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ABSTRACT 

Hydrological and hydraulic models used for forecasting and providing reliable inputs are essential for effective water 

management. Throughout their application, models might produce results of unsatisfying accuracy due to many 

uncertainty sources. Considerable uncertainty stems from model parameters values, which are usually obtained through 

calibration, i.e., iterative adjustment of the parameter values to achieve the best possible fit between simulated and 

observed variables. Model calibration yields time-invariant parameter estimates, which can lead to poor-quality 

simulation outputs that cannot serve as decision support. Specifically, parameter values can be expected to vary due to 

secondary- or seasonal processes that are not explicitly accounted for in the model, or due to anthropogenic activity (e.g., 

land-use change). Therefore, models used for operational forecasting should be run with up-to-date parameter values. 

This necessitates frequent model recalibration, which can be quite impractical due to high time- and computational 

requirements of the calibration procedure. Therefore, developing fast(er) calibration algorithms could be a viable 

alternative. This paper explores the potential of control theory-based, tailor-made, data assimilation algorithm intended 

for continuous update of the parameters of hydrological and hydraulic models. The algorithm enables the parameter 

values to be regularly updated at each computational time step based on the dynamically assessed goodness-of-fit (GOF) 

performance indicator. This approach enables one-pass calibration procedure. Using this algorithm instead of 

traditional, iterative calibration procedure where models’ GOF is assessed at the end of the simulation, can improve 

efficiency and effectiveness of models’ calibration. The proposed one-pass calibration approach will be tested on two 

synthetic test cases, one example of a hydrological model and one example of a 1D hydraulic model.  

1. INTRODUCTION 

Optimal daily use and control of water resources requires reliable decision support systems able to provide 

reliable forecasts of hydrologic data (stage and flow hydrographs) based on hydrologic and hydraulic models. 

Model-driven forecasting can be affected by numerous sources of uncertainty, such as unreliable initial and 

boundary conditions and/or poorly estimated model parameters [1], [2]. When model parameters are identified 

as the dominant source of uncertainty, additional attention should be addressed in model calibration. However, 

even the best calibrated models can produce results of unsatisfying accuracy due to secondary- and/or seasonal 

change of model’s parameters or even anthropogenic impact (e.g., land use change). These parameters’ 

dynamics often cannot be considered which can make the models unable to perform well on a daily basis. 

When operational hydrologic and hydraulic models are used for daily water management, calibration procedure 

must be repeated occasionally.  
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 Additionally, using digital twins (DT) as a new (modelling) paradigm for operational water resources 

management [3]–[6] requires continually updated modes which amplifies the necessity for (near) real-time 

model recalibration.  Traditional model calibration procedure is based on iterative adjustment of the parameters 

values to achieve the best possible fit between simulated and observed variables using empirical and/or some 

of the optimization algorithms. This algorithm provides time-invariant parameters, which means that model 

parameters are unchanged during the simulation, and every adjustment of the parameters requires a new 

simulation, which makes the traditional calibration procedure time-consuming, especially for operational 

models. On the other hand, numerous studies [7]–[15] showed the ability of data assimilation algorithms to 

update model parameters during the single simulation. However, these studies use ensemble-based data 

assimilation algorithms, where Monte-Carlo simulations have to be conducted, which, eventually, doesn’t 

reduce the computational time significantly.  

 

 To deal with these problems, this research presents a novel data assimilation method for fast estimation 

of the model’s parameters in a single simulation procedure. This method uses model predictive control where 

Proportional-Integrative-Derivative (PID) controllers are used to adjust model parameter(s) while satisfying 

the set of constraints. This method relies on previous studies [16]–[18] where control theory-based data 

assimilation (CTDA) is utilized to keep the model up-to-date considering only the model state (while model 

parameters were not considered). In this research, the existing CTDA method potential is investigated 

considering model parameters updating. 

2. MATHERIALS AND METHODS 

2.1 Methodology overview  

This research proposes a model updating algorithm based on data assimilation. Here, observed, and simulated 

values representing the real-world system state and simulated (modelled) state are compared at each time step.  

This enables model parameter update accordingly (at each timestep) unlike the traditional approach where 

single goodness-of-fit (GOF) value is evaluated at the end of the simulation. The model and observation 

discrepancy is quantified using error variable which depends on model being updated (hydrologic or 

hydraulic). Based on estimated error value, PID controllers evaluate the correction of the model parameter. 

This procedure is repeated at each timestep (Figure 1).  
 

