Injectivity and Starlikeness of Sections of a Class of Univalent Functions

M. Obradović and S. Ponnusamy

Abstract. Let \mathcal{G} denote the class of locally univalent normalized analytic functions f in the unit disk $|z|<1$ satisfying the condition

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{3}{2} \quad \text { for }|z|<1
$$

In this paper, we show in particular that each partial sum $s_{n}(z)$ of $f \in \mathcal{G}$ is starlike in the disk $|z| \leq 1 / 2$ for $n \geq 12$. We also prove that if $f \in \mathcal{G}$ then $\operatorname{Re}\left(s_{n}^{\prime}(z)\right)>0$ holds in $|z| \leq 1 / 2$ for $n \geq 13$.

1. Introduction and Preliminary Results

For $r>0$, let $\mathbb{D}_{r}:=\{z \in \mathbb{C}:|z|<r\}$ and $\mathbb{D}:=\mathbb{D}_{1}$ be the open unit disk in the complex plane \mathbb{C}. Let \mathcal{A} denote the family of all functions f that are analytic in \mathbb{D} with the normalization $f(0)=0=f^{\prime}(0)-1$. Let \mathcal{S} denote the class of functions in \mathcal{A} that are univalent in \mathbb{D}. A domain D in \mathbb{C} is called starlike (with respect to the origin) if every line segment joining the origin to any other point in D lies completely inside D. A function $f \in \mathcal{S}$ is called starlike if $f(\mathbb{D})$ is a starlike domain. The class of all starlike functions is denoted by \mathcal{S}^{*}, and functions $f \in \mathcal{S}^{*}$ are characterized by the condition

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, \quad z \in \mathbb{D}
$$

Using the Koebe distortion theorem and the Löwner theory of univalent functions, in 1928, Szegő [16] proved that n-th partial sums $/ \operatorname{sections} s_{n}(z):=z+\sum_{k=2}^{n} a_{k} z^{k}$ of $f \in \mathcal{S}, f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$, are univalent in the disk $\mathbb{D}_{1 / 4}$ and the number $1 / 4$ cannot be replaced by a larger one as the Koebe function $k(z)=z /(1-z)^{2}$ shows. We refer to [3, §8.2, pp. 241-246] and the survey article of Iliev [5] for some related investigations. The class of convex and the class of close-to-convex mappings are some of the important well-known standard subclasses of \mathcal{S}, denoted by \mathcal{C}, and \mathcal{K}, respectively. These classes are well understood and are studied extensively in the literature. We refer to the books by Duren [3 and Goodman 4 .

The radius of starlikeness of $s_{n}(z), f \in \mathcal{S}^{*}$, was proved by Robertson 13.

[^0]Theorem A. 13] (see also [15, Theorem 2, p. 1193]) If $f \in \mathcal{S}$ is either starlike, or convex, or typically-real, or convex in the direction of imaginary axis, then there is an N such that, for $n \geq N$, the partial sum $s_{n}(z)$ has the same property in \mathbb{D}_{r}, where $r \geq 1-3(\log n) / n$.

Later, in [14, Ruscheweyh proved a stronger result by showing that the partial sums $s_{n}(z)$ of f are indeed starlike in $\mathbb{D}_{1 / 4}$ for functions f belonging not only to \mathcal{S} but also to the closed convex hull of \mathcal{S}. Robertson 13 further showed that sections of the Koebe function $k(z)$ are univalent in the disk $|z|<1-3 n^{-1} \log n$ for $n \geq 5$, and that the constant 3 cannot be replaced by a smaller constant. However, Bshouty and Hengartner [2, p. 408] pointed out that the Koebe function is not extremal for the radius of univalency of the partial sums of $f \in \mathcal{S}$. However, a wellknown theorem on convolution allows us to conclude immediately that if f belongs to $\mathcal{C}, \mathcal{S}^{*}$, or \mathcal{K}, then its n-th section is respectively convex, starlike, or close-toconvex in the disk $|z|<1-3 n^{-1} \log n$, for $n \geq 5$. As pointed out in [3, Section 8.2, p. 246] (see also [12, Section 6.4]), the exact (largest) radius of univalence r_{n} of $s_{n}(z)(f \in \mathcal{S})$ remains an open problem.

