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ABSTRACT
A spatiotemporal machine learning framework for automated prediction and analysis
of long-term LandUse/Land Cover dynamics is presented. The framework includes: (1)
harmonization and preprocessing of spatial and spatiotemporal input datasets (GLAD
Landsat, NPP/VIIRS) including five million harmonized LUCAS and CORINE Land
Cover-derived training samples, (2) model building based on spatial k-fold cross-
validation and hyper-parameter optimization, (3) prediction of the most probable
class, class probabilities and model variance of predicted probabilities per pixel, (4)
LULC change analysis on time-series of produced maps. The spatiotemporal ensemble
model consists of a random forest, gradient boosted tree classifier, and an artificial
neural network, with a logistic regressor as meta-learner. The results show that themost
important variables for mapping LULC in Europe are: seasonal aggregates of Landsat
green and near-infrared bands, multiple Landsat-derived spectral indices, long-term
surface water probability, and elevation. Spatial cross-validation of the model indicates
consistent performance across multiple years with overall accuracy (a weighted F1-
score) of 0.49, 0.63, and 0.83 when predicting 43 (level-3), 14 (level-2), and five classes
(level-1). Additional experiments show that spatiotemporal models generalize better
to unknown years, outperforming single-year models on known-year classification by
2.7% and unknown-year classification by 3.5%. Results of the accuracy assessment
using 48,365 independent test samples shows 87% match with the validation points.
Results of time-series analysis (time-series of LULC probabilities and NDVI images)
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suggest forest loss in large parts of Sweden, the Alps, and Scotland. Positive and negative
trends in NDVI in general match the land degradation and land restoration classes,
with ‘‘urbanization’’ showing the most negative NDVI trend. An advantage of using
spatiotemporal ML is that the fitted model can be used to predict LULC in years that
were not included in its training dataset, allowing generalization to past and future
periods, e.g. to predict LULC for years prior to 2000 and beyond 2020. The generated
LULC time-series data stack (ODSE-LULC), including the training points, is publicly
available via the ODSE Viewer. Functions used to prepare data and run modeling are
available via the eumap library for Python.

Subjects Data Mining and Machine Learning, Data Science, Spatial and Geographic Information
Science
Keywords Landsat, Spatial analysis, Spatiotemporal, Ensemble, Machine learning, Probability,
Uncertainty, Land use/land cover, Big data, Environmental monitoring

INTRODUCTION
Anthropogenic land cover change has influenced global climate since the Paleolithic (Kaplan
et al., 2011) and continues to be a major driver of regional (Pielke Sr et al., 2002) and
global (Houghton et al., 2012) climate change. Furthermore, it is the single largest cause
of global biodiversity loss (Sala et al., 2000), and has quantifiable consequences for
the availability and quality of natural resources, water, and air (Foley et al., 2005). Key
applications of land cover change maps are to inform policy (Duveiller et al., 2020), analyze
land-based emissions (Hong et al., 2021), and help estimate local climate extremes (Sy &
Quesada, 2020). Quantifying land cover dynamics is often crucial for policy-making at
regional and global levels (Liu et al., 2020b; Trisurat, Shirakawa & Johnston, 2019; Shumba
et al., 2020).

Land cover mapping was initially done by visual interpretation of aerial photographs
and later on with automated classification of multispectral remotely sensed data with semi-
supervised or fully-supervised methods (Townshend et al., 2012; Feranec et al., 2016; Liu
et al., 2021). There are currently multiple global (Feng & Bai, 2019; Buchhorn et al., 2020)
and regional (Homer et al., 2007; Batista e Silva, Lavalle & Koomen, 2013; Pflugmacher et
al., 2019; Malinowski et al., 2020; d’Andrimont et al., 2021) land cover products based on
using Machine Learning and offering predictions (or their refinements) at high spatial
resolutions for the whole of continental Europe (Table 1). The increasing number of land
cover applications and datasets in Europe can largely be attributed to (1) the extensive
LUCAS in-situ point data being publicly available for research, and (2) NASA’s Landsat
and ESA’s Sentinel multispectral images being increasingly available for spatial analysis
(Szantoi et al., 2020; Liu et al., 2021).

However, not all land cover prediction systems perform equally. Vilar et al. (2019)
have done extensive evaluation of accuracy of the CLC products for period 2011–2012
using the LUCAS data and found that agreement with LUCAS was slightly higher
for CCI-LC (59%; 18 classes) than for CLC (56%; 43 classes). Gao et al. (2020) has
evaluated accuracy of the global 30 m resolution products GlobeLand30 with 10 classes
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Table 1 Inventory and comparison of existing land cover data products at finer spatial resolutions (≤300 m) available for the continental Eu-
rope.

Product/reference Time span Spatial
resolution

Mapping
accuracy

Number of
classes

Uncertainty/
probability

CLC 1990, 2000, 2006, 2012, 2018 100 m (25 ha) ≤85% 44 N/N
ESA CCI-LC 1998–2002, 2003–2007, 2008–2012 300-m 73% 22 N/N
Batista e Silva, Lavalle & Koomen (2013) 2006 100-m 70% 42 N/N
S2GLC (Malinowski et al., 2020) 2017 10 m 89% 15 N/N
Pflugmacher et al. (2019) 2014–2016 30 m 75% 12 N/N
GLCFCS30 (Zhang et al., 2020) 2015, 2020 30-m 83%/71%/69% 9/16/24 N/N
Buchhorn et al. (2020) 2015, 2016, 2017, 2018 100 m 80% 10 N/Y
ESA WorldCover 2020 10 m ≤75% ≤10 N/N
ELC10 (Venter & Sydenham, 2021) 2020 10 m 90% 8 N/N
ODSE-LULC (our product) 2000, 2001, ..., 2019 30 m 43 Y/Y

(Chen et al., 2015), and GLCFCS30 with 18 classes (Zhang et al., 2020) using the LUCAS
point data and concluded that the GlobeLand30-2010 product agrees with LUCAS points
up to 89%, while GLCFCS30-2015 agrees up to 85%. The large difference in the agreement
reported by Vilar et al. (2019) and Chen et al. (2015) can be attributed to the number of
classes in the two studies: the absolute accuracy linearly drops with the number of classes
(Herold et al., 2008;Van Thinh et al., 2019), and usually the accuracy results for 6–10 classes
vs 40 classes can be up to 50% better.

Generally, the accuracy of European land cover mapping projects match those in other
parts of the world. For example, Caldern-Loor, Hadjikakou & Bryan (2021) achieved 90%
producer’s accuracy when classifying on 6 classes for 7 separate years between 1985 and
2015, using Landsat data of Australia. Tsendbazar et al. (2018) reports similar accuracy
levels for Africa. Likewise, Liu et al. (2020a) reports 83% accuracy on 7 classes with 34 years
of GLASS data. Finally, the US National Land Cover Database reports accuracy of at least
80% for 16 classes at 30 m in 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2018 (Homer
et al., 2020).

Inglada et al. (2017) report a kappa score of 0.86 for mapping 17 land cover classes for
France in 2014. The most-up-to-date land cover products for Europe by Malinowski et al.
(2020) report aweighted F1-score of 0.86 based on predicting 13 classes with 2017 Sentinel-2
data. The ESA’s CCI-LC project classified land cover in threemultiyear epochs (see Table 1),
the last of which achieved an estimated producer’s accuracy of 73% (Arino et al., 2012).
Their new WorldCover project (https://esa-worldcover.org/) aims for a consistent accuracy
of at least 75% at 10 m spatial resolution. d’Andrimont et al. (2021) recently produced a 10
m resolution European crop type map also by combining LUCAS and plot observations
and achieved an overall accuracy of 76% for mapping 19 main crop types for year 2018.

Based on these works, it can be said that the state-of-the-art land cover mapping projects
primarily aim at:
(a) Automating the process as much as possible so that land cover maps can be produced

almost on monthly or even daily revisit times,
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(b) using multi-source Earth Observation data, with especial focus on combining power
of the Sentinel-1 and 2 data (Venter & Sydenham, 2021),

(c) producing data of increasingly high spatial and thematic resolution.
Although the modern approaches to land cover mapping listed in Table Table 1 report

relatively high levels of accuracy, we recognize several limitations of the general approach:

• Common land cover classification products often only report hard classes, not the
underlying probability distributions, limiting the applicability for use cases that would
benefit from maximizing either user’s or producer’s accuracy of specific classes in the
legend.
• Per-pixel information on the reliability of predictions is often either not reported or
not derived at all.
• Many policymakers require time-series land cover data products compatible with legacy
products such as CLC and CCI-LC, while most research produces general land cover
maps for recent years only.
• Many continental- or global scale land cover mapping missions employ legends with
a low number of classes. While achieving high accuracy, such generalized maps are of
limited use to large parts of the policy-making and scientific communities.

Land cover data with higher thematic resolution have shown to help improve the
performance of subsequent change detection (Buyantuyev & Wu, 2007), as well as the
performance and level of detail of modeling land cover trends (Conway, 2009) and
other environmental phenomena (Castilla et al., 2009; Zhou et al., 2014). Increasing
thematic resolution while limiting the prediction to one trained classifier, however, poses
several challenges: (1) training a single model on multi-year data requires extensive data
harmonization efforts, and (2) the exponential increase of possible change types with each
additional predicted class complicates the manual creation of post-classification temporal
consistency rules.

With an increasing spatial resolution and increasing extent of Earth Observation (EO)
images, the gap between historic land cover maps and current 10 m resolution products
is growing (Van Thinh et al., 2019; d’Andrimont et al., 2021). This makes it difficult to
identify key processes of land cover change over large areas (Veldkamp & Lambin, 2001;
Vilar et al., 2019). Hence, a balanced and consistent approach is needed that can take into
account both accuracy gains due to spatial resolution, and applicability for time-series
analysis / change detection for longer periods of time.

The main objective of this paper is to present a framework for spatiotemporal prediction
and analysis of LULC dynamics over the span of 20+ years at high thematic resolution, and
to assess its usefulness for reproducing the CLC classification system at an annual basis at
30 m resolution. To properly assess the usefulness of the framework, we investigate whether
spatiotemporal models (trained on observations from multiple years) generalize better to
earth observation data from unknown years than spatial models (trained on observations
from a single year). Furthermore, we investigate whether an ensemble machine learning
pipeline provides more accurate LULC classifications than single classifiers. Finally, we
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provide an in-depth analysis of the feasibility to reproduce the CLC classification system
by assessing the performance of our framework at various thematic resolution levels.

To this end, we present results of predicting 43 LULC classes from the CLC classification
system for continental Europe using spatiotemporal EML at 30 m spatial resolution. These
annual predictions are made by a single ensemble model trained on LULC observations
ranging from 2000–2018 and a data cube consisting of harmonized annual multispectral
Landsat imagery, derived spectral indices, and multiple auxiliary features.

We include the results of multiple accuracy assessments: Firstly, we use 5–fold spatial
cross-validation with refitting (Roberts et al., 2017; Lovelace, Nowosad & Muenchow, 2019)
to compare the performance of single-year and multi-year models, the performance of
the separate component models of our ensemble, and the output of the entire ensemble.
Secondly, we test the predictions of our ensemble on the S2GLC validation points, a dataset
that was independently collected and published byMalinowski et al. (2020).

We use, as much as possible, a consistent methodology, which implies:
1. Using consistent training data based on consistent samplingmethodology and sampling

intensity over the complete spacetime cube of interest (LUCAS; d’Andrimont et al.
(2020));

2. Using consistent/harmonized Earth Observation images based on the GLAD ARD
Landsat product (Potapov et al., 2020), Night Light images NPP/VIIRS (Román et al.,
2018) and similar;

3. Providing consistent statistical analysis per every pixel of the space–time cube and per
each probability;
Our modeling framework comes at high costs however: The data we have produced

is about 50–100 times larger in size than common land cover products with the total
size of about 20 TB (Cloud-Optimized GeoTIFFs). A dataset of such volume is more
complex to analyze and visualize. To deal with the data size, we ran all processing in a fully
automated and fully optimized HPC framework. We refer to the dataset we have produced
as ODSE-LULC or short ODSE-LULC.

In the following section we describe how we prepared data, fitted models, tested spatial
vs spatiotemporal models, and fitted pixel-wise space–time regressions for NDVI and
probability time-series. We then report the results and discuss advantages and limitations
of spatiotemporal EML, and suggest what we consider could be next development directions
and challenges.

