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HpywTBo rpaﬁeBMHCKmx," Association of Structural Simpozijum 2020
KOoHcTpyKTepa Cpbuje Engineers of Serbia Symposium 2020

Emilija Damnjanoviél, Marija Milojevié2, Miroslav Marjanovié3

PROBABILISTICKA ANALIZA POCETNOG LOMA
KOMPOZITNIH LAMINATA

Rezime:

U ovom radu sprovedena je analiza inicijacije loma laminatne kompozitne ploce, koriste¢i
slojeviti konac¢ni element zasnovan na Redijevoj slojevitoj teoriji ploca. Sracunato je grani¢no
optereCenje na osnovu nekoliko razli¢itih kriterijuma loma koji su implementirani u
prorac¢unski model. U radu je izvrSena probabilisticka analiza loma, u kojoj su materijalne
karakteristike i Cvrstoéa lamine usvojene kao slucajno promenljive veli¢ine. Cilj analize,
zasnovane na Monte Karlo metodi, je sraCunavanje statistickih parametara grani¢nog
optere¢enja kompozitnog laminata. Na osnovu sprovedene analize izvedeni su odgovarajuéi
zakljucci.

Kljucne reci: pocetni lom, slojevita teorija, probabilisticka analiza, laminat, kompozit

PROBABILISTIC FIRST-PLY FAILURE ANALYSIS OF COMPOSITE
LAMINATES

Summary:

The paper deals with the first-ply failure analysis of laminated composite plates using a layered
finite element model based on the Full layerwise theory of Reddy (FLWT). Several
macroscopic failure criteria have been incorporated into computational model and used to
compute the limit load. Since almost no parameter in failure analysis is deterministic,
probability prediction of limit load, considering the lamina elastic material properties and
strength as random variables is developed. The aim of analysis, based on Monte Carlo Method,
is to calculate statistical parameters of the limit load of composite laminate. Appropriate
conclusions have been derived based on the conducted analysis.

Key words: first-ply failure, full layerwise theory, probabilistic analysis, laminate, composite
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1. INTRODUCTION

Due to their outstanding strength and stiffness, low maintenance costs and corrosion
resistance properties, laminated composite materials have been widely used in the construction
of mechanical, aerospace, marine and automotive structures which, in general, require high
reliability levels. Failure of a structural element occurs when it cannot perform its intended
function. Due to their complex kinematics, laminar composite may fail by several scenarios:
fiber yielding, matrix yielding, fiber breakage, delamination of layer, or fracture. It is difficult
to incorporate these modes of failure into design of composite structures [1]. A simpler way is
to use empirical criteria, similar to the failure criteria used in steel design, but customized for
composites. The most common criteria to predict failure of a single ply, as discussed by Soni
[2], are maximum stress criterion, maximum strain criterion and quadratic polynomial criteria
such as the Tsai-Wu [3], Hoffman [4] and the Tsai-Hill criteria [5]. The maximum stress or
strain criteria are defined as those having no interactions between the stress or strain
components and they are therefore called independent failure mode criteria. The failure
surfaces for these criteria are rectangular in stress and strain space, respectively. Quadratic
polynomial criteria involve interactions between stress and strain components and they are in
fact polynomials based on curve-fitting data from composite material tests. The failure surface
for the quadratic polynomial criteria is of ellipsoidal shape.

Determination of first-ply failure (FPF) load is essential in understanding the failure
process as well as the reliability of composite laminates. The first series of analytical solutions
for the FPF load were presented by Turvey [6, 7], for both symmetric and anti-symmetric
simply supported composite laminates based on the classical lamination theory [8]. Reddy and
his associates [9, 10] used the finite element method, which is formulated on the basis of the
first order shear deformation theory [11], to calculate the linear and nonlinear FPF load of
composite laminates subjected to transverse and in-plane (tensile) loading. Kam et al.
investigated the FPF probability considering the elastic properties of the material, the fiber
orientation and the lamina thickness as random variables [12, 13].

