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Abstract

Soil organic carbon represents the main nutrient source for crop yields, which is of
great importance to agricultural production. This research investigates the usage of
transfer learning-based neural network model to predict SOC values from geochemical
soil parameters. The results on datasets representing five Europian countries showed
that the model was able to capture the valuable information contained in grassland soil
samples when predicting the SOC values in cropland areas.
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1 Introduction

Measuring and assessment of some soil components and properties is generally a
time-consuming and costly procedure. The absence of measured data is often reim-
bursed by results of predictions or modeling [1]. A commonly used approach to the
estimation of such soil parameters is based on their indirect assessment, using other al-
ready available soil parameters. One of the most important soil parameters is soil organic
carbon (SOC). SOC is a vital part of the global carbon cycle and represents the main
nutrient source for crop yields, which is of great importance to agricultural production
[2]. Traditional SOC measurements are time-consuming and laborious. Therefore, using
the AI approach, especially machine learning techniques, to estimate SOC from other
geochemical parameters, is the direction of future development. SOC concentration de-
pends on various factors such as soil type, climate, topography, and soil management
practices. SOC is greatly influenced by vegetation through organic matter input and,
consequently, land-use change is one of the most important factors which impacts SOC
stock increase/decrease.

This paper examines the possibility of a neural network model to predict SOC in
arable cropland from other geochemical parameters measured in different, but related
land cover (grassland) areas, by means of instance-based transfer learning [3].

2 Instance-based non-inductive transfer learning

The proposed model for predicting SOC is designed to use the instance-based non-
inductive transfer learning [3]. We first define the notions of the domain, task and
transfer learning. A domain D consists of two compenents: a feature space X from which
samples x ∈ X come from, and a marginal probability distribution PX that produces
each sample x. All samples are, or can be transformed to, vectors of real numbers x ∈ Rn.
Given a domain of interest D(X , PX), a task T consists of two components: a label space
Y , and a predictive function f : X → Y for which y = f(x). In a regression task,
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y ∈ Y is a real number, while in a classification task it takes one of several discrete values
(classification labels). It is common to interpret f as a probability P (y|x), leading to
T = T(Y , PY |X). Often, there are two domains of interest, source domain Ds and target
domain Dt. They are represented with source-labeled and destination-labeled datasets
where the labelling process is the outcome of two tasks Ts and Tt: (xsi , ysi)i=1···n, where
xsi ∈ Xs, ysi ∈ Ys, and (xti , yti)i=1···m, where xti ∈ Xt, yti ∈ Yt. According to [4],
transfer learning can be defined as:

Definition 1: Given Ds,Ts,Dt, and Tt, transfer learning aims to help imporve the
learning of the predictive function ft from the target domain, using the knowledge in Ds

and Ts, where Ds 6= Dt or Ts 6= Tt.
From Definition 1 follows that, for Ds = Dt and Ts = Tt, a learning setting becomes

a traditional machine learning problem. However, the nature of the difference between
the domains or between the tasks can be used to categorize different transfer learning
settings. We now define the instance-based non-inductive transfer learning setting:

Definition 2: Let Ts = Tt, that is Ys = Yt and P s
Y |X = P t

Y |X . If Xs = Xt and

P s
X 6= P t

X (i.e. Ds 6= Dt), the learning setting becomes instance-based and non-inductive.
Instance-based non-inductive setting assumes the same feature and label spaces, and

the same underlying process that maps inputs to outputs in both domains. However, the
marginal probability distributions of instances (samples) are different across domains.
We assume the marginal probability distributions of the observed samples are different
across various land cover types. Therefore, this setting can be applied when one tries to
predict cropland OC values using the geochemical and OC values from grassland samples
and only geochemical from cropland samples.

Suppose that Ds, Ts, and Dt are represented with (xsi , ysi)i=1···n, and (xti)i=1···m.
We would like to find the optimal parameters θ∗t of the target task prediction model
under the assumption of the instance-based non-inductive setting. Using the empirical
risk minimization framework [5], we minimize the following expectation:

θ∗t = arg min
θt

E(x,y)∼P t
X,Y

[l(x, y,θt)] (1)

where l(x, y,θt) is a loss function defined for the target task. Using the definition of
expectation and the Bayes’ rule, (1) becomes:

θ∗t = arg min
θt

E(x,y)∼P s
X,Y

[
Pt(x, y)

Ps(x, y)
l(x, y,θt)

]
(2)

Since, by Definition 2, P s
Y |X = P t

Y |X , and after using the Bayes’ rule, (2) becomes:

θ∗t = arg min
θt

E(x,y)∼P s
X,Y

[
Pt(x)

Ps(x)
l(x, y,θt)

]
(3)

Optimal parameters of the target model cannot be found by (3) since the expectation
of the joint distribution in the source population is impossible to compute. The best we
can do is to apply the empirical approximation on the training data:

θ∗t = arg min
θt

n∑
i=1

[
Pt(xsi)

Ps(xsi)
l(xsi , ysi ,θt)

]
(4)

Equation (4) suggests why this method is called ”instance-based”. Each source

domain instance is weighted in the loss function with the ratio
Pt(x)