MATERIALS AND METHODS
Overview
The annual land cover product for continental Europewas generated using a spatiotemporal
modelling approach. This means that all training points are overlaid with EO variables
matching both their location and their survey date, so that classification matrix contains
spacetime coordinates (x,y,t ); then a spatiotemporal model is fitted using the classification
matrix. A detailed overview of the workflow used to fit models and produce predictions
of land cover is presented in Fig. 1. It was implemented in Python and R programming
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Feature space/covariates

Temporal composite approach
(3 quantiles, 4 seasons, 7 bands)

Spacetime overlay
(All covariates)

Continental EU DTM
(Timeless)

VIIRS/Suomi NPP night light
(2012 — 2019)

Global Surface Water freq.
(Timeless)

Monthly geometric temp.
(Timeless)

Harmonized land cover samples
(~7 mi. points)

Landsat gapfilled composites 
(2000 — 2019)

Train and save the production model
(EML - Random Forest, Gradient Boosted Trees,

Artificial Neural Network)

Run the predictions
(Probability and uncertainty output)

Merge tiles and generate COG files
(7042 tiles x 20 years x 33 classes)

Classification matrix
(~5.3 mi. samples and 178 covariates)

Dominant class, probabilities and
uncertainties land cover maps

(2000 — 2019)

Landsat spectral indices
(SAVI,NDVI,NBR,NBR2,REI,NDWI)

Filter the training points
(Only CORINE)

ML optimization (5–fold spatial CV)

Hyperparameter
tuning

Variable
importance

Gap filling approach
(Temporal moving window median)

Land cover harmonization
(CLC compatible)

LC-change analysis
(Change detection and trend over probabilities)

NDVI analysis
(Trend over deseasonalized signal)

NDVI slope maps 
(2000 — 2019)

Land cover slope maps 
(2000 — 2019)

LC-change maps 
(2000 — 2019)

LUCAS Survey
(2006, 2009, 2012, 2015, 2019)

CORINE Land Cover-CLC
(2000, 2006, 2012, 2018) OpenStreetMap and Copernicus high-res

(e.g. build-up, highways, forest)

GLAD Landsat ARD Imagery
(2000 — 2019)

Input/Intermediate Data Methods Output Data

Figure 1 General workflow used to prepare point data and variable layers, fit models and generate
annual land cover products (2000–2019). Components of the workflows are described in detail via the
eumap library (https://eumap.readthedocs.io/), with technical documentation available via https://gitlab.
com/geoharmonizer_inea.

Full-size DOI: 10.7717/peerj.13573/fig-1

languages, and is publicly available via the eumap library (https://eumap.readthedocs.io/).
The eumap library builds upon scikit learn (Pedregosa et al., 2011; Géron, 2019); with
‘‘StackingClassifier’’ as the key function used to produce EML.

All the output predictions were predicted first per tile, then exported as Cloud
Optimized Geotiffs (COGs) files and are publicly available through the Open Data
Science Europe (ODS-Europe) Viewer, the S3 Cloud Object Service, and from
http://doi.org/10.5281/zenodo.4725429. The classification matrix with all training points
and variables is available from http://doi.org/10.5281/zenodo.4740691.

Spatiotemporal ensemble modeling
The annual land cover product for continental Europe was generated with an ensemble
of three models and a meta-learner. We used a grid search strategy to find the best
hyperparameters and used them to train the final model.

Although ensemble training and inference is computationally intensive, it typically
achieves higher accuracy than less complex models (Seni & Elder, 2010; Zhang & Ma,
2012). Furthermore, when each component learner predicts a probability per class, it is
possible to use the standard deviation of the per-class probabilities as a model-free estimate
of the prediction uncertainty (also known as model variance (see Fig. 2).

We selected three component learners among an initial pool of 10 learners based on
their performance on sample data:
1. Random Forest (Breiman, 2001);
2. Gradient-boosted trees (Chen & Guestrin, 2016);
3. Artificial Neural Network (McCulloch & Pitts, 1943);
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Random 
Forest

Gradient 
Boosted 
Trees

Neural 
Network

Model variance of 
most likely classPclass Pclass Pclass

Time-series 
data

Static 
Data

Most likely class

σclass

Pclass

Logistic regression 
Meta-learner

Ensemble

Figure 2 Structure of the ensemble. Time-series data and static data are used to train three component
models. Each component model predicts 43 probabilities (one per class). We calculate class-wise uncer-
tainty as a separate output by taking the standard deviation of the three component probabilities per class.
The 129 probabilities are used to train the logistic regression meta-learner, which predicts 43 probabilities
that are used to map LULC.

Full-size DOI: 10.7717/peerj.13573/fig-2

Each of these models predicts a probability for each class, resulting in 129 probabilities
for 43 classes. These component probabilities are forwarded to the meta-learner, a logistic
regression classifier (Defazio, Bach & Lacoste-Julien, 2014), which in turn predicts a single
probability per class. The ensemble also outputs the standard deviation of the three
component-predicted probabilities per class to generate a class-wise model variance, which
can help analyze the data and inform decision-makers where data is more reliable. Because
the LUCAS points are based on in-situ observations, we considered them as more reliable
training data than the CLC centroid points. To prioritize performance on the LUCAS
points during model training, we assigned a training weight rating of 100% to the LUCAS
points and 85% to the CLC points.

We optimized the hyperparameters of the random forest and gradient boosted trees
component learners by minimizing the logistic (log) loss metric (Lovelace, Nowosad &
Muenchow, 2019):

Llog(Y ,P)=−logPr(Y |P)=−
1
N

N−1∑
i=0

K−1∑
k=0

yi,k logpi,k (1)

where Y is a binary matrix of expected class labels, N is the total number of observations,
K is the number of classes, P is the matrix of probabilities predicted by the model, y i,k
indicates whether sample i belongs to class k, and pi,k indicates the probability of sample
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Table 2 Minimum andmaximum value of each hyperparameter that was optimized for the random
forest and gradient boosted tree learners.

Model Hyperparameter Lower value Upper value

Random Forest Number of estimators 50 100
Maximum tree depth 5 50
Maximum number of features 0 0.9
Minimum samples per leaf 5 30

Gradient boosted trees Eta 0.001 0.9
Gamma 0 12
Alpha 0 1
Maximum tree depth 2 10
Number of estimators 10 50

i belonging to class j. A log loss value close to 0 indicate high prediction performance, 0
being a perfect match, while values above 0 indicate progressively worse performance.

We performed 5–fold spatial cross-validation for each different hyperparameter
combination (see Table 2. These combinations were generated per model based on a
grid search of 5 steps per hyperparameter.

We evaluated each set of hyperparameters by performing a spatial 5-fold cross-validation.
We did this by creating a Europe-wide grid of 30 km tiles (see Fig. 3) and using the tiles’
unique identifiers to group their overlapping points into 5 folds.

After hyperparameter optimization we trained the three component learners on the full
dataset. The meta-learner was trained on the probabilities predicted by each component
model during the cross-validation of their optimal hyperparameters.

Study area and target classification system
The study area covers all countries included in the CLC database, except Turkey (see Fig. 3).
The spatiotemporal dataset used in this research contains data from the winter of 1999 to
the autumn of 2019.

The target land cover nomenclature was designed based on CLC nomenclature (Bossard
et al., 2000) and is available in Table 3. CLC is probably the most comprehensive and
detailed European land cover product to date. The CLC program was established in 1985
by the EC to provide geographically harmonized information concerning the environment
on the continent. The original CLC dataset is mapped in 44 classes with a minimum
mapping unit of 25 ha for areal phenomena and 10 ha for changes. CLC mapping relies
on harmonized protocol and guidelines that are shared for country-wise visual photo-
interpretation.

The ODSE-LULC nomenclature is identical to the CLC legend, excluding class 523:
Sea and ocean, as we omitted such areas from our study area to reduce computation
time. The CLC classification system has been reported to be unsuitable for pixel-wise
classification due to the inclusion of: (1) heterogeneous and mixed classes defined for
polygon mapping (e.g., airports, road and rail networks, complex cultivation patterns,
agro-forestry, etc.) and (2) classes primarily distinguishable by land use, not land cover
(e.g., commercial and industrial units, sports and leisure facilities). We did not remove

Witjes et al. (2022), PeerJ, DOI 10.7717/peerj.13573 8/58

https://peerj.com
http://dx.doi.org/10.7717/peerj.13573


Points	per	tile
0	-	250
250	-	500
500	-	1000
1000	-	2000
2000	-	4000

Figure 3 Map of the study area, overlaid with a grid of 30 km tiles that was used for spatial 5-fold
cross-validation.Grid color indicates the number of training points aggregated per tile.

Full-size DOI: 10.7717/peerj.13573/fig-3

these classes beforehand to provide objective information about the performance of the
CLC level 3 legend for pixel-wise classification, and to enable a complete comparison to
the S2GLC nomenclature, which is more optimized for such pixel-based classification.

Training points
We obtained the training dataset from the geographic location of LUCAS (in-situ source)
and the centroid of all CLC polygons (as shown in Fig. 4), harmonized according to the 43
land cover classes (see Table 3) and organized by year, where each unique combination of
longitude, latitude and year was considered as an independent sample, resulting in more
than eight million training points.
The LUCAS data from 2006, 2009, 2012, 2015 and 2018, as provided by Eurostat (obtained

from: https://ec.europa.eu/eurostat/web/lucas) is the largest and most comprehensive
in-situ land cover dataset for Europe. The survey has evolved since 2000 and requires
harmonisation before it can be used for mapping over several years. We imported datasets
from individual years and harmonized these before merging it into one common database
with an automated workflow implemented in Python and SQL (Fig. 1). For the multi-
year harmonization procedure we first harmonized attribute names, re-coded variables,
harmonized point locations, and aggregated the points based on their location in space
and time. After these operations, we translated the LUCAS land cover nomenclature to
the ODSE-LULC nomenclature, Table 3, according to the method designed by Buck et al.
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Table 3 The ODSE-LULC land cover legend used based on CLC (Bossard et al., 2000). Note: To make table formatting easier, we refer to class
243 as ‘Agriculture with significant natural vegetation‘ in all other tables.

Class name Class description

111: Continuous urban fabric Surface area covered for more than 80% by urban structures
and other impermeable, artificial features.

112: Discontinuous urban fabric Surface area covered between 30% and 80% by urban
structures and other impermeable, artificial features.

121: Industrial or commercial units Land units that are under industrial or commercial use or
serve for public service facilities.

122: Road and rail networks Motorways and railways, including associated installations.
123: Port areas Infrastructure of port areas, including quays, dockyards and

marinas.
124: Airports Airports installations: runways, buildings and associated

land.
131: Mineral extraction sites Areas of open-pit extraction of construction materials

(sandpits, quarries) or other minerals (open-cast mines).
132: Dump sites Public, industrial or mine dump sites.
133: Construction sites Spaces under construction development, soil or bedrock

excavations, earthworks.
141: Urban green Areas with vegetation within urban fabric.
142: Sport and leisure facilities Areas used for sports, leisure and recreation purposes.
211: Non-irrigated arable land Cultivated land parcels under rain-fed agricultural use for

annually harvested non-permanent crops, normally under a
crop rotation system.

212: Permanently irrigated arable land Cultivated land parcels under agricultural use for arable
crops that are permanently or periodically irrigated.

213: Rice fields Cultivated land parcels prepared for rice production,
consisting of periodically flooded flat surfaces with
irrigation channels.

221: Vineyards Areas planted with vines.
222: Fruit trees and berry plantations Cultivated parcels planted with fruit trees and shrubs,

including nuts, intended for fruit production.
223: Olive groves Cultivated areas planted with olive trees, including mixed

occurrence of vines on the same parcel.
231: Pastures Meadows with dispersed trees and shrubs occupying up to

50% of surface characterized by rich floristic composition.
241: Annual crops associated with permanent crops Cultivated land parcels with a mixed coverage of non-

permanent (e.g., wheat) and permanent crops (e.g., olive
trees).

242: Complex cultivation patterns Mosaic of small cultivated land parcels with different
cultivation types (annual and permanent crops, as well as
pastures), potentially with scattered houses or gardens.

243: Land principally occupied by agriculture with
significant areas of natural vegetation

Areas principally occupied with agriculture, interspersed
with significant semi-natural areas in a mosaic pattern.

244: Agro-forestry areas Annual crops or grazing land under the wooded cover of
forestry species.

(continued on next page)
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Table 3 (continued)

Class name Class description

311: Broad-leaved forest Vegetation formation composed principally of trees,
including shrub and bush understorey, where broad-leaved
species predominate.

312: Coniferous forest Vegetation formation composed principally of trees,
including shrub and bush understorey, where coniferous
species predominate.

313: Mixed forest Vegetation formation composed principally of trees,
including shrub and bush understory, where neither
broad-leaved nor coniferous species predominate.

