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PROBABILISTIČKA ANALIZA POČETNOG LOMA 

KOMPOZITNIH LAMINATA 

Rezime:  

U ovom radu sprovedena je analiza inicijacije loma laminatne kompozitne ploče, koristeći 

slojeviti konačni element zasnovan na Redijevoj slojevitoj teoriji ploča. Sračunato je granično 

opterećenje na osnovu nekoliko različitih kriterijuma loma koji su implementirani u 

proračunski model. U radu je izvršena probabilistička analiza loma, u kojoj su materijalne 

karakteristike i čvrstoća lamine usvojene kao slučajno promenljive veličine. Cilj analize, 

zasnovane na Monte Karlo metodi, je sračunavanje statističkih parametara graničnog 

opterećenja kompozitnog laminata. Na osnovu sprovedene analize izvedeni su odgovarajući 

zaključci.  

Ključne reči:  početni lom, slojevita teorija, probabilistička analiza, laminat, kompozit 

PROBABILISTIC FIRST-PLY FAILURE ANALYSIS OF COMPOSITE 

LAMINATES 

Summary:  

The paper deals with the first-ply failure analysis of laminated composite plates using a layered 

finite element model based on the Full layerwise theory of Reddy (FLWT). Several 

macroscopic failure criteria have been incorporated into computational model and used to 

compute the limit load. Since almost no parameter in failure analysis is deterministic, 

probability prediction of limit load, considering the lamina elastic material properties and 

strength as random variables is developed. The aim of analysis, based on Monte Carlo Method, 

is to calculate statistical parameters of the limit load of composite laminate. Appropriate 

conclusions have been derived based on the conducted analysis. 

Key words: first-ply failure, full layerwise theory, probabilistic analysis, laminate, composite 
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1. INTRODUCTION 

Due to their outstanding strength and stiffness, low maintenance costs and corrosion 

resistance properties, laminated composite materials have been widely used in the construction 

of mechanical, aerospace, marine and automotive structures which, in general, require high 

reliability levels. Failure of a structural element occurs when it cannot perform its intended 

function. Due to their complex kinematics, laminar composite may fail by several scenarios: 

fiber yielding, matrix yielding, fiber breakage, delamination of layer, or fracture. It is difficult 

to incorporate these modes of failure into design of composite structures [1]. A simpler way is 

to use empirical criteria, similar to the failure criteria used in steel design, but customized for 

composites. The most common criteria to predict failure of a single ply, as discussed by Soni 

[2], are maximum stress criterion, maximum strain criterion and quadratic polynomial criteria 

such as the Tsai-Wu [3], Hoffman [4] and the Tsai-Hill criteria [5]. The maximum stress or 

strain criteria are defined as those having no interactions between the stress or strain 

components and they are therefore called independent failure mode criteria. The failure 

surfaces for these criteria are rectangular in stress and strain space, respectively. Quadratic 

polynomial criteria involve interactions between stress and strain components and they are in 

fact polynomials based on curve-fitting data from composite material tests. The failure surface 

for the quadratic polynomial criteria is of ellipsoidal shape.  

Determination of first-ply failure (FPF) load is essential in understanding the failure 

process as well as the reliability of composite laminates. The first series of analytical solutions 

for the FPF load were presented by Turvey [6, 7], for both symmetric and anti-symmetric 

simply supported composite laminates based on the classical lamination theory [8]. Reddy and 

his associates [9, 10] used the finite element method, which is formulated on the basis of the 

first order shear deformation theory [11], to calculate the linear and nonlinear FPF load of 

composite laminates subjected to transverse and in-plane (tensile) loading. Kam et al. 

investigated the FPF probability considering the elastic properties of the material, the fiber 

orientation and the lamina thickness as random variables [12, 13]. 

In the case when equivalent-single-layer (ESL) theories are used, interlaminar stress fields 

are not represented accurately. However, the interlaminar stress fields play an important role 

on the prediction of FPF load in thick composite laminates subjected to transverse loads [14], 

so the use of refined laminate theories is recommended [15]. The computational model based 

on the Full layerwise plate theory (FLWT) [16] is applied, because it is capable to represent the 

complete 3D stress state of composite laminates with savings in computational time. 

In the paper, a layered finite element model based on the FLWT [17] is presented for FPF 

analysis of laminated composite plates. The model is implemented using object-oriented 

MATLAB [18] code, while the GUI for pre- and post-processing is developed using GiD [19]. 