In the case when equivalent-single-layer (ESL) theories are used, interlaminar stress fields
are not represented accurately. However, the interlaminar stress fields play an important role
on the prediction of FPF load in thick composite laminates subjected to transverse loads [14],
so the use of refined laminate theories is recommended [15]. The computational model based
on the Full layerwise plate theory (FLWT) [16] is applied, because it is capable to represent the
complete 3D stress state of composite laminates with savings in computational time.

In the paper, a layered finite element model based on the FLWT [17] is presented for FPF
analysis of laminated composite plates. The model is implemented using object-oriented
MATLAB [18] code, while the GUI for pre- and post-processing is developed using GiD [19].
Several quadratic polynomial criteria have been incorporated into computational model and
used to compute the FPF load. The presented approach is validated against the available data in
the literature. Because of significance of failure criteria in a structural design, for a better
confidence in the predicted strength of the laminar composite, it is of great importance to
undertake probabilistic studies. Probability prediction of FPF load, considering the lamina
elastic material properties and strength as random variables is conducted. Analysis based on
Monte Carlo simulation has been performed and appropriate conclusions have been derived.
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2. AREVIEW OF POLYNOMIAL FAILURE CRITERIA

The most general polynomial failure criterion for composite materials is the tensor
polynomial criterion proposed by Tsai [20]. All other polynomial failure criteria are degenerate
cases of this criterion. In index notation the tensor polynomial failure criterion is expressed as:

Fo, +Fo0, +Fy 000, +..21 1)

where:

o are the stress tensor components in the material coordinates,

Fi, Fij and Fij are the components of the strength tensors. All components are referred to the
material principal axes 1, 2 and 3 of the single lamina.

One problem in applying the tensor polynomial criterion is the determination of the
parameter Fio. The value of Fi, is not unique and can vary from a negative value to a positive
one. Different quadratic polynomial criteria differ in the way polynomial constants are
determined [20].

1.1. THE TSAI-WU CRITERION

The Tsai-Wu criterion is given by:

Fo, + Ko, + Ko, + 2F,0,0, + 2F 0,0, + 2F,,0,0, +

)
+F,07 + F,02 + F,0l + Fuo0 + Fyol + Fol 21
where:
1 1 1 1 1 1 1 1
F = T F =5 F =—— 3 F ] F - ]
X, Xty oz XX ZVY

where:

X, Y and Z are the longitudinal strengths in the 1, 2 and 3 directions,

subscripts T and C represent tensile and compressive quantities,

R, S and T represent shear strengths in the 23, 13 and 12 planes, respectively.

Directions 1, 2 and 3 represent: the fiber direction, the direction transverse to the fiber but
in the plane of the laminate, and the direction transverse to the fiber and to the laminate,
respectively. The coefficients Fi, F2, F3 correspond to the linear stress terms and Fi1, Fi2, Fas,
Fas, Fss, Fes correspond to the quadratic stress terms. Fi, Fis, Fo3 are the coefficients which
take into account the interaction effect of various normal stress components.
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Terms associated with oz, os and os which are F4, Fs, and Fg are taken to be zero, since
shear strengths are the same for positive and negative shear stress. It is also assumed that there
is no interaction between shear stresses and normal stresses, thus Fis, F2s €tc. become zero.

1.2. HOFFMAN’S CRITERION

Hoffman’s criterion is a special case of the tensor polynomial criterion for the following
choice of the parameters F; and Fi;:

1 1 1 1 1 1 1 1
F12 =7 + - , 13- 5 + - |
20 X: Xe Y;Y. Z,Z. 2\ X; Xe  Z:Z: Y:Y.
F, = _l 1 N 1 3 1
2\ ;Y. Z;Z. XX

Other strength parameters are the same as in Tsai-Wu criterion explained before.