321: Natural grasslands Grasslands under no or moderate human influence. Low
productivity grasslands. Often in areas of rough, uneven
ground, also with rocky areas, or patches of other (semi-
)natural vegetation.

322: Moors and heathland Vegetation with low and closed cover, dominated by
bushes, shrubs (heather, briars, broom, gorse, laburnum
etc.) and herbaceous plants, forming a climax stage of
development.

323: Sclerophyllous vegetation Bushy sclerophyllous vegetation in a climax stage of
development, including maquis, matorral and garrigue.

324: Transitional woodland-shrub Transitional bushy and herbaceous vegetation with
occasional scattered trees. Can represent either woodland
degradation or forest regeneration / re-colonization.

331: Beaches, dunes, sands Natural un-vegetated expanses of sand or pebble/gravel, in
coastal or continental locations, like beaches, dunes, gravel
pads.

332: Bare rocks Scree, cliffs, rock outcrops, including areas of active erosion.

333: Sparsely vegetated areas Areas with sparse vegetation, covering 10–50% of the
surface.

334: Burnt areas Areas affected by recent fires.
335: Glaciers and perpetual snow Land covered by ice or permanent snowfields.
411 Inland marshes Low-lying land usually flooded in winter, and with ground

more or less saturated by fresh water all year round.
412 Peat bogs Wetlands with accumulation of considerable amount of

decomposed moss (mostly Sphagnum) and vegetation
matter. Both natural and exploited peat bogs.

421 Salt marshes Vegetated low-lying areas in the coastal zone, above the
high-tide line, susceptible to flooding by seawater.

422 Salines Sections of salt marsh exploited for the production of
salt by evaporation, active or in process of abandonment,
distinguishable from marsh by parcellation or embankment
systems.

423 Intertidal flats Area between the average lowest and highest sea water level
at low tide and high tide. Generally non-vegetated expanses
of mud, sand or rock lying between high and low water
marks.

511: Water courses Natural or artificial water courses for water drainage
channels.

(continued on next page)
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Table 3 (continued)

Class name Class description

512: Water bodies Natural or artificial water surfaces covered by standing
water most of the year.

521: Coastal lagoons Stretches of salt or brackish water in coastal areas which are
separated from the sea by a tongue of land or other similar
topography.

522: Estuaries The mouth of a river under tidal influence within which the
tide ebbs and flows.
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Figure 4 General workflow for merging training points obtained from LUCAS and CLC.
Full-size DOI: 10.7717/peerj.13573/fig-4
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(2015). The distribution of all reference points per CLC class and per survey year is shown
in Fig. 5.

The CLC minimal mapping unit of 25 ha required filtering on the training points
before they could be used to represent 30 m resolution LULC, for example, to remove
points for ‘‘111: urban fabric’’ located in small patches of urban greenery (<25 ha). For
this purpose, we extracted vector data from OSM layers for roads, railways, and buildings
(obtained from https://download.geofabrik.de/). We then created a 30 m density raster
for each feature type. This was done by first creating a 10 m raster where each pixel
intersecting a vector feature was assigned the value 100. These pixels were then aggregated
to 10 m resolution by calculating the average of every 9 adjacent pixels. This resulted in
a 0–100 density layer for the three feature types. Although the digitized building data
from OSM offers the highest level of detail, its coverage across Europe is inconsistent. To
supplement the building density raster in regions where crowd-sourced OSM building
data was unavailable, we combined it with Copernicus We evaluated each set of hyper
(obtained from https://land.copernicus.eu/pan-european/high-resolution-layers), filling
the non-mapped areas in OSM with the Impervious Built-up 2018 pixel values, which
was averaged to 30 m. The probability values produced by the averaged aggregation were
integrated in such a way that values between 0–100 refer to OSM (lowest and highest
probabilities equal to 0 and 100 respectively), and the values between 101–200 refer to
Copernicus HRL (lowest and highest probability equal to 200 and 101 respectively). This
resulted in a raster layer where values closer to 100 are more likely to be buildings than
values closer to 0 and 200. Structuring the data in this way allows us to select the higher
probability building pixels in both products by the single boolean expression: pixel > 50
AND pixel < 150.

We also use HRL products to filter other classes: Table 4 shows the exact conditions
points of specific LULC classes needed to meet in order to be retained in our dataset. This
procedure is similar to the one used by Inglada et al. (2017). This filtering process removed
about 1.3 million points from our training dataset, resulting in a classificationmatrix with a
total of ca.8.1 million samples and 232 variables. The classification matrix used to produce
ODSE-LULC is available from http://doi.org/10.5281/zenodo.4740691.

We assessed the quality of the training dataset by comparing it to a number of existing
land cover products:

• GLCFCS30–2015 (Zhang et al., 2020);
• GLCFCS30–2020 (Zhang et al., 2020);
• S2GLC (Malinowski et al., 2020);
• The European land cover product for 2015 created by Pflugmacher et al. (2019);
• ELC10 (Venter & Sydenham, 2021).

For each comparison, we reclassified the training dataset to the nomenclature of the
target dataset and overlaid all points from our dataset with survey dates from within one
year of the land cover product. We then calculated the weighted F1-score as if the points
represented predictions. Points with classes of the target products that were completely
absent in the training point subsets (due to the target nomenclature of the training points)
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Figure 5 Distribution of training points per data source (blue and green), class (top) and per survey
year (bottom). Each bar shows the proportion of points extracted from CLC centroids (blue) and from
the LUCAS dataset (green). The proportion of CLC points removed by the OSM and HRL filter step is in-
dicated in red.

Full-size DOI: 10.7717/peerj.13573/fig-5

Witjes et al. (2022), PeerJ, DOI 10.7717/peerj.13573 14/58

https://peerj.com
https://doi.org/10.7717/peerj.13573/fig-5
http://dx.doi.org/10.7717/peerj.13573


were removed before these assessments, potentially resulting in varying numbers of classes
for the same dataset.

The GLCFCS30 nomenclature was not suitable for direct translation because some
land cover types (such as forests) are separated into several subcategories. We therefore
aggregated their thematic resolution to the higher level of abstraction described in Zhang
et al. (2020). The complete translation scheme is available via the GitLab repository of the
GeoHarmonizer project (https://gitlab.com/geoharmonizer_inea/spatial-layers).

Input variables
In this work we combine harmonized time-series data of varying temporal resolution with
static datasets. The time-series data consists of the following:

• Seasonal aggregates of Landsat spectral bands (blue, green, red, NIR, SWIR1, SWIR2,
thermal), divided into three reflectance quantiles per and four seasons, resulting in 12
layers per band;
• Spectral indices calculated from the seasonal Landsat data: Normalized Difference
Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Modified Soil
Adjusted Vegetation Index (MSAVI), Normalized Difference Moisture Index (NDMI),
Landsat Normalized Burn Ratio (NBR), NBR2, REI and Normalized Difference Water
Index (NDWI) derived according to formulas in Table 5;
• Terrain Ruggedness Index (TRI) of the Landsat green band (50th reflectance quantile
of summer);
• SUOMI NPP VIIRS night light imagery downscaled from 500 m to 30 m resolution
(Hillger et al., 2013);
• Monthly geometric minimum and maximum temperature (Kilibarda et al., 2014);

Additional static datasets are:

• Probability of surface water occurrence at 30 m resolution pekel2016high;
• Continental EU DTM-based elevation and slope in percent (Hengl et al., 2021);

All variables used by our model are derived from remotely sensed EO data from
multiple sources, the largest share being derived from Landsat imagery. Although EO
data with higher spatial and temporal resolution, as well as actual surface reflection values
are available (e.g., Sentinel-2), such sources do not cover the timespan required for the
long-term analysis proposed by this framework. The Landsat data used in this work was
obtained by downloading the Landsat ARD, provided by GLAD (Potapov et al., 2020), for
the years 1999 to 2019 and for the entire extent of continental Europe (see eumap landmask
(Hengl et al., 2021)). This imagery archive was screened to remove the cloud and cloud
shadow pixels, maintaining only the quality assessment-QA values labeled as clear-sky
according to GLAD. Second, we averaged the individual images by season according to
three different quantiles (25th, 50th and 75th) and the following calendar dates for all
periods:

• Winter: December 2 of previous year until March 20 of current year;
• Spring: March 21 until June 24 of current year;
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Table 4 Per-class conditions applied only to CLC points during the filtering step. All the raster layers were upsampled to 30×30 m resolution by average and the points
that did not meet the specified condition were omitted from the training dataset.

Condition HRL OSM HRL+OSM
Code Class Tree cover Grass Imp. Perm.Water Perm.Wetness Temp.Wetness Rails Roads Buildings

111 Continuous urban fabric – >50 and <150

112 Discontinuous urban fabric >50 and <150

121 Industrial or commercial units

122 Road and rail networks and associated land OR >30 >30 >30

123 Port areas

124 Airports

131 Mineral extraction sites AND = 0 = 0

132 Dump sites

133 Construction sites

141 Green urban areas ( OR ) AND >0 >0 <50 or >150

142 Sport and leisure facilities

211 Non-irrigated arable land AND = 0 = 0 = 0 <50 or >150

212 Permanently irrigated arable land = 0 = 0 = 0 <50 or >150

213 Rice fields = 0 = 0 <50 or >150

221 Vineyards AND = 0 = 0 = 0 <50 or >150

222 Fruit trees and berry plantations AND = 0 = 0 = 0 <50 or >150

223 Olive groves AND = 0 = 0 = 0 <50 or >150

231 Pastures AND = 0 = 0 = 0 <50 or >150

241 Annual crops associated with permanent crops = 0 = 0 <50 or >150

242 Complex cultivation patter = 0 = 0 <50 or >150

243 Agriculture with significant natural vegetation = 0 = 0 <50 or >150

244 Agro-forestry areas >0 = 0 = 0 <50 or >150

311 Broad-leaved forest AND >0 = 0 = 0 <50 or >150

312 Coniferous forest AND >0 = 0 = 0 <50 or >150

313 Mixed forest >0 = 0 = 0 <50 or >150

321 Natural grasslands AND = 0 >0 = 0 = 0 <50 or >150

322 Moors and heathland = 0 = 0 <50 or >150

323 Sclerophyllous vegetation = 0 = 0 <50 or >150

324 Transitional woodland-shrub = 0 = 0 <50 or >150

331 Beaches, dunes, sand = 0 = 0 <50 or >150

332 Bare rocks = 0 = 0 <50 or >150

333 Sparsely vegetated areas = 0 = 0 <50 or >150

334 Burnt areas = 0 = 0 <50 or >150

335 Glaciers and perpetual snow = 0 = 0 <50 or >150
(continued on next page)
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Table 4 (continued)
Condition HRL OSM HRL+OSM

Code Class Tree cover Grass Imp. Perm.Water Perm.Wetness Temp.Wetness Rails Roads Buildings

411 Inland marshes OR >0 >0 = 0 = 0 <50 or >150

412 Peat bogs = 0 = 0 <50 or >150

421 Salt marshes = 0 = 0 <50 or >150

422 Salines = 0 = 0 <50 or >150

423 Intertidal flats = 0 = 0 <50 or >150

511 Water courses >50

512 Water bodies – = 100

521 Coastal lagoons >50

522 Estuaries >50
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Table 5 Spectral indices derived from the Landsat data and used as additional variables in the spa-
tiotemporal EML.

Spectral index Equation Reference

NDVI nir−red
nir+red Tucker (1979)

SAVI nir−red
(nir+red+0.5)×1.5 Huete (1988)

MSAVI (2×nir+1)−
√

(2×nir+1)2−8×(nir−red)
2 Qi et al. (1994)

NDWI green−swir2
green+swir2 Gao (1996)

NBR nir−thermal
nir+thermal Key & Benson (1999)

NDMI nir−swir1
nir+swir1 Jin & Sader (2005)

NBR2 swir1−thermal
swir1+thermal Key & Benson (2006)

REI nir−blue
nir+blue ×nir Shahi et al. (2015)

• Summer: June 25 until September 12 of current year;
• Fall: September 13 until December 1 of current year.

We decided to use the equal length definition provided by Trenberth (1983) to represent
four seasons and matching the beginning and end of each season with the 16-day intervals
used by Potapov et al. (2020). From more than 73 TB of input data we produced 84 images
(3 quantiles × 4 seasons × 7 Landsat bands) for each year with different occurrences of
no-data values due to cloud contamination in all observations of a specific season.

