that smoothing of the density 
(pressure) field can stabilise computation in the absen- 
ce of the artificial viscosity term. 

Time integration of Eqs.(2) was performed using 
a predictor-corrector scheme that consists of three 
steps. The predictor values ( = d / di i tF v  and 

= d / di iD tρ ) in the first step, are calculated according 
to: 
 

, +1/ 2 = +
2

p n n n
i i i

t∆v v F , , +1 = +
2

p n n n
i i i

t Dρ ρ D ,  

 
, +1

i = +
2

p n n n
i i

t∆r r v                           (8) 

 
These values are then corrected in the corrector 

step: 
 

+1/ 2 . +1/ 2= +
2

n n p n
i i i

t∆v v F , 1/ 2 , +1/ 2= +
2

n n p n
i i i

tρ Dρ + D ,  

 
+1/ 2 , +1/ 2

i = +
2

n n p n
i i

t∆r r v                        (9) 

 
Final values at the end of the time step are cal- 

culated in the last computational step, as follows: 
 

+1 +1/ 2= 2n n n
i i i−v v v , +1 +1/ 2= 2n n n

i i iρ ρ ρ− ,  
 

+1 +1/ 2
i = 2n n n

i i−r r r                           (10) 
 

The mechanical energy loss coefficient in the pipe 
bend was calculated using Bernoulliʼs equation for 
compressible flow 
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    (11) 

 

Terms in the equation are time averages, and subscripts 
u  and d  denote the upstream and downstream cross- 
sections respectively. 

In the version of the SPH method applied in this 
study, a pipe wall is modelled using the−so-called− 
dynamic boundary particles (DBPs)[12]. These particles 
remain still (their position is fixed) during the com- 
putation. However, they appear in relationships for the 
approximation to the derivatives of the fluid particles 
that are located within the distance of 2h  from the 
boundary. For DBPs, the density is computed from the 
continuity equation, and the pressure change is com- 
puted from the equation of state. When a fluid particle 
approaches the wall particles (DBPs), the pressure in- 
creases, thus creating a repulsing mechanism that pre- 
vents the fluid from penetrating through the solid 
boundary. 

In the case of a supercritical flow, boundary con- 
ditions must be prescribed at the upstream end of the 
computational domain. The treatment of an inflow/ 
outflow boundary with the SPH method is still not 
satisfactorily resolved. For instance, Federico et al.[13] 
proposed a technique based on fixed ghost parti- 
cles[14,15] for solving this problem. However, the use 
of fixed ghost particles is not as simple as that of 
DPBs. Moreover, particles in the buffer zone, from 
which they enter the physical domain considered are 
constantly generated by additional algorithm, which 
makes the whole computational procedure cumber- 
some, and thus not suitable for parallelization using 
GPUs. 

Since the steady state is reached fairly fast in the 
problem under investigation (in just a few seconds), it 
is more efficient to load all particles in the buffer zone 
in front of the upstream boundary at the beginning of 
computation (i.e., no new particles are generated 
during the computation). Hence, a new procedure is 
developed in this study. Particles in the buffer zone 
form a water column with prescribed velocity and pre- 
ssure. The column is translated through the upstream 
boundary into the flow domain. As with the Federico 
et al., there is no influence of particles from the con- 
sidered flow domain on particles in the buffer zone 
(while the buffer zone particles influence those in the 
flow domain). This basically means that only a posi- 
tion of the buffer particle is calculated from the given 
velocity value. Consequently, the computational time 
is rather independent of the number of particles in the 
buffer zone. Furthermore, the authors suggest that the 
water column in the buffer zone is positioned such 

that the distance from boundary particles ( )zδ  on the 
inflow boundary is greater than 0 0( = )p p h∆ ∆  as il- 
lustrated on Fig.4. This distance ( )zδ  affects the pres- 
sure difference between the DBP at the inflow boun- 
dary and the fluid particle that enters the flow domain 
and, consequently, the repulsion between the two par- 
ticles, which may provoke numerical instability. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Cross-section beyond real upstream boundary of the 

physical domain 
 

Repulsion problems might arise due to the fact 
that DBPs have no influence on buffer particles, which 
start to approach the solid boundary as they enter the 
flow domain, thus provoking a greater increase of pre- 
ssure in DBPs than that developed when the flow 
domain is already populated with particles. To estimate 
the pressure rise in the DBP, a movement of an arbi- 
trary, single fluid particle towards the solid boundary 
is analyzed. The change of pressure in DBPs may be 
calculated from expressions (2) and (5) using the follo- 
wing relation 
 