(4)

1.3. THE TSAI-HILL CRITERION

In Hill’s criterion, the stress terms do not appear as linear terms, therefore, the F1, F; and F3
terms are zero. The values of X, Y, Z are taken as either Xr, Yr, Z1, or as Xc, Yc, Zc, depending
upon the sign of o1, oz and a3, respectively. Strength tensors for this criterion are:

1 1 1 1/ 1 1 1
Fi="7 Fu=37 Fi=57, Flzz_i(?"‘Y_z_?jv

1/ 1 1 1 /1 1 1
BT v ) TV T

3. THEORETICAL BASIS OF THE FINITE ELEMENT MODEL
BASED ON THE FULL LAYERWISE PLATE THEORY

In the paper, a laminated composite plate made of n orthotropic layers is considered (Figure
1, left). The total plate thickness is denoted as h, while the thickness of the k" lamina is
denoted as hy. The plate is supported along the portion I'y of the boundary I" and loaded with
loadings g:(x,y) and gu(X,y) acting to either top or the bottom surface of the plate (S; or Sp).

In the FLWT, piece-wise linear variation of all three displacement components is imposed,
leading to the 3-D stress description of all material layers. The displacement field (u, v, w) of
an arbitrary point (x,y,z) of the laminate is given as:

Q)

WY, 2) =0 (XD (@), V(% y,2) =DV (x )0 (),
|:Nl 1=1 (6)
wx,y.2)= W' () (2)
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In Eq. 6, N is the number of numerical layers, U'(x,y), V'(x,y) and W'(x,y) are the
displacement components in the I numerical layer of the plate in directions x, y and z,
respectively, @'(z) are selected to be linear layerwise continuous functions of the z-coordinate,
and they are given in [11].

* REDUCED Integration

Figure 1 — left: Laminated composite plate with n material layers and N numerical
interfaces; right: Quadratic serendipity Q8 layered element with linear layerwise interpolation
through the thickness and corresponding Gauss quadrature points for the reduced integration.

The linear strain field associated with the previously shown displacement field can be found
in [17]. To reduce the 3D model to the 2D one, the z-coordinate is eliminated by the explicit
integration of stress components multiplied with the corresponding functions ®'(z), introducing
the constitutive relations of the laminate which can be found in [17]. The system of 3N Euler-
Lagrange governing equations of motion of the FLWT can then be derived using the
Hamilton's principle (strong form), and they are given in [17].

The finite element discretization is derived by introducing an assumed interpolation of the
displacement field into the weak form of the FLWT. All displacement components are
interpolated as:

U6y =20, (0y), V' (69) = 2w, (x,9),
J:]l J:l (7)
W' (x,y) =D Wy;(x.y)
j=1

where:
m is the number of nodes per 2-D element,
U;,V/, W/ are the nodal values of displacements U', V' and W' in the j" element node

representing the behaviour of the laminated composite plate in the I'" numerical interface,
w(x,y) are 2D Lagrange interpolation polynomials associated with the j™ element node.
The matrix form of the FE model is obtained as:

[k J{ath={F'} (®)

where:

[KM] is the element stiffness matrix,
{A'} is the element displacement vector,
{F’} is the element force vector.
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[KM] is computed from the weak form using 2D Gauss-Legendre quadrature quadrilateral
domains. The layered finite elements require only CO continuity of the generalized
displacements along element boundaries, because only translational displacement components
are adopted as the nodal degrees of freedom. Quadratic serendipity Q8 layered quadrilateral
element has been considered (Figure 1, right). To avoid shear locking, reduced integration is
used when evaluating the element stiffness matrix.

After the derivation of characteristic element matrices, the assembly procedure is done in a
usual manner. Once the nodal displacements are obtained the stresses are evaluated from the
well-known lamina 3D constitutive equation in the Gauss points at the top (t) and bottom (b)
interfaces of the considered lamina and they are given in [17]. The stresses are calculated both
in the laminate (xyz) and the local lamina (123) coordinate systems. This is crucial in the
failure analysis, since the failure criteria described earlier require the stresses in the lamina
coordinate system.