We next impute all missing values in the Landsat temporal composites using the
‘‘Temporal Moving Window Median’’ TMWM algorithm, implemented in python and
publicly available in the eumap library (see Fig. 1). The algorithm uses the median values
derived from temporal neighbours to impute amissing value using pixels from (1) the same
season, (2) neighboring seasons and 3 the full year. For example, for a missing value in the
spring season, the algorithm first tries to use values from spring seasons of neighbouring
years. If no pixel value is available for the entire period (i.e., 2000–2019), the algorithm
tries to use values from winter and summer of neighbouring years. If no pixel value is
available from data of adjacent seasons from the same year, pixel values from adjacent
years are used to derive the median values. Ultimately, a missing value will not receive an
impute value only if the pixel lacks data throughout the entire time-series. The median
calculation considers different sizes of temporal windows, which expands progressively for
each impute attempt (i.e., time_win_size parameter); in this work we used a maximum
time_win_size of 7. We selected the TMWM approach from a set of 4 algorithms through
a benchmarking process. To our knowledge, it provides the best combination of gap-filling
accuracy and computational costs on the scale of this project.

We include several spectral indices as a form of feature engineering because they are
each designed and tested to help identify or distinguish different types of land cover. Table
Table 5 provides an overview of how we derived them from the Landsat data. This was
done for each quantile and each season, resulting in 4× 3= 12 variables per spectral index.

The TRI (Riley, DeGloria & Elliot, 1999) gives an indication of how different pixel values
are from those of its neighbors. Is usually calculated from elevation data, but we include it
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as a derivative of the Landsat green band in order to help the model distinguish between
pixels that are part of larger, homogeneous regions from pixels that are located inside more
heterogeneous landscapes (e.g., airports, urban green areas, and forest edges).

The Suomi-NPP VIIRS night light imagery (Hillger et al., 2013) was included to
introduce a variable that may help the model recognize the built-up environment, but
also distinguish different types of land use within that category. This data is originally in
500 m resolution, but we re-sampled them to 30 m using a cubic spline.

The geometric minimum and maximum temperature is a geometric transformation
of latitude and the day of the year (Kilibarda et al., 2014). We include these variables to
improve performance on LULC classes that occur in different situations under distant
latitudes e.g.coniferous forest in Greece and Norway. It can be defined anywhere on the
globe using Eq. (2):

tmin = 24.2 ·cosφ−15.7 · (1−cosθ) · sin|φ|−0.6 ·
z
100

(2)

tmax = 37 ·cosφ−15.4 · (1−cosθ) · sin|φ|−0.6 ·
z
100

(3)

where θ is derived as:

θ = (day−18) ·
2π
365
+21−sgn(φ) ·π. (4)

where day is the day of year, φ is the latitude, the number 18 represents the coldest day in
the northern and warmest day in the southern hemisphere, z is the elevation in meter, 0.6
is the vertical temperature gradient per 100 m, and sgn denotes the signum function that
extracts the sign of a real number.

We include a long-term (35-year) probability estimate of surface water occurrence
pekel2016high based on the expectation that it would improve model performance when
classifying LULC classes associated with water, such as wetlands and rice fields.

Accuracy assessment
We evaluate the suitability of the proposed framework with three assessments:
1. Comparison of spatial and spatiotemporal models;
2. 5-fold spatial cross-validation;
3. Validation on S2GLC point data.

We compare the performance of spatial and spatiotemporal models to assess whether
training models on data from multiple years can improve their ability to generalize to
data from unknown years. We expect models trained on observations from multiple years
to generalize better on data from unknown years than models trained on observations
from a single year. In order to investigate this, we trained multiple ensemble models on
several subsets of our training data that were selected from either one or several years, and
validated them on data from years included in their training data and on observations from
2018, the last year of the training dataset, upon which no model was trained.
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The validation on the S2GLC point data is included to assess the extent to which the
choice of legend affects the classification accuracy of our framework. The S2GLC legend
contains less classes and does not

The results produced by the 5-fold spatial cross-validation are used to assess four
characteristics of the proposed methodology:
1. The difference in performance between the ensemblemodel and its componentmodels;
2. classification accuracy of the framework when reproducing the 43-class CLC

classification system;
3. consistency of prediction accuracy by the framework through time;
4. consistency of prediction accuracy by the framework through space;
In all comparisons and experiments, we discriminate model performance with the

Weighted F1-score metric (Van Rijsbergen, 1980):

WF1=
n∑

c=1

Sc ·
2 ·Pc ·Rc

Pc+Rc
(5)

where n is the number of classes, and Sc is the support (the number of training points), Pc
the precision (producer’s accuracy), and Rc the recall (user’s accuracy) of a given class c . We
used a weighted version of this metric because it distinguishes classification performance
more strictly on imbalanced datasets, such as the one used in this work.

Spatial cross-validation
Beforemapping LULC in continental Europe for all years, we performed spatial 5-fold cross-
validation using the hyperparameters of the final EMLmodel to assess its performance. The
predictions for the points from each left-out fold were merged into one set of predicted
values, which we used to assess the performance of our final model. We did this for each
of the three levels in the CLC nomenclature (with 43, 15, and 5 classes) to investigate the
effect of legend size. We aggregated predictions to the higher level in the hierarchy by
taking the highest probability among subclasses within the same higher level class before
selecting the most probable class. Besides this general performance on the total dataset, we
also analyzed the performance of the ensemble per class, year, and cross-validation tile.

Analyzing the performance per class and per level in the hierarchy allows us to quantify
the performance increase gained from aggregating specific classes.We do this by calculating
theweighted average of the F1-score of all sub-classes of a higher-level class (e.g., 311: Broad-
leaved forest, 312: Coniferous forest, and 313: Mixed forest, which together comprise the
level 2 class 31: Forests and seminatural areas). Finally, we subtract the weighted average
F1-score of the subclasses from the F1-score of the higher-level class to quantify the
performance gain. This value will tend to be higher when the model frequently confuses
sub-classes of a higher-level class, as aggregation then removes more classification errors.

We analyzed the temporal and spatial consistency of our model performance by
calculating the weighted F1-scores for the cross-validation predictions on points from each
separate year and tile, respectively. We calculated the standard deviation of these scores to
assess the consistency of the model.

Finally, we also compare the cross validation log loss score per class, as well as aggregated
per CLC level, with a baseline log loss score. This baseline log loss is what a random classifier
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would score when predicting on a given dataset. A dataset with more classes and a more
unequal distribution has a higher baseline log loss score. We also calculate a log loss ratio
to give a measure of model performance that is agnostic of the number and distribution of
classes, instead only reflecting how well a given model performed given the difficulty of its
task. We define this ratio as follows:

R(Y ,P)= 1−
Llog(Y ,P)
Blog(Y ,P)

(6)

where Llog indicates the log loss score of the prediction and Blog indicates the baseline log
loss score that would be scored by a randomly predicting model. A ratio of 0 means that
the model did not outperform a random predictor, a ratio of 1 means a perfect prediction
with a log loss score of 0.

Validation on S2GLC points
After training an ensemble model with the same hyperparameters on all training data,
we classified LULC in 2017. This prediction was validated with the S2GLC dataset which
Malinowski et al. (2020) used to validate their 2017 land cover product. The dataset contains
51,926 points with human-verified land cover classifications which were collected with a
stratified random sampling method from 55 proportionally selected regions of Europe.

As the S2GLC points follow a different nomenclature, we translated the ODSE-LULC
predicted classes according to Table 6. Because any predicted classes outside the S2GLC
nomenclature (labeled as 000: None in Table 6) would be automatically counted as errors,
we performed two validations: (1) a conservative assessment that included points with
such predictions, and (2) an optimistic assessment where they were omitted.

Comparison of ensemble and component models
Previous studies have shown that ensemble models can outperform their component
models (Seni & Elder, 2010; Zhang & Ma, 2012). To investigate if this was the case for
our approach, we compared the spatial cross-validation accuracy of the three selected
component models with that of the full ensemble. We also compared variable importance
of the gradient boosted trees and random forest models in order to discover to what extent
the different models used different parts of the available feature space.

Comparison of spatial and spatiotemporal models
We decided to use a spatiotemporal model trained on reference data from multiple years
because we expect it to generalize better to data from years that were not included in its
training data. We expect this because the EO covariates are more diverse in multi-year
datasets, which leads to a larger feature space and likely reduces overfitting.

We also expected better performance from spatiotemporal models because combining
data from multiple years allows for larger training datasets, which generally improves the
predictive power of a model.

To investigate these two benefits, we trained three types of models:
1. Spatial models, trained on 100,000 points from a single year;
2. small spatiotemporal models, trained on 100,000 points sampled from our multi-year

dataset;
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Table 6 Reclassification key used to validate the predictions of our ensemble model on the S2GLC point dataset collected byMalinowski et al.
(2020).

S2GLC ODSE-LULC

111: Continuous urban fabric
112: Discontinuous urban fabric
121: Industrial or commercial units

111: Artificial Surfaces 122: Road and rail networks and associated land
123: Port areas
124: Airports
132: Dump sites
133: Construction sites

311: Broadleaf tree Cover 311: Broad-leaved forest
312: Coniferous Tree Cover 312: Coniferous forest

211: Non-irrigated arable land
212: Permanently irrigated arable land
213: Rice fields
241: Annual crops associated with permanent crops
242: Complex cultivation patterns
243: Agriculture with significant natural vegetation

211: Cultivated Areas

244: Agro-forestry areas
231: Pastures

231: Herbaceous Vegetation
321: Natural grasslands
411: Inland Marshes
421: Salt Marshes
422: Salines

411: Marshes

423: Intertidal Flats
322: Moors and Heathland 322: Moors and heathland

131: Mineral extraction sites
331: Beaches, dunes, sands331: Natural Material Surfaces
332: Bare rocks
141: Green urban areas
142: Sport and leisure facilities
222: Fruit trees and berry plantations
223: Olive groves
313: Mixed Forest
324: Transitional woodland-shrub
333: Sparsely vegetated areas

000: None

334: Burnt areas
412: Peat Bogs 412: Peat Bogs
335: Permanent Snow 335: Glaciers and perpetual snow
323: Sclerophyllous Vegetation 323: Sclerophyllous vegetation
221: Vineyards 221: Vineyards

511: Water courses
512: Water bodies
521: Coastal lagoons

511: Water Bodies

522: Estuaries
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3. large spatiotemporalmodels, trained on 100,000 points from each year of ourmulti-year
dataset.
We trained a small and a large spatiotemporal model to gain separate insight into the

effects of dataset size and dataset diversity. The years 2000, 2006, 2009 and 2012 had
sufficient points for this experiment, resulting in 4 spatial models, 1 small spatiotemporal
model, and 1 large spatiotemporal model. We then evaluated each model’s classification
performance on a dataset sampled from the same years as the model’s training data, and
a dataset sampled from 2018, which was excluded from the training data selection. Every
model’s validation dataset was 1

3
rd the size of its training dataset. The validation on data

from 2018 represents each model’s ability to generalize to data from years that it was
not trained to classify. We averaged the performance of all spatial models to obtain the
performance of one ’spatial model’.

To investigate the effect of combining the CLC and LUCAS points, we performed this
experiment three times by training and validating on only CLC points, only LUCAS points,
and a combination of CLC and LUCAS points.

Time-series analysis
After classifying LULC in Europe between 2000–2019, we analyzed the dynamics of land
cover predicted by our model in three ways:
1. Probability and NDVI trend analysis using logistic regression on NDVI and the

probabilities for key classes;
2. change class per year and between 2001–2018;
3. prevalent change mapping.
These LULC change dynamics were not validated and serve as a means of analyzing the

output of the presented framework. Furthermore, the GLADARD data-set by Potapov et al.
(2020) is produced for analyzing land cover change but should not be used for land surface
reflectance applications directly. Therefore we do not use NDVI trends as an indication of
absolute vegetation vigor but only as a relative measure of change. Also, NDVI trends are
only applied as a tool to understand the changes and to enhance interpretation.

We analyzed the trend over the years between 2000 and 2019 by fitting an OLS regression
model on the time-series of probabilities of every pixel. We use the coefficient as a proxy
for the gradual change through time. Because probabilities only have meaningful values
between 0 and 1 and NDVI are only meaningful for values between−1 and 1, we applied a
logit transformation to the input data of the OLS analysis. We applied this trend analysis on
the four most prevalent LULC classes: (1) coniferous forest, (2) non-irrigated arable land,
(3) broad leaved forest, and (4) pastures. We also applied this method on a deseasonalized
(Seabold & Perktold, 2010) NDVI time-series (see Fig. 6 and present this trend analysis as
an additional tool to qualitatively appraise large-scale, long-term trends.