0

d d= =  
d d f bf bf

B m W
t t

γ
γ

ρ γ ρ
ρ ρ

∂
∇

∂
P P v             (12) 

 
The relation shows that the change in pressure for the 
given flow velocity depends on compression para- 
meters of the fluid on one side, and the particle spacing, 
via gradient of the weighting function, on the other 
side. Authors suggest an increase in distance of the 
buffer zone from the boundary ( )zδ  as a solution to 
the problem of the pressure discontinuity, since com- 
pression parameters are overall constants. The in- 
crease in distance means that the gradient of the 
weighting function is reduced. The weighting function 
is a monotonously decreasing function within the inter- 
val 1 2q< < . Figure 5 shows the particle distribution 
for three distinct values of zδ . Boundary particles 
(DBPs) are set at the bottom, below fluid particles of 
the flow domain. In these examples the particle velo- 
city is 2 m/s, the water column height is 0.05 m and 
the initial particle spacing is 0 1 mmp∆ = . 
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Fig.5 (Color online) Influence of zδ  on the flow pattern 
 

Figures 5(a1)-5(a3) undoubtedly confirm that the 
increase in the buffer zone distance zδ  results in re- 
duced bouncing of fluid particles from the boundary 
(when 0= = 2z p hδ ∆  there are no bounced particles, 
Fig.5(a3)). Distributions of particles 0 s, 40 s after the 
beginning of simulation (Figs.5(b1)-5(b3) show that 
the distance at which fluid particles are kept away 
from DBPs is approximately 02 p∆  (horizontal line) 
in either case. It is also interesting to take a look at the 
particle distribution near the free surface. It is readily 
noticeable that there is no disturbance of the free 
surface only when 0= 1.5z pδ ∆ , and that notable dis- 
turbances are developed when 0=z pδ ∆ . In the case 
when 0= 2z pδ ∆  disturbances are small. Therefore, 
the choice of the optimal value of zδ  for arbitrary 
flow geometries is left for further investigation. For all 
simulations in this study (circular pipe bend) initial 
distance is 0= 2z pδ ∆ , since oscillations of the depth 
and the velocity are negligible. 
 
 
2. Experimental setup 

The study of the supercritical flow in a pipe bend 
with the SPH method described in the previous section 
is based on the experimental results of Kolarević et 
al.[6]. The experimental setup consists of the upstream 
reservoir, followed by a 0.45 m long transitional sec- 
tion and a horizontal 0.15 m diameter pipe (Fig.6). 
The circular pipe is made of 2 m long upstream, and 

1.5 m long downstream, straight sections with the cir- 
cular bend in between. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Experimental setup 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 (Color online) Location of the cross-section where the 

wave reaches the pipe invert ( = 0α  and 0p∆ = 4.5 mm) 
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Fig.8 (Color online) (a) Helical flow in the pipe bend in the experiment[6], (b)-(e) influence of 0p∆  (for = 0α ) on the flow in the 

pipe bend, (f)-(i) influence of α  (for 0 4.5 mmp∆ = ) 
 

Kolarević et al.[6] performed a series of experi- 
ments to study the influence of the deflection angle 
and bend curvature on the type of the bend flow. In 
this paper the bend curvature of / = 1/ 3D R  and the 
deflection angle of o45  are considered. 
 