 
 

Figure 1: Fast data assimilation algorithm for updating model parameter(s). 

 

 



SimHydro 2023: New modelling paradigms for water issues? 

8-10 November 2023, Chatou - Milašinović et al. 2023 – Dynamic calibration in hydrologic and hydraulic modelling 

2.2 Algorithm for continuous update of hydrologic model parameter(s)  

In this study, rainfall-runoff process is approximated using simple nonlinear reservoir hydrologic model 

(Figure 2). Here, reservoir state is estimated using following balance equation: 

 

 𝑑ℎ

𝑑𝑡
= 𝑃 − 𝑖 −

𝑄

𝐴
, (1) 

 

where h represents water depth in the reservoir, P represents precipitation, i represents infiltration rate, Q 

represents surface runoff calculated using Manning’s equation: 
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0
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𝑛
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 In Manning’s equation (eq. 2) w is approximated catchment width, hs is maximum storage depth in the 

surface reservoir, n is Manning’s roughness, S is average slope of the catchment and A is catchment area. In 

this case, Manning’s roughness is considered as the main source of model uncertainty and parameter updating 

procedure is developed accordingly. Surface runoff (streamflow) is used as system output (Qsim - simulated 

and Qobs - observed). At each simulation time step process error e(t) is calculated as a difference between Qsim 

and Qout : 

  

 𝑒(𝑡) = 𝑄𝑠𝑖𝑚(𝑡) − 𝑄𝑜𝑏𝑠(𝑡), (3) 

  

Process error value is used to calculate Manning’s roughness correction Δn using PID controller’s equation: 
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(4) 

 

where kp, ki and kd are proportional, integrative, and derivative coefficients, respectively. 

 When Manning’s roughness correction is estimated using equation (4), Manning’s roughness value is 

updated for the next simulation time step: 

 

 𝑛(𝑡 + ∆𝑡) = 𝑛(𝑡) + ∆𝑛, (5) 

 
 

 
Figure 2: Non-linear reservoir hydrologic model.  

 

2.3 Algorithm for continuous update of hydraulic model parameter(s) 

Hydraulic model analyzed in this research is based on modified diffusion wave model ([17]), represented by 

the following form of the Saint-Venant’s equations: 
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where Z is water surface elevation, w is the channel width, x spatial coordinate, t represents time, g is 

acceleration due to gravity, A cross section area, n is channel bed Manning’s roughness, Q is flow and R 

represents hydraulic radius. The equations (6) and (7) are solved using explicit, staggered numerical scheme 

where Z and Q are calculated in alternating cross sections (Figure 3). Unlike hydrologic model, where flows 

are used as system output, in hydraulic mode water surface level (elevation) is used a system output because 

it represents less uncertain data and its lot easier and cheaper to measure than flow measurements. It is assumed 

that the main source of discrepancy between the model and observations is poor estimation of the Manning’s 

roughness. To update Manning’s roughness during the simulation, an updating procedure similar to hydrologic 

model parameter update algorithm has to be developed. However, since the open channel modelled by the 

proposed diffusion wave equations is a higher-order dynamic system than hydrologic model, single value of 

water surface level cannot be used to compare model and observations and correct model parameters. For 

example, when model is used for flood routing, water level obtained from the model where Manning’s 

roughness is overestimated can be greater and lower than the observed water level depending on the part of 

the simulation (rising or recessional limb of the hydrograph). Therefore, different variable has to be used as 

system output. Here, a better representation of the system dynamics depending on the Manning’s roughness is 

water surface level gradient. In that case, a simple rule can be applied to update the roughness parameter: when 

water level gradient obtained from the model is greater than the observed roughness parameter should be 

reduced and vice versa. The correction of the roughness parameter is controlled by PID controller. First step 

in this approach is estimate process error e(t): 

   

 𝑒(𝑡) = [𝑍𝑜𝑏𝑠(𝑡) − 𝑍𝑜𝑏𝑠(𝑡 − ∆𝑡)] − [𝑍𝑠𝑖𝑚(𝑡) − 𝑍𝑠𝑖𝑚(𝑡 − ∆𝑡)], (8) 

 

where Zobs represents observed water surface level, Zsim represents simulated water surface levels and Δt is 

simulation time step.  

 When the process error is evaluated, Manning’s roughness parameter is updated using the equations (4) 

and (5). 

 

 
Figure 3: Hydraulic model discretization. 

2.4 Test case 1 – Hydrologic model  

To demonstrate the proposed parameter updating algorithm for hydrologic model, synthetic test case is used. 