In order to visualise change implied by our LULC predictions, we first implement a
smoothing post-processing strategy before categorizing change processes. The smoothing
strategy considers the classification of a pixel in the previous and next years. If a pixel
is classified as one class, but as another single class in the year before and after, this
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Figure 6 Example of deseasonalization (Seabold & Perktold, 2010) and subsequent Logit OLS applied
on a single pixel in Sweden (Coordinates: 62◦ 24′43. 7’’N 13◦ 56′00.3’’E): (A) red dots represent pixel
values, the blue line represents a local weighted regression smoothed line based on the pixel values plus a
light blue area indicating the confidence interval, the red line represents the trend after removing the sea-
sonal signal; (B) red line and crosses represent the trend after removing the seasonal signal, the blue line
visualizes the regression model based NDVI values in the logit space; (C) Trend analysis on probability
values for non-irrigated arable land. In the case above the gradient value is 0.09 with the model R-square
= 0.88.

Full-size DOI: 10.7717/peerj.13573/fig-6

classification is considered an error. In such a case, the pixel’s class is changed to match the
previous and subsequent class. We call this a ‘‘T-3 temporal filter‘‘.

After this preprocessing step, we categorize LULC change processes by applying the
change classes seen in the Copernicus land cover map (Buchhorn et al., 2020) to our
classification scheme. We translated the CLC classes to the land cover classes used by the
Copernicus land cover map according to Table 7. Some examples of changes include:
changing from Dump sites into Urban fabric is classified as ‘‘No change’’, changing from
Non-irrigated arable land into Urban fabric to ‘‘Urbanization’’, changing from Airports to
Mineral extraction sites to ‘‘Other’’ etc. Two notable exceptions are the ‘‘forest loss’’ and
‘‘Reforestation’’ classes. In this paper we will refer to ‘‘Forest loss’’ and ‘‘Forest increase’’
instead. We renamed these change classes because we wanted to avoid making assumptions
regarding the drivers of the detected trends in forest cover.

In order to identify and visualize the dominant LULC change trends in Europe, we
mapped the ‘‘prevalent change‘‘ at two scales of aggregation: 5 × 5 km and 20 × 20 km.
We created a Europe-covering grid with cells at both scales. Then, we counted the number
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Table 7 Harmonization scheme used to convert ODSE-LULC nomenclature to Copernicus Global Land Cover classes.On the left side, ODSE-LULC classes are con-
verted to Forest, Other Vegetation, Wetland, Bare, Cropland, Urban, and Water classes. Each transition from one Copernicus class to another is then categorized into a
change class in the cross-table.

ODSE-LULC class Copernicus
change class

Forest Other
vegetation

Wetland Bare Cropland Urban Water

311: Broad-leaved forest Forest Forest loss Deforestation
and crop expansion

Deforestation
and urbanization

Water expansion

312: Coniferous forest

321: Natural grasslands Other
Vegetation

Reforestation Other Desertification Crop expansion Urbanization

322: Moors and heathland

324: Transitional woodland-shrub

323: Sclerophyllous vegetation

411: Inland wetlands Wetland Wetland
degradation

Wetland degradation
and desertification

Wetland degradation
and crop expansion

Wetland degradation
and urbanization

421: Maritime wetlands

332: Bare rocks Bare Other Crop expansion Urbanization

333: Sparsely vegetated areas

334: Burnt areas

335: Glaciers and perpetual snow

335: Beaches, dunes, and sands

211: Non-irrigated arable land Cropland Land
abandonment

Land abandonment
and desertification

212: Permanently irrigated arable land

213: Rice fields

221: Vineyards

222: Fruit trees and berry plantations

223: Olive groves

231: Pastures

(continued on next page)
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Table 7 (continued)
ODSE-LULC class Copernicus

change class
Forest Other

vegetation
Wetland Bare Cropland Urban Water

111: Urban fabric Urban Other

122: Road and rail networks and
associated land

123: Port areas

124: Airports

131: Mineral extraction sites

132: Dump sites

133: Construction sites

141: Green urban areas

511: Water courses Water Water
reduction

512: Water bodies

523: Sea and ocean

522: Estuaries

521: Coastal lagoons
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Table 8 Weighted F1-score of other land cover products when validated with the ODSE-LULC train-
ing dataset.

Land cover
product

Validation
year

Data
source

Samples Weighted
F1-Score

Number of
classes

Res. (m)

S2GLC 2016 LUCAS 756 0.724 8 10
Pflugmacher et al. (2019) 2016 LUCAS 719 0.719 10 30
GLCFCS30–2015 2016 LUCAS 724 0.677 10 30
Pflugmacher et al. (2019) 2015 LUCAS 144,027 0.657 11 30
S2GLC 2018 LUCAS 295,152 0.653 11 10
S2GLC 2018 CLC 1,000,063 0.604 12 10
ELC10 2018 LUCAS 42,629 0.596 8 10
GLCFCS30–2015 2015 LUCAS 138,342 0.503 12 30
ELC10 2018 CLC 172,382 0.456 8 10
GLCFCS30–2020 2018 LUCAS 308,838 0.424 12 30
GLCFCS30–2020 2018 CLC 1,026,914 0.420 12 30

of 30 × 30 m pixels of each change class within each grid cell. The predominant change
class (see Table Table 7) was then assigned to each grid cell. We also calculated ‘‘change
intensity’’ by dividing the number of 30 × 30 m pixels of the prevalent change class, by
the sum of all pixels in each grid cell. For example, at a 20 × 20 km scale, each grid cell
contains have (20,000/30) · (20,000/30)= 444,444 pixels. If the prevalent change class is
present in >94,000 pixels this means that it covers >20% of the total area.

RESULTS
Quality of reference data
Table 8 shows how well each compared land cover product matched ODSE-LULC training
data. The comparison with S2GLC with our points from 2016 and 2018 resulted in the
highest F1-scores, while the land cover product made by Pflugmacher et al. (2019) fits
more closely to the 2015 subset (0.657). The 2019 point subset was considered too small
to perform any meaningful comparison between ELC10 and GLCFCS30. The number of
classes can vary per dataset per year because we excluded all classes from the translated
dataset that do not appear in the target land cover product.

Spatiotemporal ensemble modelling results
The EML model optimization resulted in the following hyperparameters and architecture:

• Random forest: Number of trees equal to 85, maximum depth per tree equal to 25,
number of variables to find the best split equal to 89, and 20 as minimum number of
samples per leaf.
• Gradient boosted trees: Number of boosting rounds equal to 28, maximum depth
per tree equal to 7, minimum loss reduction necessary to split a leaf node equal to 1,
L1 regularization term on weights equal to 0.483, learning rate equal to 0.281, greedy
histogram algorithm to construct the trees, and softmax as objective function.
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• Artificial Neural Network: Four fully connected hidden layers with 64 artificial neurons
each; ReLU as activation function, dropout rate equal to 0.15 and batch normalization
in all the layers; softmax as activation function for output layer; batch size and number
of epochs equal to 64 and 50, respectively; and Adam with Nesterov momentum as
optimizer considering 5e−4 as learning rate.
• Logistic Regression: SAGA solver and multinomial function to minimize the loss.

The variable importance, generated by the two tree-based learners and presented in
Fig. 7, shows that the 50th quantile for summer and winter of the Landsat green band were
most important to the random forest and gradient boosted tree models, respectively. In
addition to spectral bands, several Landsat-derived spectral indices (NBR2, SAVI, NDVI,
REI, NDWI, MSAVI) appear amongst the 40 most important variables. Global surface
water frequency was the third most important for the random forest. Figure 7 also shows
that the summer aggregates of Landsat green (25th quantile) and NDVI are the two most
important variables where the highest importance among the twomodels is less than double
the importance of the other model. Except for Landsat green and NDVI, most variables
were found important by only one model. For instance, the geometric temperatures and
nighttime land surface temperatures were only important for the random forest. The
differences in variable importance indicate that the component models use different parts
of the feature space before their predictions are combined by the meta-learner, suggesting
that ensembles can utilize a wider proportion of the feature space than single models.

Accuracy assessment results
Spatial cross-validation
We performed 5-fold spatial cross-validation with the final hyperparameters for our
ensemble. The predictions on the left-out folds were aggregated to assess model
performance on the entire dataset. Table 9 shows that the model achieved higher weighted
user and producer accuracy, as well as F1-score and log loss ratio, when predictions were
aggregated to their next level in the CLC hierarchy. Table 10 shows that the model only
achieved an F1-score over 0.5 for 10 out of 43 classes (112, 121, 211, 213, 311, 312, 332,
335, 412, 512). The model performed best when predicting 512: Water bodies (0.924), 335:
Glaciers and perpetual snow (0.834), and 412: Peat bogs (0.707). It achieved the lowest
F1-scores for 334: Burnt areas (0.011), 132: Dump sites (0.026) and 133: Construction sites
(0.065). However, log loss ratios for each class and each CLC level overall were higher than
0, indicating that the model assigned probabilities more accurately than a random classifier
even for the most difficult classes.

When the predictions were aggregated to 14 level 2 classes (see Table 11), the model
performed best when classifying 51: Inland waters (0.924), 31: Forests and seminatural
areas (0.813) and 41: Inland wetlands (0.708). The biggest increase in performance through
aggregation to level 2 was in 31: Forests, as the weighted average F1-score of its subclasses
(311,312,313) was 0.553. The least accurately predicted classes were 14: Artificial, non-
agricultural vegetated areas (0.308), 13: Mine, dump and construction sites (0.370) and 22:
Permanent crops (0.412).
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Figure 7 Standardized importance of the top-40 most important variables to the random forest and
gradient boosted tree models. The colored bar indicates the highest importance of the variable among
the two models. This model is indicated to the right of each bar. The corresponding grey bar indicates the
importance to the other model. The color of each bar indicates the data type. Each variable name is pre-
fixed with either LCV (either part of a Landsat band or a landsat-derived spectral index), HYD (Hydrolog-
ical data), CLM (climatic data), or DTM (digital terrain model). This prefix is followed by the specific data
source, e.g., [color or index]_landsat indicates a Landsat band or derived spectral index. The last part of
each name indicates the timespan over which the data was aggregated.

Full-size DOI: 10.7717/peerj.13573/fig-7
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Table 9 Producer’s and user’s accuracy, Weighted F1-score, and Log loss of the ensemble predictions during spatial cross-validation.

Corine
level

Number of
classes

Prod acc. User acc. Weighted F1 Log
loss

Baseline
log loss

Log loss
ratio

1 5 0.835 0.835 0.834 0.456 2.018 0.774
2 14 0.636 0.639 0.509 1.033 3.596 0.713
3 43 0.494 0.502 0.491 1.544 5.142 0.700

Table 12 shows that at the highest level of aggregation with 5 general classes, the model
classified 5: Water bodies most accurately (0.926) and 1: Artificial surfaces the least (0.688).
The best performance improvement from aggregation was for 2: Agricultural areas, as the
weighted average F1-score of its subclasses (21, 22, 23, 24) was 0.546, but increased with
0.279 upon aggregation.

We calculated a separate weighted F1-score for each tile that was used for spatial
cross-validation to investigate spatial patterns in classification performance. The average
weighted F1-score per tile was 0.463, with a standard deviation of 0.150. Figure 8 shows
a disparity in performance between northern and southern Europe. Figure 9 shows that
there is a significant correlation (0.125, p= 0.000) between the number of reference points
and the weighted F1 score of a tile.

We calculated a separate weighted F1-score for all cross-validation predictions from
each separate year. Table 13 shows that the average weighted F1-score per year was 0.489
with a standard deviation of 0.135. It only scored higher than 0.5 on years with less than 1
million points.

Validation on S2GLC points
We validated the ensemble on S2GLC dataset. We overlaid 49,897 S2GLC points with our
input variables for 2017 and classified 43 LULC classes with our model. These 43-class
predictions were reclassified to the S2GLC nomenclature. 3,484 points had a predicted
class that was not in the S2GLC nomenclature (see Table 6). The ‘conservative’ assessment
(on all 49,897 points) including the non-S2GLC classes resulted in a weighted F1-score
of 0.854 and a kappa score of 0.794 (see Table 14). The ‘optimistic‘ assessment excluding
non-S2GLC predictions resulted in a weighted F1-score of 0.889 and a kappa score of 0.867
(see Table 15).

Taking into account possible noise from the translation process, these results are similar
to those reported byMalinowski et al. (2020).Weighted average user and producer accuracy
and F1-scores are also higher than our cross-validation scores at all thematic resolution
levels (see Table 9). They are also higher than what we obtained when we transformed
our cross-validation predictions to the S2GLC nomenclature, which yielded a weighted
F1-score 0.611 and a kappa score of 0.535.