Since the interlaminar stresses calculated in this way does not satisfy continuous
distribution through the laminate thickness, they are post-processed by assuming the quadratic
distribution within each layer for every stress component. The procedure for post-computation
stresses is in detail described [16].

4. PROCEDURE FOR FIRST-PLY FAILURE

The first-ply failure analysis is based on the assumption that a given ply would fail if the
failure index (left-hand side of equation (2)) at any point within the ply reaches a value of 1.
The procedure of first-ply failure load calculation requires solving the stress problem for an
initial load. The lamina stresses in the lamina coordinate system are then used in a chosen
failure criterion to calculate the maximum failure index @ and check whether the laminate has
failed or not. The laminate failure is checked by comparing the absolute of (&-1) against o,
where ¢ is a predetermined value of maximum tolerable error of the failure index (1% in the
present study). If the absolute value of (®-1) is less than J, then the first ply within the laminate
has failed. If not, the initial load is increased or decreased by a predetermined percentage (10%
in the present study) of the initial load and the procedure is repeated until the laminate fails.

The maximum failure index is determined by carrying out a sequential search in the
following way: the failure index of the considered element is calculated in every Gauss point at
the bottom and top interfaces of each lamina and the maximum value is stored as well as the
element number, Gaussian point number, lamina number and interface location. The search is
continued until all layered finite elements are searched for the maximum failure index.

5. NUMERICAL EXAMPLES

First example deals with the first-ply analysis of rectangular clamped laminated composite
plate of dimensions a x b = 0.2286 x 0.127m. The plate consists of 3 orthotropic material
layers in angle-ply stacking sequence (45/-45/45) and it is loaded by transverse distribution of
constant pressure at the top surface of the plate, gi(x,y) = .. Each layer of thickness 0.127mm is
modeled as a T300/5208 graphite/epoxy unidirectional lamina, with the material properties
given in Table 1.
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Table 1 — Material properties of T300/5208 graphite/epoxy material

Properties Values Properties Values
= 132.5 GPa X7 1515 MPa
E>=Es 10.8 GPa Xc 1697 MPa
G2 = Gu3 5.7 GPa Yr=127 43.8 MPa
Gas 3.4 GPa Ye=2Zc 43.8 MPa
V12 = Vi3 0.24 R 67.6 MPa
Va3 0.49 S=T 86.9 MPa

The first-ply load and failure location are evaluated using Tsai-Wu, Hoffman and Tsai-Hill
failure criteria, respectively. Dimensionless first-ply failure load has been considered:

- _a(ay)
a-2(2) .

The present study is performed using 9x5 mesh of quadratic Q8 layered quadrilateral
element with reduced integration, Figure 2. A comparison is made against the results obtained
in [10], using first-order shear deformation theory. The results are elaborated in Table 2. The
average relative differences A = (result — reference) / reference [%] are also calculated and
given in Table 2;

.

37 38

4 3 5
28 29 30 3l 32 33 734 35 36
19 20 21 22 23 24 25 26 27
i 0 11 712 13 21 15 16 17 18
VYV EVEVEYEYEDE 9

Figure 2: Detail of finite element mesh for laminated composite plate (9 x 5 mesh of
quadratic Q8 layered quadrilateral elements).

top surface

bottom surface

The results presented in Table 2 indicate that the proposed model predict almost the same
FPF load as Mindlin plate model of the angle-ply laminated composite plate [10]. Failure
location is the same for all failure criteria and both numerical models Failure occurs in 3
Gauss point of the 42" element, at the bottom surface of the 1% layer (see Figure 2).