Several quadratic polynomial criteria have been incorporated into computational model and 

used to compute the FPF load. The presented approach is validated against the available data in 

the literature. Because of significance of failure criteria in a structural design, for a better 

confidence in the predicted strength of the laminar composite, it is of great importance to 

undertake probabilistic studies. Probability prediction of FPF load, considering the lamina 

elastic material properties and strength as random variables is conducted. Analysis based on 

Monte Carlo simulation has been performed and appropriate conclusions have been derived.     
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2. A REVIEW OF POLYNOMIAL FAILURE CRITERIA 

The most general polynomial failure criterion for composite materials is the tensor 

polynomial criterion proposed by Tsai [20]. All other polynomial failure criteria are degenerate 

cases of this criterion. In index notation the tensor polynomial failure criterion is expressed as: 

... 1i i ij i i ijk i i kF F F                                     (1) 

where: 

i   are the stress tensor components in the material coordinates, 

Fi, Fij and Fijk are the components of the strength tensors. All components are referred to the 

material principal axes 1, 2 and 3 of the single lamina. 

One problem in applying the tensor polynomial criterion is the determination of the 

parameter F12. The value of F12 is not unique and can vary from a negative value to a positive 

one. Different quadratic polynomial criteria differ in the way polynomial constants are 

determined [20]. 

1.1. THE TSAI-WU CRITERION 

The Tsai-Wu criterion is given by: 

1 1 2 2 3 3 12 1 2 13 1 3 23 2 3

2 2 2 2 2 2
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2 2 2

1

F F F F F F

F F F F F F

        

     

     

      
             (2) 
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  (3) 

where:  

X, Y and Z are the longitudinal strengths in the 1, 2 and 3 directions, 

subscripts T and C represent tensile and compressive quantities, 

R, S and T represent shear strengths in the 23, 13 and 12 planes, respectively. 

Directions 1, 2 and 3 represent: the fiber direction, the direction transverse to the fiber but 

in the plane of the laminate, and the direction transverse to the fiber and to the laminate, 

respectively. The coefficients F1, F2, F3 correspond to the linear stress terms and F11, F12, F33, 

F44, F55, F66 correspond to the quadratic stress terms. F12, F13, F23 are the coefficients which 

take into account the interaction effect of various normal stress components. 
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Terms associated with 4, 5 and 6 which are F4, F5, and F6 are taken to be zero, since 

shear strengths are the same for positive and negative shear stress. It is also assumed that there 

is no interaction between shear stresses and normal stresses, thus F16, F26 etc. become zero. 

1.2. HOFFMAN’S CRITERION 

Hoffman’s criterion is a special case of the tensor polynomial criterion for the following 

choice of the parameters Fi and Fij: 

 

12 13

23
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       (4) 

Other strength parameters are the same as in Tsai-Wu criterion explained before. 

1.3. THE TSAI-HILL CRITERION 

In Hill’s criterion, the stress terms do not appear as linear terms, therefore, the F1, F2 and F3 

terms are zero. The values of X, Y, Z are taken as either XT, YT, ZT, or as XC, YC, ZC, depending 

upon the sign of 1, 2 and 3, respectively. Strength tensors for this criterion are: 
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           (5) 

3. THEORETICAL BASIS OF THE FINITE ELEMENT MODEL 

BASED ON THE FULL LAYERWISE PLATE THEORY 

In the paper, a laminated composite plate made of n orthotropic layers is considered (Figure 

1, left). The total plate thickness is denoted as h, while the thickness of the kth lamina is 

denoted as hk. The plate is supported along the portion Гu of the boundary Г and loaded with 

loadings qt(x,y) and qb(x,y) acting to either top or the bottom surface of the plate (St or Sb). 

In the FLWT, piece-wise linear variation of all three displacement components is imposed, 

leading to the 3-D stress description of all material layers. The displacement field (u, v, w) of 

an arbitrary point (x,y,z) of the laminate is given as: 

1 1
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In Eq. 6, N is the number of numerical layers, UI(x,y), VI(x,y) and WI(x,y) are the 

displacement components in the Ith numerical layer of the plate in directions x, y and z, 

respectively, ФI(z) are selected to be linear layerwise continuous functions of the z-coordinate, 

and they are given in [11]. 

 

Figure 1 – left: Laminated composite plate with n material layers and N numerical 

interfaces; right: Quadratic serendipity Q8 layered element with linear layerwise interpolation 

through the thickness and corresponding Gauss quadrature points for the reduced integration. 