Figure 10 shows a normalized confusion matrix of our validation on the S2GLC dataset.
It shows the rate at which each true class (rows) was predicted as each other class (columns).
The diagonal cells report the true positive rate of each class. Class 000 represents classes
not present in the S2GLC dataset; as there were no ground truth points in the dataset with
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Table 10 Classification report for 43 CLC level 3 classes, based on the predictions made with 5-fold spatial cross-validation.

CLC code
(level 3)

Producer
Acc.

User
Acc.

F1-score Support Log
loss

Baseline
log loss

Log loss
ratio

111: Continuous urban fabric 0.523 0.166 0.252 51,989 0.0230 0.0388 0.409
112: Discontinuous urban fabric 0.509 0.572 0.539 92,151 0.0256 0.0623 0.590
121: Industrial or commercial units 0.496 0.623 0.552 129,661 0.0382 0.0821 0.535
122: Road and rail networks and associated land 0.294 0.068 0.111 39,832 0.0244 0.0311 0.213
123: Port areas 0.543 0.321 0.403 3,994 0.0018 0.0042 0.578
124: Airports 0.300 0.023 0.043 6,702 0.0049 0.0067 0.265
131: Mineral extraction sites 0.482 0.307 0.375 53,447 0.0264 0.0397 0.335
132: Dump sites 0.375 0.013 0.026 6,509 0.0048 0.0065 0.267
133: Construction sites 0.217 0.038 0.065 6,728 0.0047 0.0067 0.299
141: Green urban areas 0.312 0.125 0.179 15,717 0.0091 0.0141 0.350
142: Sport and leisure facilities 0.407 0.200 0.268 64,308 0.0326 0.0463 0.297
211: Non-irrigated arable land 0.604 0.733 0.662 998,381 0.1892 0.3735 0.493
212: Permanently irrigated arable land 0.447 0.146 0.221 29,786 0.0139 0.0243 0.428
213: Rice fields 0.762 0.496 0.601 4,839 0.0020 0.0050 0.596
221: Vineyards 0.506 0.308 0.383 66,213 0.0287 0.0474 0.394
222: Fruit trees and berry plantations 0.411 0.131 0.199 63,659 0.0344 0.0459 0.251
223: Olive groves 0.432 0.355 0.390 63,578 0.0244 0.0459 0.469
231: Pastures 0.455 0.529 0.489 529,466 0.1509 0.2415 0.375
241: Annual crops associated with permanent crops 0.269 0.067 0.107 16,883 0.0101 0.0150 0.326
242: Complex cultivation patter 0.348 0.351 0.349 594,648 0.1942 0.2624 0.260
243: Agriculture with significant natural vegetation 0.355 0.373 0.363 782,237 0.2558 0.3176 0.194
244: Agro-forestry areas 0.276 0.052 0.087 10,497 0.0060 0.0099 0.396
311: Broad-leaved forest 0.537 0.660 0.592 855,499 0.1971 0.3373 0.416
312: Coniferous forest 0.596 0.646 0.620 759,215 0.1644 0.3112 0.472
313: Mixed forest 0.461 0.377 0.414 612,430 0.1707 0.2680 0.363
321: Natural grasslands 0.406 0.314 0.354 400,875 0.1431 0.1971 0.274
322: Moors and heathland 0.493 0.350 0.409 301,693 0.1100 0.1591 0.309
323: Sclerophyllous vegetation 0.311 0.372 0.339 143,521 0.0532 0.0890 0.403
324: Transitional woodland-shrub 0.472 0.431 0.450 724,404 0.2117 0.3013 0.297
331: Beaches, dunes, sand 0.551 0.207 0.301 25,688 0.0147 0.0214 0.312
332: Bare rocks 0.664 0.495 0.567 58,234 0.0162 0.0427 0.621
333: Sparsely vegetated areas 0.522 0.471 0.495 152,571 0.0457 0.0935 0.511
334: Burnt areas 0.224 0.006 0.011 2,263 0.0021 0.0026 0.177
335: Glaciers and perpetual snow 0.852 0.818 0.834 7,250 0.0008 0.0072 0.883
411: Inland marshes 0.425 0.228 0.297 39,784 0.0192 0.0310 0.382
412: Peat bogs 0.684 0.731 0.707 174,314 0.0333 0.1039 0.680
421: Salt marshes 0.505 0.441 0.471 5,598 0.0023 0.0057 0.600
422: Salines 0.481 0.081 0.139 320 0.0002 0.0004 0.577
423: Intertidal flats 0.497 0.209 0.295 788 0.0004 0.0010 0.570
511: Water courses 0.360 0.108 0.166 11,214 0.0068 0.0105 0.353

(continued on next page)
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Table 10 (continued)

CLC code
(level 3)

Producer
Acc.

User
Acc.

F1-score Support Log
loss

Baseline
log loss

Log loss
ratio

512: Water bodies 0.895 0.956 0.924 187,981 0.0108 0.1103 0.902
521: Coastal lagoons 0.594 0.429 0.498 1,904 0.0006 0.0022 0.708
522: Estuaries 0.382 0.082 0.135 353 0.0002 0.0005 0.566
Macro average 0.460 0.327 0.356 0.083 0.137 0.452
Weighted average 0.494 0.502 0.491 0.157 0.253 0.389
Accuracy 0.502
Kappa score 0.459
Log Loss (baseline) 1.544 (5.142)

Table 11 Classification report for 14 CLC level 2 classes, based on the predictions made with 5-fold spatial cross-validation.

CLC code
(level 2)

Producer
Acc.

User Acc. f1-score Support Log
loss

Baseline
log loss

Log loss
ratio

11: Urban Fabric 0.643 0.535 0.584 144,140 0.039 0.089 0.564
12: Industrial, commercial and transport units 0.568 0.551 0.559 180,189 0.057 0.107 0.469
13: Mine, dump and construction sites 0.533 0.283 0.370 66,684 0.032 0.048 0.331
14: Artificial, non-agricultural vegetated areas 0.479 0.227 0.308 80,025 0.038 0.055 0.315
21: Arable land 0.622 0.738 0.675 1,033,006 0.191 0.382 0.500
22: Permanent crops 0.558 0.326 0.412 193,450 0.072 0.113 0.363
23: Pastures 0.455 0.529 0.489 529,466 0.151 0.242 0.375
24: Heterogeneous agricultural areas 0.488 0.496 0.492 1,404,265 0.364 0.461 0.212
31: Forests and seminatural areas 0.788 0.840 0.813 2,227,144 0.302 0.588 0.487
32: Shrub and/or herbaceous vegetation associations 0.592 0.511 0.548 1,570,493 0.384 0.492 0.218
33: Open spaces with little or no vegetation 0.736 0.591 0.656 246,006 0.061 0.136 0.555
41: Inland wetlands 0.719 0.697 0.708 214,098 0.044 0.122 0.643
42: Coastal wetlands 0.591 0.465 0.520 6,706 0.003 0.007 0.618
51: Inland waters 0.913 0.936 0.924 199,195 0.013 0.115 0.884
52: Marine waters 0.614 0.392 0.479 2,273 0.001 0.003 0.699
Macro average 0.620 0.541 0.569 0.117 0.197 0.482
Weighted average 0.636 0.639 0.634 0.262 0.420 0.393
Accuracy 0.639
Kappa score 0.565
Log Loss (baseline) 1.033 (3.596)

these classes, the top row of the matrix is empty. The matrix shows that, when normalized
for support, the biggest sources of error were the incorrect classification of classes 323:
Sclerophyllous vegetation and 322: Moors and Heathland as classes not in the S2GLC
dataset with 29.9% and 27.0% of all errors for these classes, respectively, and of 411:
Marshes as 231: Herbaceous vegetation (28.4%). We include a similar confusion matrix
of our cross-validation predictions (Fig. 11, transformed to the S2GLC nomenclature, to
allow a comparison between our cross-validation and independent validation. It shows
that many classes have a higher true positive rate in the independent validation on S2GLC
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Table 12 Classification report for 5 CLC level 1 classes, based on the predictions made with 5-fold spatial cross-validation.

CLC code (level 1) Producer Acc. User Acc. F1-score Support Log loss Baseline log loss Log loss ratio

1: Artificial surfaces 0.784 0.613 0.688 471,038 0.123 0.222 0.445
2: Agricultural areas 0.798 0.854 0.825 3,160,187 0.457 0.669 0.317
3: Forest and seminatural areas 0.872 0.848 0.860 4,043,643 0.526 0.693 0.241
4: Wetlands 0.722 0.696 0.708 220,804 0.045 0.125 0.639
5: Water bodies 0.917 0.936 0.926 201,468 0.013 0.116 0.884
Macro average 0.819 0.789 0.802 0.233 0.365 0.505
Weighted average 0.835 0.835 0.834 0.450 0.626 0.309
Accuracy 0.835
Kappa score 0.720
Log Loss (baseline) 0.456 (2.018)

Weighted	F1-score
0	-	0,36
0,36	-	0,45
0,45	-	0,51
0,51	-	0,57
0,57	-	1

Number	of	samples
0	-	250
250	-	500
500	-	1000
1000	-	2000
2000	-	4000

Figure 8 Comparison of number of samples and cross-validation performance. Both metrics are visu-
alized for each tile in the 30 km tiling system used for spatial cross-validation. Left: Number of samples per
tile. Right: Weighted F1-score per tile.

Full-size DOI: 10.7717/peerj.13573/fig-8

points than in our cross-validation results, except for 211: Cultivated areas, 335: Permanent
snow cover, and 412: Peatbogs.

Comparison of spatial and spatiotemporal models
We trained two types of models and compared their performance: Spatial models, which
were trained on 100,000 points sampled from one year, and spatiotemporal models, which
were trained on 100,000 points equally distributed across multiple years. Table 16 shows
the weighted F1-scores obtained through validating each model on 33,333 points from the
same year(s) as its training data, and on 33,333 points from the year 2018, which was left
out of all training datasets.

The results show that all models performed better when validated on points from the
same year as their training data, regardless of data source. However, spatial models achieved
higher F1-scores on average when trained and validated on only LUCAS points, while the
spatiotemporal models performed better when trained and validated on only CLC points.
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Figure 9 Hexbin plot of the weighted F1-score and number of overlapping points per tile. The Pear-
son correlation coefficient of 0.125 (p: 0.000) indicates there is a weak positive correlation between the
number of points in a tile and the cross-validation weighted F1-score.

Full-size DOI: 10.7717/peerj.13573/fig-9

Table 13 Cross-validation performance of our ensemble model per year.

Year Weighted F1-score Support

2000 0.497 1,658,715
2006 0.491 1,852,645
2009 0.558 225,416
2012 0.487 1,971,812
2015 0.588 265,830
2016 0.632 65,235
2018 0.481 2,057,306
2019 0.535 180
Average 0.489 1,012,142
Standard deviation 0.135 882,783
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Table 14 Conservative classification report of our 2017 LULC prediction on 49,897 S2GLC points that
counts 3484 points with predicted classes without an equivalent S2GLC class as errors (141: Green ur-
ban areas, 142: Sport and leisure facilities, 222: Fruit trees and berry plantations, 223: Olive groves, 313:
Mixed forest, 324: Transitional woodland-shrub, 333: Sparsely vegetated areas, and 334: Burnt areas).

S2GLC class Producer Acc. User Acc. F1-score Support

111: Artificial surfaces 0.933 0.933 0.933 1,826
211: Cultivated areas 0.849 0.965 0.903 13,470
221: Vineyards 0.826 0.694 0.754 500
231: Herbaceous vegetation 0.861 0.686 0.764 6,776
311: Broadleaf tree cover 0.967 0.814 0.884 10,944
312: Coniferous tree cover 0.975 0.914 0.943 8,626
322: Moors and heathland 0.641 0.491 0.556 2,070
323: Sclerophyllous vegetation 0.780 0.265 0.396 815
331: Natural material surfaces 0.915 0.751 0.825 2,110
335: Permanent snow cover 0.624 0.800 0.701 85
411: Marshes 0.331 0.327 0.329 324
412: Peatbogs 0.629 0.482 0.546 745
511: Water bodies 0.992 0.974 0.983 1,606
Macro average 0.737 0.650 0.680
Weighted average 0.892 0.830 0.854
Accuracy 0.830

49,897

Kappa score 0.794

The spatiotemporal model trained on only CLC points achieved the highest F1-scores
for both known-year and unknown-year classification. This model outperformed spatial
models on known-year classification by 2.7% and unknown-year classification by 3.5% as
seen in Table 16.