In this paper, we shall consider the partial sums of the class of functions from \mathcal{G}. A locally univalent function $f \in \mathcal{A}$ is said to belong to \mathcal{G} if it satisfies the condition

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{3}{2}, \quad z \in \mathbb{D}
$$

Functions in \mathcal{G} are known to be in \mathcal{S} (see also [11). Moreover if $f \in \mathcal{G}$, then (see e.g. [9, Example 1, Equation (16)] and [7, Theorem 1]) one has

$$
\frac{z f^{\prime}(z)}{f(z)} \prec g(z)=\frac{2(1-z)}{2-z}, \quad z \in \mathbb{D},
$$

where \prec denotes the subordination. We see that the function g above is univalent in \mathbb{D} and maps \mathbb{D} onto the disk $|w-(2 / 3)|<2 / 3$. Thus, functions in \mathcal{G} are starlike in \mathbb{D}. Further, it is a simple exercise to see that g maps the circle $|z|=r$ onto the circle

$$
\left|w-\frac{2\left(2-r^{2}\right)}{4-r^{2}}\right|=\frac{2 r}{4-r^{2}}
$$

and so, by a computation, we see that for $f \in \mathcal{G}$

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| \leq \sin ^{-1}\left(\frac{r}{2-r^{2}}\right), \quad|z|=r<1 .
$$

In particular, this gives

$$
\begin{equation*}
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| \leq \sin ^{-1}\left(\frac{2}{7}\right) \quad \text { for }|z| \leq 1 / 2 \tag{1}
\end{equation*}
$$

This fact will be used in the proof of Theorem 3. We now state our main results and their proofs will be given in Section 3 ,

Theorem 1. Let $f \in \mathcal{G}$ and $s_{n}(z)$ be its n-th partial sum. Then for each $r \in(0,1)$ and $n \geq 2$, we have

$$
\begin{equation*}
\left|\frac{s_{n}^{\prime}(z)}{f^{\prime}(z)}-1\right|<|z|^{n}\left(1+\left(\frac{\sqrt{n r(2-r)}}{(1-r) r^{n}}\right) \frac{|z|}{r-|z|}\right) \quad \text { for }|z|<r . \tag{2}
\end{equation*}
$$

Theorem 2. Let $f \in \mathcal{G}$ and $s_{n}(z)$ be its n-th partial sum. Then, $\operatorname{Re}\left\{s_{n}^{\prime}(z)\right\}>0$ in the disk $|z| \leq 1 / 2$ for $n \geq 13$. In particular, $s_{n}^{\prime}(z)$ is close-to-convex (and hence univalent) in $|z| \leq 1 / 2$ for $n \geq 13$.

Theorem 3. Let $f \in \mathcal{G}$. Then for $n \geq 12$, every section $s_{n}(z)$ of f is starlike in the disk $|z| \leq 1 / 2$.

2. Lemmas

For the proofs of our theorems, we need several lemmas.
Lemma 1. Let $f \in \mathcal{G}$ and $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$. Then

$$
\left|a_{n}\right| \leq \frac{1}{n} \quad \text { for } n \geq 2
$$

Equality for the second coefficient holds for $f_{0}(z)=z-(1 / 2) z^{2}$.
Proof. By assumption, we may write