The linear strain field associated with the previously shown displacement field can be found 

in [17]. To reduce the 3D model to the 2D one, the z-coordinate is eliminated by the explicit 

integration of stress components multiplied with the corresponding functions ФI(z), introducing 

the constitutive relations of the laminate which can be found in [17]. The system of 3N Euler-

Lagrange governing equations of motion of the FLWT can then be derived using the 

Hamilton's principle (strong form), and they are given in [17]. 

The finite element discretization is derived by introducing an assumed interpolation of the 

displacement field into the weak form of the FLWT. All displacement components are 

interpolated as: 
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where: 

m is the number of nodes per 2-D element, 

, ,I I I

j j jU V W are the nodal values of displacements UI, VI and WI in the jth element node 

representing the behaviour of the laminated composite plate in the Ith numerical interface, 

j(x,y) are 2D Lagrange interpolation polynomials associated with the jth element node. 

The matrix form of the FE model is obtained as: 

   IJ I IK F                             (8) 

where: 

[KIJ] is the element stiffness matrix, 

{I} is the element displacement vector, 

{FJ} is the element force vector. 
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[KIJ] is computed from the weak form using 2D Gauss-Legendre quadrature quadrilateral 

domains. The layered finite elements require only C0 continuity of the generalized 

displacements along element boundaries, because only translational displacement components 

are adopted as the nodal degrees of freedom. Quadratic serendipity Q8 layered quadrilateral 

element has been considered (Figure 1, right). To avoid shear locking, reduced integration is 

used when evaluating the element stiffness matrix.  

After the derivation of characteristic element matrices, the assembly procedure is done in a 

usual manner. Once the nodal displacements are obtained the stresses are evaluated from the 

well-known lamina 3D constitutive equation in the Gauss points at the top (t) and bottom (b) 

interfaces of the considered lamina and they are given in [17]. The stresses are calculated both 

in the laminate (xyz) and the local lamina (123) coordinate systems. This is crucial in the 

failure analysis, since the failure criteria described earlier require the stresses in the lamina 

coordinate system. 

Since the interlaminar stresses calculated in this way does not satisfy continuous 

distribution through the laminate thickness, they are post-processed by assuming the quadratic 

distribution within each layer for every stress component. The procedure for post-computation 

stresses is in detail described [16]. 

4. PROCEDURE FOR FIRST-PLY FAILURE 

The first-ply failure analysis is based on the assumption that a given ply would fail if the 

failure index (left-hand side of equation (2)) at any point within the ply reaches a value of 1. 

The procedure of first-ply failure load calculation requires solving the stress problem for an 

initial load. The lamina stresses in the lamina coordinate system are then used in a chosen 

failure criterion to calculate the maximum failure index Φ and check whether the laminate has 

failed or not. The laminate failure is checked by comparing the absolute of (Φ-1) against δ, 

where δ is a predetermined value of maximum tolerable error of the failure index (1% in the 

present study). If the absolute value of (Φ-1) is less than δ, then the first ply within the laminate 

has failed. If not, the initial load is increased or decreased by a predetermined percentage (10% 

in the present study) of the initial load and the procedure is repeated until the laminate fails. 

The maximum failure index is determined by carrying out a sequential search in the 

following way: the failure index of the considered element is calculated in every Gauss point at 

the bottom and top interfaces of each lamina and the maximum value is stored as well as the 

element number, Gaussian point number, lamina number and interface location. The search is 

continued until all layered finite elements are searched for the maximum failure index. 

5. NUMERICAL EXAMPLES 

First example deals with the first-ply analysis of rectangular clamped laminated composite 

plate of dimensions a  b = 0.2286  0.127m. The plate consists of 3 orthotropic material 

layers in angle-ply stacking sequence (45/-45/45) and it is loaded by transverse distribution of 

constant pressure at the top surface of the plate, qt(x,y) = qt. Each layer of thickness 0.127mm is 

modeled as a T300/5208 graphite/epoxy unidirectional lamina, with the material properties 

given in Table 1. 
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Table 1 – Material properties of T300/5208 graphite/epoxy material 

Properties Values Properties Values 

E1 132.5 GPa XT 1515 MPa 

E2 = E3 10.8 GPa XC 1697 MPa 

G12 = G13 5.7 GPa YT = ZT 43.8 MPa 

G23 3.4 GPa YC = ZC 43.8 MPa 

ν12 = ν13 0.24 R 67.6 MPa 

ν23 0.49 S = T 86.9 MPa 

The first-ply load and failure location are evaluated using Tsai-Wu, Hoffman and Tsai-Hill 

failure criteria, respectively. Dimensionless first-ply failure load has been considered: 

4

2

t
t

q a
q

E h

 
  

 
                         (9) 

The present study is performed using 9x5 mesh of quadratic Q8 layered quadrilateral 

element with reduced integration, Figure 2. A comparison is made against the results obtained 

in [10], using first-order shear deformation theory. The results are elaborated in Table 2. The 

average relative differences Δ = (result – reference) / reference [%] are also calculated and 

given in Table 2: 

 

Figure 2: Detail of finite element mesh for laminated composite plate (9 x 5 mesh of 

quadratic Q8 layered quadrilateral elements). 