Comparison of ensemble and component models
We compared the F1-score of each component model and the meta-learner. The neural
network achieved the highest weighted F1-score of 0.514. The meta-learner scored 0.513,
the random forest 0.506, the gradient boosted trees 0.471. Figure 12 shows the difference
in performance per model per class. When scored per class, the meta-learner achieved the
highest F1-score on 36 out of 43 classes, the random forest on 1 class (523), the gradient
boosted trees on 6 classes (132,334,422,423,521,522), and the neural network on 1 class
(221).

Time-series analysis results
Our NDVI slope maps show which areas have an increase or decrease in NDVI over time.
We selected 19500 LUCAS points that experienced LULC change and overlaid these with
our NDVI slope values. Figures 13 and 14 show clear differences in NDVI trend between
LUCAS points that have undergone different LULC change processes.

We generated annual maps for change classes (see Fig. 15 for the maps of 2000 and
2019). Filtered data as well as the removed noise can be viewed from the ODS-Europe
viewer.
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Table 15 Optimistic classification report of our 2017 LULC prediction on 49,897 S2GLC points where
all 3484 points with predicted classes without an equivalent S2GLC class were removed before calculat-
ing accuracy metrics (141: Green urban areas, 142: Sport and leisure facilities, 222: Fruit trees and berry
plantations, 223: Olive groves, 313: Mixed forest, 324: Transitional woodland-shrub, 333: Sparsely veg-
etated areas, and 334: Burnt areas).

S2GLC class Producer Acc. User Acc. F1-score Support

111: Artificial surfaces 0.933 0.935 0.934 1,823
211: Cultivated areas 0.849 0.967 0.905 13,429
221: Vineyards 0.826 0.720 0.769 482
231: Herbaceous vegetation 0.861 0.722 0.785 6,441
311: Broadleaf tree cover 0.967 0.937 0.952 9,512
312: Coniferous tree cover 0.975 0.973 0.974 8,098
322: Moors and heathland 0.641 0.672 0.656 1,511
323: Sclerophyllous vegetation 0.780 0.378 0.509 571
331: Natural material surfaces 0.915 0.866 0.889 1,831
335: Permanent snow cover 0.624 0.819 0.708 83
411: Marshes 0.331 0.351 0.341 302
412: Peatbogs 0.629 0.494 0.554 726
511: Water bodies 0.992 0.975 0.984 1,604
Macro average 0.794 0.755 0.766
Weighted average 0.893 0.892 0.889
Accuracy 0.892

46,413

Kappa score 0.867

Figure 16 demonstrates how trend analysis can be used to explore large-scale trends and
pixel-level details.

Figures 16B1 and 16B2 show areas of negative and positive slope occur adjacent to each
other without gradual transitions. Figures 16B3 and 16B4 show examples of relatively
large areas with homogeneous NDVI slope values. Overall, NDVI slopes in Europe tend to
be positive, the largest exceptions being negative slope regions in Northern Scandinavia,
Scotland, the Alps, South West France, Spain, Italy and Greece.

The right-most subplots of Fig. 16 show examples of where sudden land cover change
classes at 30 × 30 m tend to match relatively large negative slopes, especially for change
classes such as forest loss and urbanization.

Figure 17 presents the long-term LULC change processes as suggested by our
classification results. Figure 17A presents the dominant type of LULC change in a 5× 5 km
grid, while Fig. 17B shows the intensity of change as part of the total area on a separate map
using 20× 20 km areas. Large parts ofmainland Europe are characterized with reforestation
as the main change with patches of urbanization scattered in between. Norway, Sweden
and Finland are characterized with forest loss as the main LULC change class. Large areas
in Spain have land abandonment and crop expansion as the main land use class. When
taking into account the intensity of the changes the central European countries seem to be
stable with the Iberian peninsula, Scandinavia and parts of eastern Europe exhibiting more
intense changes.
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Figure 10 Normalized confusionmatrix of our prediction on the independently collected S2GLC vali-
dation points. Each cell shows the percentage of the true label predicted as the predicted label.

Full-size DOI: 10.7717/peerj.13573/fig-10

DISCUSSION
‘‘The appropriateness and adequacy of the 10-class schema used to describe land cover
in today’s human-dominated world needs a serious rethink. What is the value of a 10
m (resolution) landcover map that cannot capture a grassland being turned into a solar
farm?’’

Mysore DoreswamyMadhusudan

Summary findings
We have presented a framework for automated prediction of land cover / land use classes
and change analysis based on spatiotemporal Ensemble Machine Learning and per-pixel
trend analysis. In this framework, we focused not only on predicting the most probable
class, but also on mapping each probability and associated model variance. We believe
that such detailed information gives a more holistic view of the land cover and land use
and allows any future users to derive their own specialized maps of certain classes using
probability thresholds and uncertainty per pixel and class, and/or to incorporate it in
further spatial modeling.
We show that in the context of reproducing the CLC legend, models trained on multi-

year observations generalize better to unknown years than models trained on single-year
observations, and that ensemble machine learning marginally outperforms single classifiers
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Figure 11 Normalized confusionmatrix of the predictions made by our model during spatial cross-
validation on our own dataset, reclassed to the S2GLC nomenclature. Each cell shows the percentage of
the true label predicted as the predicted label.

Full-size DOI: 10.7717/peerj.13573/fig-11

Table 16 Weighted F1-scores obtained by validating spatial and spatiotemporal models on data from known years and an unknown year
(2018). Trained on CLC points, LUCAS points, and a combination of both.

Model Training
year

Points Trained on CLC Trained on LUCAS Trained on CLC and LUCAS

Tested on
raining year (s)

Tested on
2018

Tested on
training year (s)

Tested on
2018

Tested on
training year (s)

Tested on
2018

Spatial 2000 100,000 0.610 0.542 0.611 0.515
Spatial 2006 100,000 0.595 0.437 0.604 0.563 0.587 0.534
Spatial 2009 100,000 0.595 0.482 0.602 0.415
Spatial 2012 100,000 0.559 0.476 0.611 0.574 0.565 0.529
Spatial Average 400,000 0.583 0.465 0.608 0.560 0.591 0.498
Spatiotemporal All 100,000 0.612 0.576 0.568 0.478 0.574 0.532
Spatiotemporal All 400,000 0.625 0.579 0.608 0.491 0.595 0.543

overall. Our accuracy assessment however indicates that several CLC classes remain hard
to reproduce in the proposed workflow. The on-par performance on the S2GLC validation
points, however, suggests that the framework is capable of generating accurate predictions
for relatively detailed legends if they do not contain heterogeneous classes.
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Figure 12 Grouped bar plot of the F1-scores CLC class, plotted separately per model of the ensemble.
Meta-learner performance is indicated in red on the background of each bar. If the random forest (blue),
gradient boosted trees (orange) or neural network (green) outperformed the meta-learner, its bar will ex-
ceed the bigger meta-learner bar, indicating that the meta-learner did not learn to incorporate the model’s
higher performance into its final prediction.

Full-size DOI: 10.7717/peerj.13573/fig-12
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Copernicus change classes based on LUCAS points vs landsat ndvi trend slope

Figure 13 NDVI trend slope values of LUCAS points with selected LULC change dynamics, catego-
rized according to the Copernicus change classes. The mean NDVI trend value is indicated with green
triangles.

Full-size DOI: 10.7717/peerj.13573/fig-13

We further explained the time-series analysis framework for processing partial
probabilities and NDVI values aiming at detection of significant spatiotemporal trends.
We provide pixel-wise uncertainty measures (standard deviation of the slope / beta
coefficient andR-square), which can also be used in any further spatialmodeling. Thewhole
framework, from hyper-parameter optimisation, fine-tuning, prediction and time-series
analysis, is fully automated in the (eumap python package https://eumap.readthedocs.io/)
and generates consistent results over time with quantified uncertainty, making it more
cost-effective for future updates and additions.

Model performance
Our spatial cross-validation accuracy assessment results indicate limited hard-class accuracy
(Weighted F1-score of 0.494) at the highest classification level (43 classes) with several
classes such as 124: Airports, and 334: Burnt Areas performing poorly, likely rendering
them unfit for further use. However, a comparison of each class’ separate log loss score
indicates that the model predicted each class more accurately than the baseline. For
example, 522: Estuaries was one of the least accurately predicted classes in the hard-class
classification, but had a log loss ratio of 0.566. This means that probabilities were frequently
correctly assigned to validation points in estuaries but overshadowed by other, more
numerous classes (e.g., 512: Water Bodies), allowing a more accurate mapping of estuaries
by adjusting the probability threshold for that specific class. Furthermore, our validation
on the independent S2GLC dataset collected by Malinowski et al. (2020) indicates that
the accuracy of our model is comparable to the model used in their publication. Our
conservative estimate (counting all points with predicted classes outside the S2GLC legend
as errors) resulted in a weighted average F1-score of 0.854 and a kappa score of 0.794 and
our optimistic estimate (where those points were removed before calculation) yielded F1:
0.889 and kappa: 0.867, whileMalinowski et al. (2020) reported 0.86 and 0.83, respectively.
While these points were sampled to validate a 10 m resolution map and it is unclear how
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Figure 14 Detail plot of NDVI and LULC trends between 2000–2020 for 2 LUCAS points. NDVI trend
is compared to forest increase (top) and urbanization (bottom). Left (A and E): A graph comparing the
two trends, with green depicting de-seasonalized NDVI data and its trend, as calculated by logit OLS re-
gression. Red depicts the annual probability values and associated trend of the compared LULC change
classes (‘‘312: Coniferous forest’’ and ‘‘111: Continuous urban fabric’’, respectively). The maps, from left
to right, depict the spatial context of the two points in (B/F) high-resolution satellite RGB, (C/G) slope
of Landsat ARD NDVI trends, and (D/H) slope of LULC change class trends as predicted by our ensem-
ble. The ‘‘in-situ’’ observations of both points match the dynamic presented in the graph: Point 28681762
(top) experienced forest increase, while point 39143028 (bottom) is located in a recently constructed ur-
ban area.

Full-size DOI: 10.7717/peerj.13573/fig-14

this affects the accuracy assessment, we could not find a reason to expect overestimated
accuracy values in existing literature.

This suggests the nomenclature used by Malinowski et al. (2020) is more optimized for
remote sensing-based classification than the CLC legend and that the framework presented
in this work is capable of achieving accuracy levels comparable to state-of-the-art 10 m
resolution land cover products when using a more suitable legend. However, when we
transformed our cross-validation results to the S2GLC legend, we obtained an F1-score of
0.611 and a kappa score of 0.535, which is considerably lower. This is unlikely to happen
when comparing two datasets that are both sampled in a representative, proportional
approach; it is therefore likely that the mismatch is caused by the training points in the
ODSE-LULC dataset that were generated from CLC centroids.

The average weighted F1-score per year was 0.489 with a standard deviation of 0.135,
while the average weighted F1-score per tile was 0.463, with a standard deviation of 0.150.
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Figure 15 Dominant LULC classes, predicted probability andmodel variance for Non-irrigated arable
land, Coniferous forest and Urban Fabric, RGB Landsat temporal composite (Spring season) for the
years 2000 and 2019.

Full-size DOI: 10.7717/peerj.13573/fig-15

This means that our model was more consistent through time than through space. A
possible explanation is the unequal distribution of training points derived from the CLC
data; we did not sample this data based on how much area they cover, but instead on
how many separate areas occur in the data. Regions of Europe and classes with smaller
CLC polygons may be over-represented in the data. Fig. 8 shows that there is a slight but
significant correlation between the number of points and cross-validation F1-score. This
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Figure 16 Trends in NDVI values between 2000 and 2019 compared to trends in LULC probabilities
predicted by our ensemble model, as well as the derived LULC change classes between 2001 and 2018.

Full-size DOI: 10.7717/peerj.13573/fig-16

Figure 17 Prevalent LULC change and change intensity on the British isles aggregated to 5× 5 km
tiles, for three dynamics: Urbanization (A), Wetland degradation (B), and forest increase/decrease (C).

Full-size DOI: 10.7717/peerj.13573/fig-17
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suggests that improving the CLC sampling strategy may improve the spatial consistency of
our model.

Advantages and limitations of combining CLC and LUCAS points
We included LUCAS points in our dataset in order to base our modeling and predictions
on a consistent and quality-controlled dataset. However, in this work we found that
training spatiotemporal models on LUCAS points lead to lower classification accuracy
estimates than when only using CLC points (see Table 16). This was unexpected, as LUCAS
land cover information stems from actual ground observations, while the CLC points
are pseudo-ground truth points from a dataset with a large minimum mapping unit.
This suggests that either the LUCAS points are harder to reproduce with remote sensing
techniques, or that the harmonization and data filtering process needs to be improved.
Further testing is needed to clarify this.