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{3}{2}-\frac{1}{2} p(z)
$$

where $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$ is analytic in \mathbb{D} and $\operatorname{Re} p(z)>0$ in \mathbb{D}. Also, we have $\left|p_{n}\right| \leq 2$ for all $n \geq 1$. In terms of the power series expansion, the last identity is equivalent to

$$
\left(\sum_{n=1}^{\infty} n a_{n} z^{n}\right)\left(1-\frac{1}{2} \sum_{n=1}^{\infty} p_{n} z^{n}\right)=\sum_{n=1}^{\infty} n^{2} a_{n} z^{n}
$$

where $a_{1}=1$. Equating the coefficients of z^{n} on both sides, we deduce that

$$
n^{2} a_{n}=n a_{n}-\frac{1}{2} \sum_{k=1}^{n-1}(n-k) a_{n-k} p_{k} .
$$

Thus, as $\left|p_{n}\right| \leq 2$ for $n \geq 1$, we get

$$
n(n-1)\left|a_{n}\right| \leq \sum_{k=1}^{n-1}(n-k)\left|a_{n-k}\right|=\sum_{k=1}^{n-1} k\left|a_{k}\right| .
$$

For $n=2$, we easily see that $\left|a_{2}\right| \leq 1 / 2$, and so for $n=3$, we have

$$
6\left|a_{3}\right| \leq 1+2\left|a_{2}\right| \leq 2 \text {, i.e., }\left|a_{3}\right| \leq \frac{1}{3}
$$

Therefore, if we assume $\left|a_{k}\right| \leq \frac{1}{k}$ for $k=2,3, \ldots, n-1$, then we deduce that

$$
n(n-1)\left|a_{n}\right| \leq \sum_{k=1}^{n-1} k \frac{1}{k}=\sum_{k=1}^{n-1} 1=n-1
$$

so that $\left|a_{n}\right| \leq \frac{1}{n}$. The proof of the theorem is complete by induction. We remark finally that for the function $f_{0}(z)=z-z^{2} / 2$, we have

$$
1+\frac{z f_{0}^{\prime \prime}(z)}{f_{0}^{\prime}(z)}=1-\frac{z}{1-z}
$$

which implies

$$
\operatorname{Re}\left(1+\frac{z f_{0}^{\prime \prime}(z)}{f_{0}^{\prime}(z)}\right)<\frac{3}{2}, \quad z \in \mathbb{D}
$$

Thus, $f_{0} \in \mathcal{G}$ and the coefficient inequality is sharp for the second coefficient.

Remark 1. After this paper was completed, the present authors with K.-J. Wirths [8] obtained sharp estimate for $\left|a_{n}\right|$ for each $n \geq 2$.

Lemma 2. Let $f \in \mathcal{G}$. Then

$$
\left|\frac{1}{f^{\prime}(z)}\right| \leq \frac{1}{1-r}:=M(r) \quad \text { for }|z|=r
$$

Proof. Suppose that $f \in \mathcal{G}$. Then, from the definition of the class \mathcal{G}, we have

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{-z}{1-z}
$$

which implies that $f^{\prime}(z) \prec 1-z$ (see for example [9, Theorem 1, Eqn. (1)] or [10]). Thus, we obtain that

$$
1-r \leq\left|f^{\prime}(z)\right| \leq 1+r \quad \text { for }|z|=r
$$

and the conclusion follows.
Lemma 3. Suppose that $f \in \mathcal{G}$ and $s_{n}(z)$ is its n-th partial sum. Assume that $\left|1 / f^{\prime}(z)\right| \leq M$ in \mathbb{D} for some $M>1$. Then for each $n \geq 2$

$$
\left|\frac{s_{n}^{\prime}(z)}{f^{\prime}(z)}-1\right| \leq|z|^{n}\left(1+A_{n} \frac{|z|}{1-|z|}\right),|z|=r<1
$$

where $A_{n}=\sqrt{n\left(M^{2}-1\right)}$.
Proof. For $f \in \mathcal{G}$, we let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ so that

$$
s_{n}(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots+a_{n} z^{n} .
$$