Ps(x)
, meaning that
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if an instance is more probable to ocure in the target domain, then the optimization
process pays more attention to it. If the probability ratio is 1 for all source instances,
then the domains can be treated as one, and the loss function takes its standard form.
The probability ratio can be estimated using the rejection sampling-based method for
correcting sample selection bias [6]. This method introduces a new binary random
variable δ ∈ {0, 1} which selects whether a sample will be accepted by the source domain
or not: Ps(x) = P (x|δ = 1), and Pt(x) = P (x|δ = 0). The ratio can be calculated as
follows:

Pt(x)

Ps(x)
=
P (x|δ = 0)

P (x|δ = 1)
=
P (x)P (δ = 0|x)P (δ = 1)

P (x)P (δ = 1|x)P (δ = 0)
=
P (δ = 1)

P (δ = 0)

(
1

P (δ = 1|x)
− 1

)
(5)

Equation (5) suggests that the probability ratio is proportional to
1

P (δ = 1|x)
. Hence,

one can treat the evaluation of the ratio as a binary classification problem in which a
classifier is trained to predict the probability of a sample being from the source domain
(P (δ = 1|x)), or the target domain (P (δ = 0|x)).

3 Grassland-to-cropland SOC prediction model

In this research, Ds = Dgrassland and Dt = Dcropland. The feature spaces, Xgrassland =
Xcropland, of the proposed grassland-to-cropland SOC prediction model contain 5 phys-
ical and chemical properties measured at identical locations: Nitrogen (Total NCS in
g/kg for < 2 mm soil fraction), pH - H2O (1:1 Soil-Water Suspension for < 2 mm soil
fraction), pH - CaCl2 (pH, CaCl2 Suspension for < 2 mm soil fraction), Potassium (Ex-
tractable in mg/kg for < 2 mm soil fraction), and Electrical Conductivity (Saturation
Extract in dS/m for < 2 mm soil fraction). The label spaces, Ygrassland = Ycropland,
contain SOC values measured following the ISO 10694:1995 protocol [7]. Under the as-
sumption of learning setting from Definition 2, domains and tasks are represented with
(xgrassland, ygrassland)i=1···n, and (xcropland)i=1···m.

The model is trained in two phases. In the first phase, a two-layer, fully-connected
neural network classifier [8] is trained to distinguish between the grassland (source do-
main), and the cropland (target domain) samples. The activation function in each of
the five hidden layer neurons is ReLU, while the output neuron performs the Sigmoid
function. The network is trained to minimize the binary cross-entropy loss in a stan-
dard backpropagation procedure. When trained, the network assigns the probabilities
of belonging to the grassland class to each sample from both land types. The assigned
probabilities will be used in the next phase, to modify the mean squared error loss of
the regression model according to (4) and (5).

The regression model uses a two-layer, fully-connected neural network with five hid-
den neurons and one linear output [8]. The network is trained in a standard backpropaga-
tion procedure. Optimal hyperparameters for both networks (learning rate, momentum,
and the number of training epochs) were found in a standard cross-validation procedure.

4 Experimental model evaluation

The proposed model is evaluated using the subset of the LUCAS data set, which
originally consists of 21 857 observations [9], with SOC ranging from 0.10 to 560.20
g/kg, as shown on the map in Figure 1. The subset included data from five countries:
Sweeden (108, 153), Germany (410, 836), France (783, 1580), Austria (166, 117), and
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Bulgaria (124, 255) − the numbers in parenthesis are the numbers of samples from the
grassland and cropland land types respectively.

Figure 1: Map of spatial distribution of LUCAS point samples and SOC content values in [g/kg]

After training the transfer learning model on geochemical properties of grassland and
cropland samples, and grassland SOC values, the prediction results on cropland SOC

values were compared to classiscal setting in which we set
Pt(x)

Ps(x)
= 1. The proposed

and the classical approach were compared using standard regression metrics, Normal-

ized Root Mean Squared Error ( 1
ȳ

√
1
n

∑n
i=1(yi − ŷi)2), Normalized Mean Absolute Error

( 1
nȳ

∑n
i=1 |yi − ŷi|) and R2 (1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

). The results are shown in Table 1.

Sweeden Germany France Austria Bulgaria

NRMSE Cl .58 .39 .27 .20 .13
NRMSE TL .54 .28 .26 .19 .14
NMAE Cl .31 .26 .18 .15 .10
NMAE TL .27 .17 .15 .14 .10
R2 Cl .83 .78 .77 .93 .83
R2 TL .85 .88 .80 .94 .83

Table 1: Comparing classical (Cl) and transfer learning (TL) approach: NRMSE and NMAE
(lower the better), and R2 (higher the better), indicate the benefits of the proposed approach.
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All performance measures show that our transfer learning-based network behaves
better than the classically trained network, with different levels of improvement among
countries - the transfer of knowledge from grassland to cropland was quite successful
in Germany and Sweeden, moderate in France, while in Austria and Bulgaria the dif-
ferences were negligible. We suppose countries where the model achieved better results
apply more appropriate agrotechnical measures to preserve SOC content in cropland
(more cropland samples exhibit similar geochemical characteristics to typical grassland
samples).

5 Conclusions

In this paper, an instance-based transfer learning model is created to predict SOC
values of cropland samples using geochemical soil parameters and SOC values of grass-
land samples. Compared to a classical machine learning setting, using soil samples
from five European countries, the model achieved better performance and showed the
potential of transfer learning in regression problems in agriculture and soil science.
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