Advantages and limitations of using spatiotemporal models
The results of testing the generalization potential of spatiotemporal models with separate
experiments (see methods and results sections about spatial vs spatiotemporal machine
learning) show that spatiotemporal models generalize better to data from years they were
not trained on. These findings suggest that we can use the existing model to predict land
cover for 2020 and 2021 without collecting new training data: Preparing Landsat images
for these periods would be likely enough.

Our results also suggests that we can use contemporary reference data tomake consistent
predictions for periods prior to the year 2000, for which very little training data is available.
We intend to produce predictions for the years 1995, 1990 and to 1985 in the next phase
of our project. We did not do this previously because the Landsat ARD data (Potapov et
al., 2020) is only available after 1997. We need to compute and re-calibrate the Landsat 5,
6 and 7 products ourselves, which adds a higher level complexity due to the differences in
sensors and acquisition plans.

Another limitation for this work is the fact that the long-term spatiotemporal approach
aims at 30 m resolution data, while most current land cover products aim at a 10 m
resolution. Furthermore, our approach is highly dependent on the availability of quality
reference data from multiple years. Many continents except North America and Australia
do not have access to datasets similar to LUCAS, which might become real challenge for
applying the framework outside Europe, and especially in Africa, Latin America and Asia.

Advantages and limitations of using ensemble models
We implemented ensemble machine learning in our framework for two main reasons.
Firstly, to achieve the highest accuracy possible, and secondly, to allow for the inclusion of
model variance as a proxy for the uncertainty of its predictions (Zhang & Ma, 2012). Our
results indicate that using an ensemble approach can indeed increase accuracy. Although
the neural network component model scored a slightly higher weighted average F1-score
than the meta-learner, the meta-learner achieved the highest F1-score on most classes,
suggesting that the meta-learner sacrificed a slight amount of overall performance in order
to improve performance on classes that the neural network could not recognize.
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a. Model variance

b. Probability values c. RGB Landsat (Summer/2000)

High probability (93%)  
low mod. variance (4%)

High probability (88%), 
high mod. variance (24%)

Coniferous Forest - 2000

P1

P2

Figure 18 Example of model variance (prediction uncertainty) in he city is of La Teste-de-Buch
(France) for the class ‘‘Coniferous forest’’, visualized in the ODSE viewer (https://maps.
opendatascience.eu/). (A) model variance map with examples of two locations (P1 in 44◦33′33.6′N
1◦10′33.2′W; P2 in 44◦32′11.8′N 1◦02′38.0′W) with low and high variances, (B) probability values showing
relatively high confidence, (C) original Landsat images RGB composite used for classification.

Full-size DOI: 10.7717/peerj.13573/fig-18

Another advantage of doing ensembles with 5–fold CV with refitting of models and then
stacking, is that we can generate maps of model variance (showing where multiple models
have difficulties predicting probabilities). This allows users to identify problem areas (see
Fig. 18), determine where best to collect additional samples, or adjust their classification
legend or probability thresholds. To our knowledge, mapping model error of predicted
probabilities is a novel area and none of existing landcover datasets for EU provides such
information on a per-pixel basis.

Time-series analysis, interpretations and challenges
Palahi et al. (2021) found that the transition between Landsat 7 and 8 caused temporal
inconsistency in the reflectance data. We tested whether these inconsistencies were
propagated into our aggregated and harmonized dataset by calculating the NDVI values of
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Figure 19 NDVI signal for 880 million pixel values in our Landsat data between 2000 and 2019. Red dots indicate the average for each season for
880 million pixels over 11 tiles. The vertical line indicates the launch of Landsat 8, after which the acquisition scheme changed. This sample suggests
that the structural difference between the two acquisition schemes in the Landsat ARD product created by Potapov et al. (2020) were not propagated
into our aggregated and harmonized dataset.
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11 million pixels of our dataset. We then performed a two-sided t test in order to analyze
whether there was a difference in NDVI values before and after the launch of Landsat 8 in
2013 (see Fig. 19). The t test did not indicate a significant difference (test statistic of 0.0
and p= 1.0) between the two distributions, suggesting that the inconsistencies from the
transition were not propagated through our preprocessing step.

The results of the probability trend analysis show some interesting patterns. We have
focused on four geographic areas: (1) Sweden, as its forest dynamics have already garnered
academic attention and it is an exemplary area where remote sensing techniques and on
the ground measurements might come to different conclusions (see e.g. Ceccherini et al.
(2020)). (2) South West France, as it is similar to the Sweden both in our data and is also
compared by other authors (Senf & Seidl, 2021). (3) Northern Romania because it shows
a large region with positive trends for both NDVI and broad-leaved forest land cover,
suggesting it is reforesting at high rates. Finally, we found large regions in the Alps (4)
that show a strong negative trend for NDVI values that does not seem to correspond to a
clear land use change. This signal in our data suggests there may be more artifacts and that
further research is needed.

Forest loss in Europe is currently highly debated in academia (Senf et al., 2018;Ceccherini
et al., 2020; Senf & Seidl, 2021; Palahi et al., 2021; Picard et al., 2021). Discrepancies
between national forest inventories and remote sensing techniques has led to disagreements
in Sweden (Paulsson et al., 2020), Finland (Breidenbach et al., 2020), and Norway (Rossi et
al., 2019). For instance, it was found that existing remote sensing products are deemed
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not fit for these types of analysis (Palahi et al., 2021). For these reasons, and because we
do not validate our trend results, we neither attribute specific causes, nor do we analyze
differences between specific time periods.

Further comparison of the most prominent change between 2001–2018 and our results
suggest that forest is disappearing more than it is re-appearing in multiple locations. This
is corroborated by Global Forest Watch forest gain data; for example, the Jämtland region
in Sweden lost 287 k ha of tree cover and gained 164 k ha between 2001 and 2012 (Hansen
et al., 2013). We present the case of the Landes region in France here as well as it shows a
similar pattern to large parts of Sweden and is a known area for large scale forest harvesting
(Senf & Seidl, 2021). These cases exemplify the usefulness of our maps for finding similar
processes all over Europe by using a combination of the data that is presented here. More
testing and ground-validation of the land cover changes is needed to assess which changes
are over-estimations and which are realistic.

Our data suggests that reforestation is the most prominent land cover change dynamic
on a European scale. This change is accompanied by an observed increase of NDVI values.
This observation is corroborated by the FAO’s State of Europe’s Forests report 2020
which states that European forest cover has increased by 9% between 1990 and 2020
(Raši, 2020) and with global estimates that forest cover has increased by 7% between 1982
and 2016 (Song et al., 2018). This increase is consistent with expectations that increased
CO2 will enhance plant growth in general. Another concern that is raised is that most
of the increase in forest gain is by planted forests (Payn et al., 2015) that are less valuable
in terms of biodiversity and carbon sequestration (Liu et al., 2018) and less adaptable to
climate change. One exemplary area with observed reforestation is found in Northern
Romania in all parts of our time-series analysis: we see a change from grassland to forests
making reforestation the dominant change class, the broad-leaved forest class probability
is increasing, and NDVI values show positive trends.

Finally, our data shows unexpected negative NDVI trends for large parts of the Alps.
This may be related to changes in snow cover as found by Wang et al. (2018) in the
Tibetan Plateau and by Buus-Hinkler et al. (2006) in the Arctic regions. However, this is
not corroborated by the probability slope for class ‘‘Glaciers and perpetual snow’’ in our
data. It is also possible that this is an artifact from our gap-filling step. Again, further study
is necessary before any conclusions can be drawn.

Future work
Even though our framework is comprehensive and has produced predictions of comparable
accuracy to the current state-of-the-art on a less complex legend (see results section on
S2GLC), after almost 14 months of processing the data and modeling land cover, we have
found that that many aspects of our system could be improved:

• Improving performance without sacrificing detail : We consider the poor performance on
the 43-class level 3 CLC legend to be the main weakness of our approach. Including
such a large and hierarchical legend theoretically makes the resulting data more useful to
more potential users, but this will only manifest if the classifications are also reliable for
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research and policy. To this purpose, we will continue research on methods to improve
classification performance while maintaining (or expanding) thematic resolution.
• Cross-validation of land cover trends: It was beyond the scope of our project to validate
the results of our long-term trend analysis. Independently identifying and quantifying
both sudden land cover changes (e.g., due to natural hazards such as fires and floods)
and gradual dynamics such as urbanisation and vegetation succession. We have however
published all our data online, enabling other research groups to test their usability for
land monitoring projects.
• Combining classification with Object-Based Image Analysis (OBIA) and pattern recog-
nition: Incorporating spatial context to our workflow could potentially improve
performance for several classes that are defined by land use. For instance, class 124:
‘‘Airports’’ was frequently misclassified as either urban fabric, non-irrigated arable land,
pastures, or Sport and leisure facilities, another complex class that contains buildings
and green areas. These predictions likely matched the land cover of the pixel, but missed
the spatial patterns that make airports easily recognizable by humans (elongated landing
paths). The same issue applies tomost other artificial surface LULC classes. The relatively
high importance of the TRI of the Landsat green band (see Fig. 7) suggests that additional
feature engineering or other forms of incorporating the spatial context would improve
classification performance on complex classes.

The field of land cover mapping is rapidly evolving. With exciting new global 10 m
resolution products such as ESA WorldCover and Google’s Dynamic World Map expected
in 2022, we expect the LULC mapping bar to be raised quickly to higher resolution
and higher accuracy. Venter & Sydenham (2021) used low-cost infrastructure to produce
land cover map of Europe at 10 m—thanks to ESA and NASA making the majority of
multispectral products publicly available, today everyone could potentially map the world’s
land cover from their laptop. Szantoi et al. (2020) show that many land cover products,
however, are often ill-suited for practical actions or policy-making. As the quote at the
start of this sections says ‘‘The appropriateness and adequacy of the 10-class schema used
to describe land cover in today’s human-dominated world needs a serious rethink’’, we assert
that one should not look for land cover classification legends that are ‘‘low-hanging fruits’’
for the newest Sentinel imagery, but build people- and policy-oriented datasets that can
directly help with spatial planning and land restoration. Our primary focus, thus, will
remain on producing harmonised, complete, consistent, current and rapidly-updatable
land cover maps that link to the past and allow for the unbiased estimation of long-term
trends. We intend for this type of data to facilitate a better understanding of the key drivers
of land degradation and restoration, so that we can help stakeholders on the ground make
better decisions, and hopefully receive financial support for the ecosystem services our
environment provides to us all.

CONCLUSION
The spatiotemporal ensemble machine learning framework presented achieved a cross-
validation weighted F1-score of 0.49, 0.63, and 0.83 when predicting 43 (level-3), 14
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(level-2), and 5 classes (level-1). These values are lower than those reported by other
current works that use classification systems with more optimized legends, and less classes.
Our validation on an independent test dataset (Malinowski et al., 2020) with such an
optimized legend yielded accuracy metrics comparable to Malinowski et al. (2020). This
indicates that the framework is capable of achieving similar performance to state-of-the-art
methods, without any post-processing, and on a coarser spatial resolution, given a less
ambitious task.

In our experiments, spatiotemporalmodels generalized better to EOdata frompreviously
unseen years: Spatiotemporal models outperformed spatial models on known-year
classification by 2.7% and unknown-year classification by 3.5%. This suggests that
spatiotemporal modeling, as incorporated in the presented framework, can be used to
predict LULC for years of which no LULC observations exist, even prior to 2000 and
beyond 2020.

Other methodological advantages of using spatiotemporal ML are (1) that it helps
produce harmonized predictions over the span of years, (2) that the fitted model can be
used to predict LULC in years that were not included in its training dataset, allowing
generalization to past and future periods, e.g. to predict LULC for years prior to 2000
and beyond 2020. Also, it is an inherently simple system with whole land cover of EU
represented basically with a single ensemble ML (a single file). The disadvantages of using
spatiotemporal ML is that it requires enough training points spread through time, and EO
data needs to be harmonized and gap-filled for the time-period of interest (in this case
2000–2019). Also, it is computationally at the order of magnitude more complex than
spatial-only methods. Producing uncertainty per pixel for each class significantly increases
data volume and production costs.

Time-series analysis of predicted LULC probabilities and harmonized NDVI images over
continental Europe suggests forest loss in large parts of Sweden, the Alps, and Scotland. The
Landsat ARD NDVI trend analysis in general matches the land degradation/reforestation
classes with urbanization resulting in the biggest decrease of NDVI in Europe.
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