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Injectivity and Starlikeness of Sections of a Class of
Univalent Functions

M. Obradovié¢ and S. Ponnusamy

ABSTRACT. Let G denote the class of locally univalent normalized analytic
functions f in the unit disk |z| < 1 satisfying the condition

1!

3

Re (1+ 2/ (Z)) < = for|z| <1
I'(2) 2

In this paper, we show in particular that each partial sum s, (z) of f € G is

starlike in the disk |z| < 1/2 for n > 12. We also prove that if f € G then

Re(s],(2)) > 0 holds in |z| < 1/2 for n > 13.

1. Introduction and Preliminary Results

For r > 0, let D, := {z € C: |z| < r} and D := D; be the open unit disk in
the complex plane C. Let A denote the family of all functions f that are analytic
in D with the normalization f(0) = 0 = f’(0) — 1. Let S denote the class of
functions in A that are univalent in . A domain D in C is called starlike (with
respect to the origin) if every line segment joining the origin to any other point in
D lies completely inside D. A function f € S is called starlike if f(D) is a starlike
domain. The class of all starlike functions is denoted by S&*, and functions f € &*
are characterized by the condition

Re (ZJ{;S)) >0, ze€D.

Using the Koebe distortion theorem and the Lowner theory of univalent functions,
in 1928, Szegd [16] proved that n-th partial sums/sections s,(z) == z + Y p_, apz”
of f€S, f(2) = 2+ > 4o, arz”, are univalent in the disk D1 /4 and the number 1/4
cannot be replaced by a larger one as the Koebe function k(z) = z/(1 — 2)? shows.
We refer to [3], §8.2, pp. 241-246] and the survey article of Iliev [5] for some related
investigations. The class of convex and the class of close-to-convex mappings are
some of the important well-known standard subclasses of S, denoted by C, and K,
respectively. These classes are well understood and are studied extensively in the
literature. We refer to the books by Duren [3] and Goodman [4].
The radius of starlikeness of s,(z), f € 8*, was proved by Robertson [13].
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196 M. OBRADOVIC AND S. PONNUSAMY

THEOREM A. [13] (see also [15] Theorem 2, p. 1193]) If f € S is either starlike,
or convex, or typically-real, or convex in the direction of imaginary axis, then there
is an N such that, for n > N, the partial sum s, (z) has the same property in D,.,
where r > 1 — 3(logn)/n.

Later, in [14], Ruscheweyh proved a stronger result by showing that the partial
sums s, (z) of f are indeed starlike in Dy /4 for functions f belonging not only to
S but also to the closed convex hull of S. Robertson [13] further showed that
sections of the Koebe function k(z) are univalent in the disk |z| < 1—3n"1logn for
n > 5, and that the constant 3 cannot be replaced by a smaller constant. However,
Bshouty and Hengartner [2 p. 408] pointed out that the Koebe function is not
extremal for the radius of univalency of the partial sums of f € S. However, a well-
known theorem on convolution allows us to conclude immediately that if f belongs
to C, §*, or K, then its n-th section is respectively convex, starlike, or close-to-
convex in the disk 2| < 1—3n"1logn, for n > 5. As pointed out in [3] Section 8.2,
p. 246] (see also [12] Section 6.4]), the exact (largest) radius of univalence r,, of
sn(2) (f € S) remains an open problem.

In this paper, we shall consider the partial sums of the class of functions from G.
A locally univalent function f € A is said to belong to G if it satisfies the condition

SUONE I
L) <2 sep,

2
Functions in G are known to be in S (see also [11]). Moreover if f € G, then (see
e.g. [9, Example 1, Equation (16)] and [7, Theorem 1]) one has

z2f'(z 2(1 -z
() L gz - 20=2)
f(2) 2-2
where < denotes the subordination. We see that the function g above is univalent
in D and maps D onto the disk |w — (2/3)| < 2/3. Thus, functions in G are starlike
in D. Further, it is a simple exercise to see that g maps the circle |z| = r onto the
circle

Re <1—|—

, z€D,

22-r%)|  2r
4—r2 | 4—1p2
and so, by a computation, we see that for f € G

z2f'(z o r
arg f(i))‘gsm 1(2—r2)’ |z| =r < 1.