 
3. Numerical simulations 

To enable comparison between numerical and 
physical model results, it is necessary to provide the 
same values of the flow discharge and the depth at the 
gauging location. Since the described method for the 
definition of the upstream boundary condition requires 
shifting of the fluid particles from the solid boundary, 
the flow depth cannot be assigned at the gauging sec- 
tion, but some distance upstream. Hence, the depth of 
the water column at the fictitious upstream boundary 
must be determined by a trial and error. 

Courant number value of 0.3 and the sound cele- 
rity of approximately 30 m/s are used in all numerical 
simulations to provide a stable computation and to 
prevent fluid particle penetrating through the solid 

boundary. The initial particle spacing is varied in the 
range between 3.5 mm and 7.0 mm. In addition to the 
particle spacing, the most important parameter in these 
simulations proved to be the artificial viscosity coeffi- 
cient α  (Eq.(3)). 

The open source code DualSPHysics is modified 
to enable inclusion of the open boundary condition. 
This requires that all particles are loaded into GPU 
memory at the beginning of computation. Initially, the 
pipe is empty, and particles form the water column 
upstream of the boundary (buffer zone). The length of 
the water column (i.e., the number of particles) is 
determined from the simulation time necessary to 
reach the steady state. The maximum number of parti- 
cles was approximately 8×106, which resulted in a 
GPU time of 8 hours that was necessary to simulate 
10 s on GTX 970 GPU. 
 
 
4. Results 

The numerical model is calibrated against the 
experimental data from the scenario with helical flow. 
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The flow discharge in this experiment was 22.4 l/s and 
the flow depth was 0.09 m. The calibration criterion is 
a requirement to match the location of the section 
where the positive standing wave reaches the pipe 
invert in the experiment. The wave reached the pipe 
invert in the physical model in the cross-section with 

o= 22.5β , measured from the beginning of the bend 
(Fig.7). The best agreement between the two models 
(numerical and physical) is achieved with no artificial 
viscosity. It should be noted that in the absence of the 
artificial viscosity, the Shepard filter is required for 
stable computation. As it was expected, a better agree- 
ment with the measurements is attained with lower 
values of 0p∆ , with the remark that no significant 
improvements are achieved for 0 4.5 mmp∆ < . 

Simulated water surface profiles for different α  
and 0p∆  values are compared to the measured one in 
Figs.8(a)-8(i). The measured water surface profile 
along the inner bend is presented with the line. It is 
readily noticeable that the increase in both α  and 

0p∆  deteriorates the agreement with measurements, 
i.e. that the best agreement is accomplished with no 
artificial viscosity added ( = 0)α  and small 0 -p∆
value. The normalized RMS errors CV (RMSE) in 
cross-sections 1 to 8 (Figs.8(b)-8(i)) for the analyzed 
α  and 0p∆  values are presented in Tables 1 and 2, 
respectively. The error is calculated from the following 
expression 
 

8
2

,SPH ,
=1

8

,
=1

( )
CV (RMSE) =

i i m
i

i m
i

z z

z

−∑

∑
            (13) 

 
where ,SPHiz  is the calculated water surface elevation 

on the inner bend and ,i mz  is the measured one. A 
location of the cross section in which the wave rea- 
ches the pipe invert when = 0α  and 0 4.5 mmp∆ =  
is indicated in Fig.7. 
 
Table 1 Normalized RMS errors CV(RMSE) in cross-sec- 

tions 1 to 8 for the analyzed -α values and  

0p∆ = 4.5 mm 

α  0( 4.5 mm)p∆ =  CV (RMSE)/% 

0 8.5 

0.01 13.0 

0.10 16.7 

0.20 25.5 

 

 
Table 2 Normalized RMS errors CV (RMSE) in cross-sec- 

tions 1 to 8 for the analyzed 0 -p∆ values and no 
artificial viscosity added ( = 0)α  