As $f \in \mathcal{G}, f^{\prime}(z)$ is non-vanishing in \mathbb{D} (because f is univalent) and hence $1 / f^{\prime}(z)$ can be represented in the form

$$
\frac{1}{f^{\prime}(z)}=1+d_{1} z+d_{2} z^{2}+\cdots
$$

for some complex coefficients $d_{n}, n \geq 1$. Note that $2 a_{2}=-d_{1}$, and we have the identity

$$
\left(1+2 a_{2} z+3 a_{3} z^{2}+\cdots\right)\left(1+d_{1} z+d_{2} z^{2}+\cdots\right) \equiv 1
$$

From the last relation, we see that

$$
\sum_{k=1}^{m-1}(m-k) a_{m-k} d_{k}+m a_{m}=0 \quad\left(m=2,3, \ldots ; a_{1}=1\right)
$$

Using the representation for the partial sum $s_{n}(z)$, we obtain that

$$
\begin{aligned}
\frac{s_{n}^{\prime}(z)}{f^{\prime}(z)} & =\left(1+2 a_{2} z+2 a_{3} z^{2}+\cdots+n a_{n} z^{n-1}\right)\left(1+d_{1} z+d_{2} z^{2}+\cdots\right) \\
& \equiv 1+c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots
\end{aligned}
$$

where

$$
c_{n}=n a_{n} d_{1}+(n-1) a_{n-1} d_{2}+\cdots+a_{1} d_{n} .
$$

The previous relation for $m=n+1$ shows that $c_{n}=-(n+1) a_{n+1}$ and, more generally,

$$
c_{m}=n a_{n} d_{m-n+1}+(n-1) a_{n-1} d_{m-n+2}+\cdots+a_{1} d_{m} \text { for } m=n+1, n+2, \ldots
$$

By Lemman $\left|a_{n}\right| \leq 1 / n$ for all $n \geq 2$, and therefore, we have that for $m \geq n+1$

$$
\begin{equation*}
\left|c_{m}\right| \leq \sum_{k=1}^{n}\left|d_{m-n+k}\right| \tag{3}
\end{equation*}
$$

By assumption, $\left|1 / f^{\prime}(z)\right| \leq M$ for $z \in \mathbb{D}$. Hence for $0<r<1$, we have that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{1}{f^{\prime}\left(r e^{i \theta}\right)}\right|^{2} d \theta=1+\sum_{n=1}^{\infty}\left|d_{n}\right|^{2} r^{2 n} \leq M^{2}
$$

which, by allowing $r \rightarrow 1^{-}$, shows that

$$
\sum_{n=1}^{\infty}\left|d_{n}\right|^{2} \leq M^{2}-1
$$

In view of the Cauchy-Schwarz inequality and the last inequality, (3) reduces to

$$
\left|c_{m}\right| \leq\left(\sum_{k=1}^{n} 1^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n}\left|d_{m-n+k}\right|^{2}\right)^{1 / 2} \leq \sqrt{n\left(M^{2}-1\right)}=A_{n}
$$

for $m \geq n+1$. This inequality, together with the fact that $\left|c_{n}\right|=\left|(n+1) a_{n+1}\right| \leq 1$, gives that for $|z|=r<1$,

$$
\begin{aligned}
\left|\frac{s_{n}^{\prime}(z)}{f^{\prime}(z)}-1\right| & =\left|c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots\right| \\
& \leq\left|c_{n}\right||z|^{n}+\left|c_{n+1}\right||z|^{n+1}+\cdots \\
& \leq|z|^{n}\left(1+A_{n} \frac{|z|}{1-|z|}\right)
\end{aligned}
$$

for $n \geq 2$. This completes the proof of Lemma 3.
Lemma 4. Suppose that $f \in \mathcal{G}$ and $s_{n}(z)$ is its n-th partial sum. Then for each $n \geq 2$

$$
\left|\frac{s_{n}(z)}{f(z)}-1\right|<|z|^{n}\left(\frac{1}{n+1}+R \frac{|z|}{1-|z|}\right),|z|=r<1
$$