After the proposed model has been validated and its accuracy was demonstrated through the
comparison against the FSDT, probabilistic study accounting for the uncertain nature of
mechanical parameters has been conducted. Material parameters considered as uncertain are
elastic moduli E;, E, and strengths Xr, Xc, Y1, Yc and T. All uncertain parameters follow
normal distribution, with the mean values given in Table 1, while the coefficient of variation
(COV) is assumed to be 10%. Remaining material parameters are considered as deterministic.
Latin Hypercube sampling technique has been applied to generate input values of material
variables, used to perform 3,000 Monte Carlo simulations for each considered failure criterion.
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Table 2 — Dimensionless first-ply failure load considering different failure criteria and

different numerical models

Failure criteria
Source
Tsai-Wu Hoffman | Tsai-Hill
Present 80206.6 72240.6 72947.9
FSDT [10] 79809.2 75597.4 76509.7
A [%] 0.50 4.44 4.66

The results in terms of matching distributions, mean values and COVs of FPF load are
elaborated in Table 3. Corresponding probability density functions (PDF) are presented in
Figure 3. Normal distributed input parameters resulted in three different distribution types of
the FPF load, for three failure criteria, respectively. Lognormal, gamma and Gumbel
distributions correspond to the Tsai-Wu, Hoffman’s and Tsai-Hill failure criteria, respectively.
Difference between corresponding COVs is significant. FPF load calculated by Tsai-Wu
criterion showed the smallest variation compared to other two criteria. With COVs of 31.1%
and 25.3%, Hoffman’s and Tsai-Hill criteria revealed great unreliability in calculating FPF
load of the out-of-plane loaded laminated composite plate.

Tsai-Wu criterion Hoffman's criterion

4.0 _ 2.5
15 B Lognormal Gamma
o distribution 2.0 distribution
3.0 i N .
w 2.5 \ w 1.5 N\
[a )] o
=20 |/ o / AN
15 \ 1.0 / \\
1.0 / N 05 /
0.5 ™ = |
0.0 = T 00 £ L : L1 e
50000 60000 70000 80000 90000 100000110000120000 40000 60000 80000 100000 120000 140000 160000

Dimensionless FPF load Dimensionless FPF load

Tsai-Hill criterion

0

/

05 f >

o 4

Gumbel
distribution

PR W W
h D bt O

PDF

o \——-—_;
OB000~ 40000 60000 80000 100000 120000 140000
Dimensionless FPF load

Figure 3 — FPF load histograms and distributions considering
different failure criteria
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Table 3 — Distribution types, dimensionless mean values and COVs of first-ply failure load of
laminated composite plate, considering different failure criteria

Failure criteria | Distribution type | Meanvalue | COV [%]

Tsai-Wu Lognormal 76867.6 134
Hoffman Gamma 73357.9 31.1
Tsai-Hill Gumbel 58449.5 25.3

6. CONCLUSIONS

In the paper, a layered finite element model based on the FLWT is re-called and used for
the FPF analysis of laminated composite plate. The computational model is implemented using
the original object-oriented MATLAB code, while the GUI for pre- and post-processing is
developed using GiD. Several quadratic polynomial criteria, such as the Tsai-Wu, Hoffman’s
and the Tsai-Hill’s, have been incorporated into the computational model and used to compute
the FPF load. The presented approach is validated against the available numerical data in the
literature, confirming the high accuracy of the presented procedure.

Normal distributions and the COVs of 10% for seven considered material parameters
resulted in three different distributions of FPF load for three failure criteria. The FPF load
calculated by Tsai-Wu criterion showed the greatest mean value and the lowest COV.
Hoffman’s and Tsai-Hill criteria showed smaller mean values. Comparing only mean values of
FPF load determined from these three criteria, Tsai-Hill criterion could be considered as the
most conservative when composite laminated plate is designed. However, the great COV of the
corresponding distribution indicates that the calculated limit load is less reliable compared to
the least conservative limit load calculated by Tsai-Wu criterion. Significant dissipation of the
results when Hoffman’s and Tsai-Hill criteria are used causes high unreliability in predicting
FPF load. More experimental results in terms of FPF load are required so that the most
convenient failure criterion for composite laminated plates design is determined.

Future work includes the implementation of some failure criteria for cross-laminated timber
CLT panels in the presented framework. The progressive failure analysis will be conducted
using the above method.
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