0 /p∆ mm ( = 0)α  CV (RMSE)/% 

3.5 8.3 

4.5 8.5 

6.0 15.4 

7.0 17.4 
 

The sensitivity of the location where the wave 
reaches the pipe invert, i.e. the sensitivity of the invert 
angle β  to the -α value is presented in Fig.9. It is 
evident that the -β angle is rather insensitive to the 
change in -α value. The sensitivity of the invert angle 
β  to the initial particle spacing 0p∆  is presented in 
Fig.10. One can notice that the agreement between the 
computed and measured values is better for lower 
values of 0p∆  0( 4.5 mm)p∆ ≤ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 The influence of the artificial viscosity coefficient α  on 

the invert angle β  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10 The influence of the initial particle spacing 0p∆ , on the 

invert angle β  
 

The influence of the two parameters on the bend 
loss coefficient ξ  is presented in Figs.11 and 12. It 
is obvious that the bend loss coefficient increases with 
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an increase in both artificial viscosity (Fig.11) and the 
particle spacing 0p∆  (Fig.12). Additionally, there is 
an abrupt increase in ξ  when 0.01α ≥ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.11 The influence of the artificial viscosity coefficient α  

on the bend loss coefficient ξ  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.12 The influence of the initial particle spacing 0p∆  on the 

bend loss coefficient ξ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.13 (Color online) Flow without turning ( = 0α  and 

0p∆ = 4.5 mm) 
 

The model is verified against the data from the 
scenario in which the flow had not yet become helical 
(Fig.13). The photograph of no-turning flow in the 

experiment is given in Fig.13(a), while the numerical 
simulation results are presented in Fig.13(b). The 
agreement between numerical and experimental results 
in the bend is even better than in the case with the 
helical flow (the corresponding CV (RMSE) is 6.1%, 
when compared with 8.5% for helical flow, Table 1). 
Moreover, the simulated and observed maximum 
depths on the outer bend are almost identical. Since 
the air-water flow is not modeled in this study, better 
prediction for the case without turning of the flow, 
where less air was entrained than for the case with the 
helical flow, would be expected. 

To assess the capability of the SPH method to 
predict conditions for the establishment of the helical 
flow in the pipe bend, scenarios with various values of 
the relative flow depth and Froude number are simu- 
lated, using parameters defined in the calibration pro- 
cess (i.e., for = 0α  and 0 4.5 mmp∆ = ). These simu- 
lations may be understood as additional model verifi- 
cation. Numerical simulation results are presented in 
Fig.14 together with the limit curves for the onset of 
helical flow, based on experiments of Kolarević et al.[6], 
Hager and Gisonni[7]. Both limit curves are regression 
curves derived from the experimental data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.14 Comparison between numerical and experimental results 
 

Since numerical simulation results lie midway 
between the two curves in the whole range of relative 
inflow depths and Froude numbers, the authors do be- 
lieve that the SPH method results can be used as a 
good estimate for the preliminary design of closed con- 
duits with bends in the case of supercritical flow, when 
the physical model is not affordable. 
 
 
5. Conclusions 

The SPH method is applied for the simulation of 
supercritical flow in the circular pipe bend. In this 
study the standard SPH method is supplemented with 
the original algorithm for the treatment of the upstream 
boundary condition. The comparison against experi- 
mental data has proven that the SPH method is a relia- 
ble tool for the prediction of the helical-type flow in 
the circular pipe bend. 
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Satisfactory performance of the model is achieved 
with no artificial viscosity (i.e., for = 0α ) and the 
initial particle spacing of 0 4.5 mmp∆ = . It turned out 
that in the absence of the artificial viscosity, the 
Shepard filter must be applied to stabilize computa- 
tion. 

An acceptable agreement between the numerical 
simulation results and the experimental ones, and the 
easiness of the model implementation, suggest that the 
SPH method can be efficiently used in the preliminary 
design of circular conduit bends in tunnel spillways, 
bottom outlets of dams, and storm sewers where super- 
critical flow might be expected to develop. It is also, 
reasonable to assume that the model will produce relia- 
ble results for closed conduit with cross section of 
different shapes (rectangular, horse-shoe, etc.). 

As for the future research the model should be 
modified to cope with the air-water mixture flow, and 
it should be tested in conduits with different cross-sec- 
tional shapes. 
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