where $R=\frac{\pi}{3 \sqrt{2}} \approx 0.74048$.
Proof. As in the proof of Lemma 3, we let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ so that $s_{n}(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots+a_{n} z^{n}$. Since the functions in \mathcal{G} are univalent, each $f \in \mathcal{G}$ can be written in the form

$$
\begin{equation*}
\frac{z}{f(z)}=1+b_{1} z+b_{2} z^{2}+\cdots \tag{4}
\end{equation*}
$$

for some complex coefficients $b_{n}(n \geq 1)$. In view of this observation and the two different forms of representations for f, it follows that

$$
\left(1+a_{2} z+a_{3} z^{2}+\cdots\right)\left(1+b_{1} z+b_{2} z^{2}+\cdots\right) \equiv 1
$$

Comparing the powers of z on both sides, we have

$$
\begin{equation*}
\sum_{k=1}^{m-1} b_{k} a_{m-k}+a_{m}=0 \quad\left(m=2,3, \ldots ; a_{1}=1\right) \tag{5}
\end{equation*}
$$

Using the representation for the partial sum $s_{n}(z)$ and (4), we obtain that

$$
\begin{aligned}
\frac{s_{n}(z)}{f(z)} & =\left(1+a_{2} z+a_{3} z^{2}+\cdots+a_{n} z^{n-1}\right)\left(1+b_{1} z+b_{2} z^{2}+\cdots\right) \\
& \equiv 1+c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots
\end{aligned}
$$

where

$$
\begin{equation*}
c_{n}=b_{1} a_{n}+b_{2} a_{n-1}+\cdots+b_{n} a_{1} \tag{6}
\end{equation*}
$$

By (5), we observe that the coefficients of z^{k} in the above expansion for $k=1,2, \ldots, n-1$ vanish. Equation (5) for $m=n+1$ shows that $c_{n}=-a_{n+1}$. Also
(7) $\quad c_{m}=b_{m-n+1} a_{n}+b_{m-n+2} a_{n-1}+\cdots+b_{m} a_{1}$ for $m=n+1, n+2, \ldots$.

By Lemma 1 , $\left|a_{n}\right| \leq 1 / n$ for all $n \geq 2$, and therefore, for $m \geq n+1$, we have

$$
\left|c_{m}\right| \leq \frac{1}{n}\left|b_{m-n+1}\right|+\frac{1}{n-1}\left|b_{m-n+2}\right|+\cdots+\left|b_{m}\right|
$$

Using the classical Cauchy-Schwarz inequality, it follows that for $m \geq n+1$

$$
\left|c_{m}\right|^{2} \leq\left(\sum_{k=1}^{n} \frac{1}{(n+1-k)^{2}}\right)\left(\sum_{k=1}^{n}\left|b_{m-n+k}\right|^{2}\right)=: A B .
$$

For $f \in \mathcal{G}$ we have $f^{\prime}(z) \prec 1-z$ and therefore,

$$
\frac{f(z)}{z} \prec 1-\frac{z}{2}
$$

When f is of the form (4), it is convenient to write the last subordination relation in the form

$$
\frac{z}{f(z)} \prec \frac{1}{1-(1 / 2) z}=1+\sum_{k=1}^{\infty} \frac{1}{2^{k}} z^{k} .
$$

Using Rogosinski's theorem (see [3, Theorem 6.2, p. 192]), we obtain that

$$
\sum_{k=1}^{n}\left|b_{k}\right|^{2} \leq \sum_{k=1}^{n} \frac{1}{2^{2 k}}=\frac{1}{3}\left(1-\frac{1}{4^{n}}\right)
$$

which implies that

$$
B \leq \sum_{k=1}^{\infty}\left|b_{k}\right|^{2} \leq \frac{1}{3}
$$

and so, $B \leq 1 / 3$. On the other hand, for the first sum A, we observe that for $m \geq n+1$,

$$
A=\sum_{k=1}^{n} \frac{1}{(n+1-k)^{2}}=\sum_{k=1}^{n} \frac{1}{k^{2}}<\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} .
$$