The results presented in Table 2 indicate that the proposed model predict almost the same 

FPF load as Mindlin plate model of the angle-ply laminated composite plate [10]. Failure 

location is the same for all failure criteria and both numerical models Failure occurs in 3rd 

Gauss point of the 42nd element, at the bottom surface of the 1st layer (see Figure 2). 

After the proposed model has been validated and its accuracy was demonstrated through the 

comparison against the FSDT, probabilistic study accounting for the uncertain nature of 

mechanical parameters has been conducted. Material parameters considered as uncertain are 

elastic moduli E1, E2 and strengths XT, XC, YT, YC and T. All uncertain parameters follow 

normal distribution, with the mean values given in Table 1, while the coefficient of variation 

(COV) is assumed to be 10%. Remaining material parameters are considered as deterministic. 

Latin Hypercube sampling technique has been applied to generate input values of material 

variables, used to perform 3,000 Monte Carlo simulations for each considered failure criterion. 
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Table 2 – Dimensionless first-ply failure load considering different failure criteria and 

different numerical models 

Source 
Failure criteria 

Tsai-Wu Hoffman Tsai-Hill 

Present  80206.6 72240.6 72947.9 

FSDT [10] 79809.2 75597.4 76509.7 

Δ [%] 0.50 4.44 4.66 

The results in terms of matching distributions, mean values and COVs of FPF load are 

elaborated in Table 3. Corresponding probability density functions (PDF) are presented in 

Figure 3. Normal distributed input parameters resulted in three different distribution types of 

the FPF load, for three failure criteria, respectively. Lognormal, gamma and Gumbel 

distributions correspond to the Tsai-Wu, Hoffman’s and Tsai-Hill failure criteria, respectively. 

Difference between corresponding COVs is significant. FPF load calculated by Tsai-Wu 

criterion showed the smallest variation compared to other two criteria. With COVs of 31.1% 

and 25.3%, Hoffman’s and Tsai-Hill criteria revealed great unreliability in calculating FPF 

load of the out-of-plane loaded laminated composite plate.   

 

 

Figure 3 – FPF load histograms and distributions considering 

different failure criteria 
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Table 3 – Distribution types, dimensionless mean values and COVs of first-ply failure load of 

laminated composite plate, considering different failure criteria 

Failure criteria Distribution type Mean value  COV [%] 

Tsai-Wu Lognormal 76867.6 13.4 

Hoffman Gamma 73357.9 31.1 

Tsai-Hill Gumbel 58449.5 25.3 

6. CONCLUSIONS 

In the paper, a layered finite element model based on the FLWT is re-called and used for 

the FPF analysis of laminated composite plate. The computational model is implemented using 

the original object-oriented MATLAB code, while the GUI for pre- and post-processing is 

developed using GiD. Several quadratic polynomial criteria, such as the Tsai-Wu, Hoffman’s 

and the Tsai-Hill’s, have been incorporated into the computational model and used to compute 

the FPF load. The presented approach is validated against the available numerical data in the 

literature, confirming the high accuracy of the presented procedure.  

Normal distributions and the COVs of 10% for seven considered material parameters 

resulted in three different distributions of FPF load for three failure criteria. The FPF load 

calculated by Tsai-Wu criterion showed the greatest mean value and the lowest COV. 

Hoffman’s and Tsai-Hill criteria showed smaller mean values. Comparing only mean values of 

FPF load determined from these three criteria, Tsai-Hill criterion could be considered as the 

most conservative when composite laminated plate is designed. However, the great COV of the 

corresponding distribution indicates that the calculated limit load is less reliable compared to 

the least conservative limit load calculated by Tsai-Wu criterion. Significant dissipation of the 

results when Hoffman’s and Tsai-Hill criteria are used causes high unreliability in predicting 

FPF load. More experimental results in terms of FPF load are required so that the most 

convenient failure criterion for composite laminated plates design is determined.       

Future work includes the implementation of some failure criteria for cross-laminated timber 

CLT panels in the presented framework. The progressive failure analysis will be conducted 

using the above method.  
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