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Abstract  

reciprocity method (BE-DRM) is presented. Thermal effects in the case of 
cylindrical geometry for mono as well as multi layer structures were considered. 
The different aspects of interaction up to the melting point of considered 
materials are presented. The effect of temperature dependence of the absorption 
coefficients on the process of laser heating was considered. The BEM 
formulation is based on the fundamental solution for the Laplace equation. The 
numerical results for spatial as well as temporal temperature distribution inside 
the material bulk are presented. Two cases were considered: a mono-layer and a 
multi layer case. In the case of a mono-layer structure DRM and DRM-MD 
approaches were used, and the numerical results were compared with the 
analytical ones. In the multi layer case only the DRM-MD approach was used. 
Keywords: axisymmetric laser-material interaction, dual reciprocity method. 

1 Introduction  

The dual reciprocity method (DRM) was applied for laser-material interaction 
analysis. Laser beams have a number of applications in different areas of science, 
technology, and medicine. In the present work, thermal models of interaction in 
case of cylindrical geometry and mono as well as multi layer structures were 
considered. The spatial and temporal distributions of temperature field were 
considered. The numerical model of laser-material interaction described here is 
restricted only to heating effects of the targeted material without destructive and 
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disintegration processes during interaction i.e. the incident intensity of laser 
radiation was considered to be equal to critical intensity.  
     In the present work the dual reciprocity method [1] is used to solve 
axisymmetric problems. The DRM has been used previously for axisymmetric 
problems, see for example [2,3,4]. The difference in this case is that the Laplace 
fundamental solution is used instead of the one for axisymmetric problems 
expressed in terms of Eliptic integrals. The present approach simplifies the DRM 
part and the construction of a suitable particular solution. 
      In order to estimate the accuracy of the numerical method, analytical results 
were compared to the results obtained using the boundary element DRM 
approach. 

2 Mathematical model of the interaction 

The heating process provoked by a laser beam during interaction was considered. 
It was assumed that absorption of the laser beam occurred in the thin surface 
layer of the bulk material.  
     The interaction with the material is modeled as an equivalent surface thermal 
source with appropriate spatial ant temporal distributions. The analysis is 
focused on cylindrical geometry and surface distributions of absorbed incoming 
laser beam fluxes, and accordingly the temperature field analysis was performed 
using the cylindrical coordinate system. Though this problem is a three-
dimensional one, as there is axial symmetry, the temperature field is a function 
of the radial and axial coordinates only, i.e. the problem under consideration 
becomes a two dimensional one.  In this work only mono and two layer 
structures, with ideal thermal contacts between adjacent layers, were considered, 
however the results can be applied to multi layer structures.  
     The geometry of the considered problem for a two-layer case is shown in Fig. 
1. It was assumed that the spatial and temporal distributions of the laser beam 
intensity on the surface of the material specimens could be described by a 
product of two independent functions of the radial coordinate and time e.g. 
( )rq and ( )tϕ , respectively. 

     It was also assumed that all the thermal parameters of the material of interest 
in the considered temperature range are constant and temperature independent. A 
linear temperature dependence of the material optical parameter, i.e. the 
absorption coefficient, was assumed [5]. The initial temperature inside the 
specimen is equal to the ambient temperature T0. Heating of material, according 
to above assumptions, for a two layer cylindrical structure (Fig. 1.), with ideal 
thermal contact between layers, could be described by the following equations 
[5]:  
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Figure 1: Geometry of the problem domain (R-radius of the structure; h1-
thickness of upper layer; h-height of whole structure; A-absorption 
coefficient). 

     Subscripts 1 and 2 correspond to the upper and to the lower layer, 
respectively. The corresponding boundary conditions are: 
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where Ti is the temperature difference between the interior domain temperature 

and ambient one, λ  is the coefficient of thermal conductivity, 
cρ
λa
⋅

=  is the 

coefficient of thermal diffusivity, c  is the specific heat, ρ  is the material 
density, α is heat transfer coefficient which determines the rate of thermal losses 
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on boundary surface, R and h are specimen’s radius and length, respectively, 
A(T) is absorption coefficient of the laser radiation by the material of the upper 
layer at temperature difference T . 
     The temperature dependence of the absorption coefficient is assumed to 
follow the following linear form 

( ) 0A T A B T= + ⋅  
where 0A is of the absorption coefficient at ambient temperature 0T and B is a 
constant whose value depends on the type of material [5]. For Al the above 
constants have the following numerical values [5]: 

140.642; 4.28 100A B
K

−= = − ⋅  

The thermal losses, in axial and radial directions, were modeled by free thermal 
convection. Structures with three or more layers could also be described by the 
above model.   