Thus we have

$$
\left|c_{m}\right| \leq \sqrt{A B}<\frac{\pi}{3 \sqrt{2}}=R \text { for } m \geq n+1
$$

This inequality, together with the fact that $\left|c_{n}\right|=\left|a_{n+1}\right| \leq \frac{1}{n+1}$, gives that for $|z|=r<1$,

$$
\begin{aligned}
\left|\frac{s_{n}(z)}{f(z)}-1\right| & \leq\left|c_{n}\right||z|^{n}+\left|c_{n+1}\right||z|^{n+1}+\cdots \\
& <\frac{1}{n+1}|z|^{n}+R\left(|z|^{n+1}+|z|^{n+2}+\cdots\right) \\
& =|z|^{n}\left(\frac{1}{n+1}+R \frac{|z|}{1-|z|}\right)
\end{aligned}
$$

for $n \geq 2$. The proof is complete.

3. Proofs of the Theorems

Proof of Theorem 1. We begin with $f \in \mathcal{G}$ and follow the method of proof of Lemma 3. First, by Lemma 2, we have

$$
\begin{equation*}
\left|\frac{1}{f^{\prime}(z)}\right| \leq \frac{1}{1-r}=: M(r) \text { for }|z|=r<1 \tag{8}
\end{equation*}
$$

As observed at the end of the proof of Lemma 3 it follows that

$$
\sum_{k=1}^{\infty}\left|d_{k}\right|^{2} r^{2 k} \leq M(r)^{2}-1
$$

Following the notation of Lemma 3. (3) may be rewritten as

$$
\left|c_{m}\right| \leq \sum_{k=1}^{n}\left|d_{m-n+k}\right|=\sum_{k=1}^{n}\left(\frac{1}{r^{m-n+k}}\right)\left(\left|d_{m-n+k}\right| r^{m-n+k}\right)
$$

for any arbitrary fixed $r \in(0,1)$. Thus, by the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
\left|c_{m}\right|^{2} & \leq\left(\sum_{k=1}^{n} \frac{1}{r^{2(m-n+k)}}\right)\left(\sum_{k=1}^{n}\left|d_{m-n+k}\right|^{2} r^{2(m-n+k)}\right) \\
& \leq\left(\frac{1}{r^{2 m}} \sum_{k=1}^{n} 1\right)\left(M(r)^{2}-1\right)=\frac{n}{r^{2 m}}\left(M(r)^{2}-1\right)
\end{aligned}
$$

which is true for each $r \in(0,1)$ and so,

$$
\left|c_{m}\right| \leq \frac{1}{r^{m}}\left(\sqrt{n\left(M(r)^{2}-1\right)}\right) \text { for } m \geq n+1
$$

As in the proof of Lemma 3 using the above estimate, we easily have

$$
\left|\frac{s_{n}^{\prime}(z)}{f^{\prime}(z)}-1\right|<|z|^{n}\left(1+\frac{1}{r^{n}}\left(\sqrt{n\left(M(r)^{2}-1\right)}\right) \frac{|z| / r}{1-(|z| / r)}\right) \quad \text { for }|z|<r
$$

and the proof of the theorem follows if we use the expression for $M(r)=1 /(1-r)$ given by (8).

Let us now demonstrate the use of Theorem 1 by fixing some values for r. For example, if we put $r=2 / 3$, then by (8) one has

$$
M(r)=3 \text { and } \sqrt{M(r)^{2}-1}=2 \sqrt{2} .
$$

Thus, for $f \in \mathcal{S}$, Theorem 1 after some computation gives the estimate

$$
\begin{equation*}
\left|\frac{s_{n}^{\prime}(z)}{f^{\prime}(z)}-1\right|<|z|^{n}\left(1+2 \sqrt{2 n}\left(\frac{3}{2}\right)^{n} \frac{3|z|}{2-3|z|}\right) \quad \text { for }|z|<2 / 3 \tag{9}
\end{equation*}
$$

This estimate helps us to discuss the disk of close-to-convexity (and hence univalency) of partial sums of functions from \mathcal{G}.