Non-linear reservoir model is used to generate runoff from the synthetic catchment. The area of the catchment 

is 10 ha, width is 100 m, slope is 1‰, maximum storage hs is set to 1 mm and infiltration rate is set to 

0.01 mm/h. Initial value of water depth in the surface reservoir is set to zero. Simulation is run for the period 

of 20 h with 1 min timestep. True streamflows (“observed” data) are generated using the 0.025 m-1/3s value for 

Manning’s roughness.  After that, the model parameter is altered and assigned a value of 0.015 m-1/3s (Figure 4). 

This is used as the initial value and PID controllers are applied to update the parameter by minimizing the 

process error.  

 
Figure 4: Synthetic test case scenario for hydrologic model assimilation. 
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2.5 Test case 2 – Hydraulic model  

Test case scenario for hydraulic model is generated for a 1000 m long and 6 m wide rectangular channel, with 

the slope S = 0.2 %. The model is created using equations (6) and (7) discretized by six cross sections (1 to six 

going downstream) using the staggered numerical scheme (Figure 3) with Δx = 200 m spatial resolution and 

Δt = 20 s simulation time step. The true roughness parameter is set to 0.015 m-1/3s and this value is used to 

generate true model state (“observed” water levels). Upstream boundary condition is set to a constant flow 

value of 20 m3/s and is also used as the initial condition for each cross section where flow is calculated. Value 

of 4 m is assigned as the initial value for each cross section where water surface level is calculated. The 

downstream boundary condition is represented by stage hydrograph (Zdown in Figure 5) and is used to generate 

transient regime. Only cross section 2 (closest cross section to the upstream boundary where water levels are 

calculated) is used as observation location. Simulation is run for the period of 6 h. After true data is generated, 

Manning’s roughness value is changed to 0.025 m-1/3s and a new simulation is conducted where PID controllers 

are applied to update model parameter based on water levels assimilation.  

 

 
Figure 5: Synthetic test case scenario for hydraulic model assimilation. 

3. RESULTS AND DISCUSSION 

Hydrologic model streamflow data assimilation is conducted using PID controller with the following set of 

parameters: kp = 1, ki = 10-4 and kd = 0. This PID controller configuration is able to assimilate streamflow data 

and reduce the process error close to zero. Accordingly, the value of the model parameter is updated to its true 

value at the very beginning of the simulation, approximately 85 min from the simulation start (Figure 6).  

 

 
Figure 6: Synthetic test case scenario for hydraulic model assimilation. 

 

 Hydraulic model water surface level data assimilation is conducted using PID controller with the 

following set of parameters: kp = 10-2, ki = 0 and kd = 1. This PID controller configuration can assimilate water 



SimHydro 2023: New modelling paradigms for water issues? 

8-10 November 2023, Chatou - Milašinović et al. 2023 – Dynamic calibration in hydrologic and hydraulic modelling 

level data and reduce the process error close to zero. The value of the Manning’s roughness is reduced to its 

true value relatively fast, approximately 3 h from the beginning of the simulation (Figure 7). Unlike the 

hydrologic model, where parameter model parameter is updated monotonously (always rises until it reaches 

true value), in hydraulic model PID controllers force roughness parameter to oscillate around the true value. 

The reason for this can be found in the higher-order system dynamic present in hydraulic model along with the 

effect of derivative coefficient in PID controller configuration. It has to be mentioned that different 

configurations of the PID controllers can give good results in updating model roughness parameter, but the 

tuning of the controllers should be carried out carefully because large values of the controller’s parameters can 

make the model unstable. 
 

 
Figure 7: Synthetic test case scenario for hydraulic model assimilation. 

4. CONCLUSIONS  

This paper presents the potential of using fast data assimilation algorithm for continuous update of hydrologic 

and hydraulic model parameters. PID controller is applied as a data assimilation tool to reduce process error 

between simulated and observed system output. The analysis shows that PID controllers are able to update 

roughness parameter by assimilating streamflows (simulated and observed) in hydrologic model and water 

levels in hydraulic model. The proposed algorithm decreases computational time for model calibration thus 

enables the application in operational hydrologic and hydraulic models. However, for real-world applications, 

further investigations are necessary. The algorithm should be tested and eventually modified in cases when 

multiple model parameters have to be updated, when model uncertainty is also forced by unreliable input data 

(boundary conditions) along with poor initial estimation of the model parameters. Also, algorithm has to be 

analyzed in cases when there are multiple observation locations. 
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