In particular, this gives

(1) ‘arg Z]{(S) ‘ < sin~! (;) for |2 < 1/2.

This fact will be used in the proof of Theorem [Bl We now state our main results
and their proofs will be given in Section

THEOREM 1. Let f € G and s,(z) be its n-th partial sum. Then for each
r € (0,1) and n > 2, we have

O . @\ A\ s
ZERE R (“*((1—rwn>7~44> forlel <
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INJECTIVITY AND STARLIKENESS 197

THEOREM 2. Let f € G and s,,(2) be its n-th partial sum. Then, Re {s,,(z)} >0
in the disk |z| < 1/2 for n > 13. In particular, s!,(z) is close-to-convezr (and hence
univalent) in |z| < 1/2 for n > 13.

THEOREM 3. Let f € G. Then for n > 12, every section s,(z) of f is starlike
in the disk |z| < 1/2.

2. Lemmas

For the proofs of our theorems, we need several lemmas.
LEMMA 1. Let f € G and f(z) =Y .-, anz". Then
1
lan| < = forn>2.
n
Equality for the second coefficient holds for fo(z) = z — (1/2)2%.

PrROOF. By assumption, we may write

zf"(z) 3 1
1 -2z
Fre 2
where p(z) =1+ > 7, p,2™ is analytic in D and Rep(z) > 0 in D. Also, we have
|pn| < 2 for all n > 1. In terms of the power series expansion, the last identity is

equivalent to
o0 1 oo oo
(2:1 nanz"> (1 ~3 anz") = zjananz",
n= n=

n=1
where a; = 1. Equating the coefficients of z" on both sides, we deduce that
n—1

1
n?a, = na, — 3 I;(n —k)an—kpk.

Thus, as |p,| < 2 for n > 1, we get

n—1 n—1
(Do € 370 Ko il = 3 kol
k=1 k=1
For n = 2, we easily see that |az| < 1/2, and so for n = 3, we have

1
6las| <14 2[az| <2, ie., |ag] < 5

— 3'
Therefore, if we assume |ay| < % for k=2,3,...,n— 1, then we deduce that
n—1 1 n—1
n(n—1)|a,] < kzﬂkg :kz;ll:n—l,

so that |a,| < % The proof of the theorem is complete by induction. We remark
finally that for the function fo(z) = z — 22/2, we have

25 (2) z
1 =1-
e 1z
which implies
z ”(z)> 3
Re (14 =20 <=, zeD.
< fo(2) 2

Thus, fo € G and the coefficient inequality is sharp for the second coefficient. [
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198 M. OBRADOVIC AND S. PONNUSAMY

REMARK 1. After this paper was completed, the present authors with
K.-J. Wirths [8] obtained sharp estimate for |a,| for each n > 2.
LEMMA 2. Let f € G. Then
L
f'(2)
PrROOF. Suppose that f € G. Then, from the definition of the class G, we have
" _
zf"(z) < =%
[z 1-z
which implies that f/(z) < 1 —z (see for example [9, Theorem 1, Eqn. (1)] or [10]).
Thus, we obtain that

1—r<|f'(2)|<1+7r forlz|=r,

1 .
—1l—r

=M(r) for|z|=r.

and the conclusion follows. O

LEMMA 3. Suppose that f € G and s, (2) is its n-th partial sum. Assume that
11/f(z)] < M in D for some M > 1. Then for each n > 2

5n(2) ‘ ( |2 )
—1 <l 1+ 40—, 2l =7 < 1,
f(2) i 1— 2] i

where A, = /n(M? —1) .
PROOF. For f € G, we let f(z) = 2z + as2® + a3z® + - -+ so that
sn(z) =2+ asz? +asz® + -+ apz™.

As f € G, f'(2) is non-vanishing in D (because f is univalent) and hence 1/f(2)
can be represented in the form

1
—:1+d12’+d222+
f'(z)
for some complex coefficients d,,, n > 1. Note that 2a; = —d;, and we have the

identity
(14 2as2z +3a32” + - )1 +diz +doz® +---) = 1.
From the last relation, we see that

m—1

Z(m—k)am,kdk +ma, =0 (m=2,3,...; ap =1).
k=1

Using the representation for the partial sum s,(z), we obtain that

/
?}((Z)) = (142a22+2a32> +---+na,2"" (1 +diz+doz® +---)
z
= 14cp2"+cppr2" 40,
where
en =napd; + (n— 1ap_1de + -+ + a1d,.