3 The boundary element formulation 

For a mono-layer structures the governing equations (1) at n-th time step could 
be transformed for cylindrical coordinates into the following form: 
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where t∆  is time step. Equation (3) is the main form of the equation which is 
solved in the present case. It is clear that the term with 1/r on the right hand side 
does not appear in the classical axisymmetric formulations which use 
fundamental solutions for axisymmetric problems. In the present case the 
Laplace fundamental solution is used and the term with 1/r is added to the non-
homogeneous part of the Laplace equation. This term requires special care when 
r → 0, as is explained further in the text. 
     By applying the Green’s identity (3) can be transformed into the following 
integral form: 

( , )* * *( ) ( ) ( , ) ( ) ( , ) ( ) ( )y y y
y y y

x yx T x q x y T y d T x y q y d T b y dχ
Γ Γ Ω

+ Γ − Γ = − Ω∫ ∫ ∫

   (4) 
where x = (rx,zx), y = (ry,zy), Ω is the problem domain Γ is the boundary of Ω, n is 
the direction of the normal to Γ,  q = ∂T/∂n and q* = ∂T*/∂n. The boundary 
conditions are given as: 
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4 The dual reciprocity formulation 

To avoid domain integration on the right hand side in expression (4) the DRM 
approximation is applied [1] yielding: 
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     In this work the DRM approximation function f was the 1+R radial basis 
function. 
     The thermal flux through the elementary surface S which encloses elementary 
volume dV during infinitesimally time period dt, see Figure 2, is represented 
using the following expressions: 
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where ρ,a  and c  have same meaning as in relations 1 and 2, v is velocity of 
element dV , 21,q  is thermal flux in axial direction at point z  and dzz +  
respectively, and rq  is thermal flux in radial direction on boundary surface S. 
After discretization of the boundary Γ , the unknown temperature T is 
interpolated on elements on the boundary, the boundary integrals are evaluated 
and using collocation technique equation (6) is transformed into a system of 
linear equations.    
     The nodal values T(xi), ( )ˆ

iT x , ( )ixq , ( )ˆ iq x , ( )ixb , ( )ixb1 , ( )ixb2  and 

the coefficients iα  could be expressed in matrix form as: 
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Figure 2: The thermal flux along z-axis. 
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where T0 is a vector obtained in the previous time step, N is the number of 
boundary nodes, L  is the number of internal nodes, and ijδ  is the Kronecker 
delta symbol. 
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     Now the equation (6) can be expressed in the following matrix form: 
−− = − +1Hu Gq (Hu Gq)F b I0                                 (12) 
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where H and G are matrices whose matrix elements were evaluated from the 
contour integrals. The elements of the vector q over contour Γ  could be 
expressed, according to the boundary conditions, by the elements of vector u. 
The elements of vector I0 represent the equivalent thermal loads on upper surface 
of the specimens. 
     Sub-domain technique in the DRM, further referred to as DRM-MD [6] has 
been used in some examples in order to improve the accuracy. 

5 Numerical results 

The temperature field distributions in radial and axial direction, inside a mono-
layer Al cylinder with radius 7 mm and length 5 mm, which were obtained using 
the DRM, the DRM-MD with four sub-domains and analytical solution [7] for 
t=1s are presented in Figures 3 and 4, respectively.  
     

Figure 3: Temperature difference distribution along r-axis for the Al 
specimen on the upper surface (number of subdomains for DRM-
MD=4). 

     The following properties of the incoming laser beam were considered: power-
500W, radius of laser beam 1mm, top head profile and constant laser beam 
intensity with time duration of 1s. 

0 1 2 3 4 5 6 7

150

200

250

300

350

400

450

500

550
 Exact solution

∆T[K]

r[mm]

 DRM
 DRM MD

Boundary Elements and Other Mesh Reduction Methods XXVIII  85

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 42,
 www.witpress.com, ISSN 1743-355X (on-line) 



 

Figure 4: Temperature difference distribution along the z-axis inside the Al 
specimen obtained by using DRM, DRM-MD and analytical 
expression (number of subdomains for DRM-MD=4). 

     The DRM and the DRM-MD results compared to the analytical ones along 
radial direction for different number of boundary nodes are shown in Figure 5 for 
t=1s. It can be observed that the accuracy of the DRM-MD was higher than the 
one achieved using the DRM in all cases. 
     The distribution of temperature field at t=1 s, in axial directions, for the case 
of two layer cylindrical structures, is shown in Figure 6. The upper layer of the 
two-layer structure is made of Al and the lower layer is made of glass. The 
following dimensions of the structures were used: (i) Al-layer-0.5 mm, Glass 
layer- 4.5 mm; and (ii) Al-layer-0.7 mm, Glass layer- 4.3 mm thicknesses. In 
both cases the radius was 7 mm. The following properties of the laser beam were 
assumed: Power – 100W, radius of laser beam – 1mm, the laser beam has 
constant intensity with the top head profile and time duration of 1s. The 
presented results were obtained by using the DRM-MD procedure with nine sub 
domains. A linear temperature dependence of the absorption coefficient was 
assumed. 

6 Conclusions 

The boundary element dual reciprocity method (BE-DRM) was applied to the 
problem of interaction of laser-mono/multi layer structures with axial symmetry. 
The BEM formulation is based on the fundamental solution for the Laplace 
equation.  
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Figure 5: Relative error for the DRM and the DRM-MD along r direction on 
the upper surface for different number of boundary nodes (number 
of subdomains for DRM-MD=4). 

 

Figure 6: Temperature difference distribution along z-axis in case of two 
layer structures obtained by the DRM-MD with nine sub-domains 
at upper surface and at interfaces between layers. 
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     The accuracy of the developed DRM formulation was first tested using 
analytical solution for a mono-layer case and then applied to a two-layer 
structure consisting of Al and glass. The results show that the formulation can 
provide accurate results for this type of problems. The results were compared for 
the DRM when the domain was kept as a single domain and when it was divided 
into sub-domains (DRM-MD). The sub-domain formulation showed increase in 
the accuracy. This behavior of the DRM formulation has already been reported 
in the past [8].  
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