Proof of Theorem 2, Let $f \in \mathcal{G}$. Then $f^{\prime}(z) \prec 1-z$ (see the proof of Lemma (2). Therefore, for $|z| \leq 1 / 2$ (using the maximum modulus principle), we have

$$
\begin{equation*}
\max _{|z|=1 / 2}\left|\arg f^{\prime}(z)\right| \leq \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} \tag{10}
\end{equation*}
$$

The inequality (9) for $|z|=1 / 2$ together with the maximum modulus principle gives that

$$
\begin{equation*}
\left|\frac{s_{n}^{\prime}(z)}{f^{\prime}(z)}-1\right|<\frac{1}{2^{n}}\left(1+6 \sqrt{2 n}\left(\frac{3}{2}\right)^{n}\right)=K_{1} \text { for }|z|<\frac{1}{2} \tag{11}
\end{equation*}
$$

It follows that

$$
\max _{|z|=1 / 2}\left|\arg \frac{s_{n}^{\prime}(z)}{f^{\prime}(z)}\right| \leq \sin ^{-1}\left(K_{1}\right)
$$

Finally, by (10) and (11), we find that

$$
\left|\arg s_{n}^{\prime}(z)\right| \leq\left|\arg f^{\prime}(z)\right|+\left|\arg \frac{s_{n}^{\prime}(z)}{f^{\prime}(z)}\right|<\frac{\pi}{6}+\sin ^{-1}\left(K_{1}\right) \text { for }|z|<\frac{1}{2}
$$

and thus,

$$
\left|\arg s_{n}^{\prime}(z)\right|<\frac{\pi}{2}
$$

holds if $\sin ^{-1}\left(K_{1}\right) \leq \pi / 3$. However, the last inequality is easily seen to be true for all $n \geq 13$.

Proof of Theorem 3. As remarked in the Introduction, we see from (1) that for $f \in \mathcal{G}$:

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| \leq \sin ^{-1}\left(\frac{2}{7}\right) \quad \text { for }|z| \leq 1 / 2
$$

As in the proof of Theorem 2, we in particular have (see Lemma 4)

$$
\left|\frac{s_{n}(z)}{f(z)}-1\right|<\frac{1}{2^{n}}\left(\frac{1}{n+1}+\frac{\pi}{3 \sqrt{2}}\right)=: K_{2} \text { for }|z| \leq 1 / 2
$$

It follows that

$$
\max _{|z|=1 / 2}\left|\arg \frac{s_{n}(z)}{f(z)}\right| \leq \sin ^{-1}\left(K_{2}\right)
$$

and from the proof of Theorem 2, we have

$$
\max _{|z|=1 / 2}\left|\arg \frac{s_{n}^{\prime}(z)}{f^{\prime}(z)}\right| \leq \sin ^{-1}\left(K_{1}\right)
$$

where K_{1} is defined by (11). This shows that

$$
\begin{aligned}
\left|\arg \frac{z s_{n}^{\prime}(z)}{s_{n}(z)}\right| & \leq\left|\arg \frac{s_{n}^{\prime}(z)}{f^{\prime}(z)}\right|+\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|+\left|\arg \frac{f(z)}{s_{n}(z)}\right| \\
& <\sin ^{-1}\left(K_{1}\right)+\sin ^{-1}\left(\frac{2}{7}\right)+\sin ^{-1}\left(K_{2}\right),
\end{aligned}
$$

for $|z| \leq 1 / 2$. Finally, we see that

$$
\left|\arg \frac{z s_{n}^{\prime}(z)}{s_{n}(z)}\right|<\frac{\pi}{2}
$$

whenever

$$
\sin ^{-1}\left(K_{1}\right)+\sin ^{-1}\left(\frac{2}{7}\right)+\sin ^{-1}\left(K_{2}\right) \leq \frac{\pi}{2}
$$

However, the last inequality is easily seen to be true for $n \geq 12$.