The previous relation for m = n 4+ 1 shows that ¢, = —(n + 1)a,4+1 and, more
generally,

Cm =Napdm—nt1+ (0 —Dap_1dm-_ni2+ - +ard, form=n+1n+2 ...
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INJECTIVITY AND STARLIKENESS 199

By Lemmalll |a,| < 1/n for all n > 2, and therefore, we have that for m > n+1

(3) |cm| < Z |dm—n+k|'

k=1

By assumption, |1/f/(z)| < M for z € D. Hence for 0 < r < 1, we have that
1

1 2
%/o f'(rei?)

which, by allowing » — 17, shows that

> fdn]? < M? -1
n=1

2 o]
A =1+ |dn|*r*" < M?

n=1

In view of the Cauchy-Schwarz inequality and the last inequality, (B) reduces
to

n 2 ;o 1/2
|Cm| < (Z 12) (Z |dmn+k|2> < vV TL(M2 — 1) = An
k=1 k=1

for m > n+1. This inequality, together with the fact that |c,| = |(n+1)an41| < 1,
gives that for |z| =r < 1,

S/n(z) _ n n+1
7 ‘ = e |
< enl 2™ + lepan] 2+
2|
< "1+ A, ———
< | (+ =
for n > 2. This completes the proof of Lemma [3 O

LEMMA 4. Suppose that f € G and s, (z) is its n-th partial sum. Then for each
n>2

$n(2) 1 |z]
-1 n R = 1
w1 < e (AT E =<t

™
where R = —— =~ 0.74048.
3v2
PROOF. As in the proof of Lemma B} we let f(z) = z + a22? + a3z® +--- so
that s,(z) = 2z + az2? + azz® + - - - + a,2". Since the functions in G are univalent,
each f € G can be written in the form

z
(4) =14 bz by 4

f(2)
for some complex coefficients b, (n > 1). In view of this observation and the two
different forms of representations for f, it follows that

(1+asz+azz®+--- )1 +bz+by2®+---)=1.

Comparing the powers of z on both sides, we have

m—1

(5) Zbkam—k+am:0 (m=2,3,...; ap = 1).
k=1
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200 M. OBRADOVIC AND S. PONNUSAMY

Using the representation for the partial sum s, (z) and (@), we obtain that

SJ:L((ZZ)) = (Q4agz+azz® 4+ +ap 2" (1 +brz+by2? +---)
= l+epz" +epp2"
where
() ¢n = bra, +boap_1 + -+ byay.

By (B), we observe that the coefficients of z* in the above expansion for
k=1,2,...,n — 1 vanish. Equation (@) for m = n + 1 shows that ¢, = —an+1.
Also

(7) Cm = bm_ny10n +bm_ny2an_1+--+bpay form=n+1n+2,....
By Lemmal[ll |a,| < 1/n for all n > 2, and therefore, for m > n + 1, we have
1 1
|Cm| < _‘bmfn+1| + —‘bmfn+2| + 4+ ‘bm|-
n n—1
Using the classical Cauchy-Schwarz inequality, it follows that for m >n + 1

lem|? < <Z n+1 e ) (Z [ n+kl2) = AB.

k=1 k=1

For f € G we have f/(z) < 1 — z and therefore,

@<1—§.

When f is of the form (4)), it is convenient to write the last subordination relation

in the form
z 1 =1,
) T=(1/2)z Z_’“ '

Using Rogosinski’s theorem (see [3] Theorem 6.2, p. 192]), we obtain that

St =Y =5 (1~ 5)

which implies that

> 1
B<y il <

k=1
and so, B < 1/3. On the other hand, for the first sum A, we observe that for
m>n+1,
n n (oo}
1 1 1 w2
A = _— = _— _— = —.
;(n—l—l—k)? I;k2<k§k2 6

Thus we have

|cm|§\/AB<$:R form>n+1.
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INJECTIVITY AND STARLIKENESS 201

This inequality, together with the fact that |c,| = |ant+1] < n+r1, gives that for

|z| =7 < 1,
o 1‘ < enl 2* + lenga | 2 F 4+
f(z)
< Bl R A )
1 2|
12 (n—l—l + 1—|z|)
for n > 2. The proof is complete. O

3. Proofs of the Theorems
Proof of Theorem [II We begin with f € G and follow the method of proof
of Lemma [3l First, by Lemma 2] we have

1 1
®) f)~1=r

As observed at the end of the proof of Lemma [3] it follows that

=:M(r) for |z|=r <1

> ldl*r?t < M(r)? - 1.
k=1
Following the notation of Lemma B], ([B]) may be rewritten as

n

n 1 n
lem| < Z |dim—ntk| = Z (m) (‘dmfn%»k"r'm +k)
k=1

k=1
for any arbitrary fixed r € (0,1). Thus, by the Cauchy-Schwarz inequality, we have

n 1 n .
jem* < (Zm> (de—n+k2r2(m *’”)
k=1 k=1
1 n
< <m21> (M)? = 1) = 5 (M) = 1)
k=1

which is true for each r € (0,1) and so,
1
lem < ( n(M(r)2 — 1)) for m > n + 1.

As in the proof of Lemma [3] using the above estimate, we easily have

<o (o ) )

and the proof of the theorem follows if we use the expression for M (r) = 1/(1 —r)

given by (). O
Let us now demonstrate the use of Theorem [ by fixing some values for r. For
example, if we put r» = 2/3, then by () one has

M(r) =3 and /M(r)2 —1=2V2.

Thus, for f € S, Theorem [ after some computation gives the estimate

9) ‘}”((2 <o (1 +2v2n (g)n 5 f'“;uz) for |2| < 2/3.

-1

-1
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202 M. OBRADOVIC AND S. PONNUSAMY
This estimate helps us to discuss the disk of close-to-convexity (and hence univa-
lency) of partial sums of functions from G.

Proof of Theorem [2l Let f € G. Then f'(z) < 1 — z (see the proof of
Lemma [Z). Therefore, for |z|] < 1/2 (using the maximum modulus principle), we

have
(10) max |arg f'(z)| < sin™* (1) =X
|z]=1/2 & - 2) 6
The inequality (@) for |z] = 1/2 together with the maximum modulus principle
gives that

(11)

It follows that

st (2) 1 3\ 1
.M@_4<?<“”%%@))_mf“M<5

A
X

z=1/2] 7 f'(2)
Finally, by (I0) and (III), we find that

arg

‘ <sinTH(K).

1
|arg s!, (2)| < |arg f'(2)| + |arg <z +sin"(K;) for |z| < 3

6

s (2) ‘
f'(2)
and thus,

s
Jarg s, ()] < 2

holds if sin™*(K;) < 7/3. However, the last inequality is easily seen to be true for
all n > 13. O

Proof of Theorem [Bl As remarked in the Introduction, we see from () that
for f € G:
zf'(2) s -1 (2>
arg < sin = for |z] < 1/2.
o 75 7) frll=y

As in the proof of Theorem 2], we in particular have (see Lemma 4)

Sn(2) 1 1 v
-1l < = + —— | =: Ky for |z| < 1/2.
() 2" (n+1 3\/5) 2forla <1/
It follows that B
Sn(z .1
max |ar <sin™ (K.
cmy2 |8 1 (2) ‘ B (H2)

and from the proof of Theorem 2] we have

/
arg (%) ‘ <sin'(K;)

max
|21=1/2 f(z)
where K7 is defined by ([{IJ). This shows that
ZS%(Z)‘ 5%(2)‘ ’ Zf'(z)‘ ‘ f(z) ‘
ar < Jar + |ar + |ar
® 5 (2) OIS G M e

2
< sin”}(K;) +sin! (;) +sin " H(KY),
for |z| < 1/2. Finally, we see that

’ #5n(2)

(2 | =

0
2
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INJECTIVITY AND STARLIKENESS 203

whenever

T
5"
However, the last inequality is easily seen to be true for n > 12. O

2
sin ! (K;) 4 sin~* <?) +sin 1 (K>) <
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