References

[1] Louis de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137-152, DOI 10.1007/BF02392821. MR772434 (86h:30026)
[2] D. Bshouty and W. Hengartner, Criteria for the extremality of the Koebe mapping, Proc. Amer. Math. Soc. 111 (1991), no. 2, 403-411, DOI 10.2307/2048329. MR 1037204|(91i:30011)
[3] Peter L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR708494 (85j:30034)
[4] A. W. Goodman, Univalent functions. Vol. I, Mariner Publishing Co. Inc., Tampa, FL, 1983. MR704183 (85j:30035a)
[5] L. Iliev, Classical extremal problems for univalent functions, Complex analysis (Warsaw, 1979), Banach Center Publ., vol. 11, PWN, Warsaw, 1983, pp. 89-110. MR 737754 (86b:30012)
[6] James A. Jenkins, On an inequality of Golusin, Amer. J. Math. 73 (1951), 181-185. MR 0041230 (12,816e)
[7] Ivan Jovanović and Milutin Obradović, A note on certain classes of univalent functions, Filomat 9 (1995), 69-72. MR1385571
[8] M. Obradović, S. Ponnusamy and K.-J.Wirths, Coefficient characterizations and sections for some univalent functions, submitted.
[9] S. Ponnusamy and S. Rajasekaran, New sufficient conditions for starlike and univalent functions, Soochow J. Math. 21 (1995), no. 2, 193-201. MR 1337665 (96g:30049)
[10] S. Ponnusamy and Vikramaditya Singh, Univalence of certain integral transforms, Glas. Mat. Ser. III 31(51) (1996), no. 2, 253-261. MR 1444975 (98b:30015)
[11] S. Ponnusamy and A. Vasudevarao, Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl. 332 (2007), no. 2, 1323-1334, DOI 10.1016/j.jmaa.2006.11.019. MR2324340 (2008k:30017)
[12] D. V. Prokhorov, Bounded univalent functions, Handbook of complex analysis: geometric function theory, Vol. 1, North-Holland, Amsterdam, 2002, pp. 207-228, DOI 10.1016/S1874-5709(02)80010-5. MR 1966195 (2004a:30017)
[13] M. S. Robertson, The partial sums of multivalently star-like functions, Ann. of Math. (2) 42 (1941), 829-838. MR0004905 (3,79b)
[14] Stephan Ruscheweyh, Extension of Szegő's theorem on the sections of univalent functions, SIAM J. Math. Anal. 19 (1988), no. 6, 1442-1449, DOI 10.1137/0519107. MR965264 (89m:30032)
[15] Herb Silverman, Radii problems for sections of convex functions, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1191-1196, DOI 10.2307/2047611. MR942638 (89e:30028)
[16] G. Szegö, Zur Theorie der schlichten Abbildungen, Math. Ann. 100 (1928), no. 1, 188-211, DOI 10.1007/BF01448843 (German). MR 1512482

Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia

E-mail address: obrad@grf.bg.ac.rs
Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India

Current address: Indian Statistical Institute (ISI), Chennai Centre, SETS (Society for Electronic Transactions and Security), MGR Knowledge City, CIT Campus, Taramani, Chennai 600 113, India

E-mail address: samy@isichennai.res.in, samy@iitm.ac.in

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C20, 30C75, 30C80.
 Key words and phrases. Coefficient inequality, area theorem, radius of univalency, analytic, univalent, starlike, close-to-convex and convex functions.

 The work of the first author was supported by MNZZS Grant, No. ON174017, Serbia.

