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Abstract. Let A denote the family of all functions f analytic in the open
unit disk D with the normalization f(0) = 0 = f ′(0)− 1 and S be the class of
univalent functions from A. In this paper, we consider radius of univalence of
F defined by F (z) = z3/(f(z)g(z)), where f and g belong to some subclasses
of A (for which f(z)/z and g(z)/z are non-vanishing in D) and, in some cases
in precise form, belonging to some subclasses of S. All the results are proved
to be sharp. Applications of our investigation through Bessel functions are
also presented.
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1. Introduction and Main Results

Let D be the open unit disk {z : |z| < 1} in the complex plane C, and H
denote the linear space of analytic functions on D, with the topology of uniform
convergence on compact subsets of D so that H is metrizable. In H, we consider
the sub-collection A of functions f ∈ H with the normalization f(0) = 0 =
f ′(0) − 1, and let S = {f ∈ A : f is univalent in D}. A number of geometric
subclasses of S still enjoys the attention of many mathematicians in solving
extremal problems. We begin by recalling the standard ones: By C and S? we
denote the subclasses of S which consist of convex (i.e. f(D) is a convex domain)
and starlike functions (i.e. f(D) is a domain starlike with respect to the origin),
respectively. Given a convex function g ∈ C, we say that f ∈ A is said to belong
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2 Á. Baricz, M. Obradović, and S. Ponnusamy

to the class f ∈ Kg if it satisfies the condition

(1.1) Re

(
f ′(z)

g′(z)

)
> 0, z ∈ D.

Furthermore, a function f ∈ A is said to belong to K if f ∈ Kg for some
convex function g and thus, K = ∪g∈C Kg. Functions in K are known to be close-
to-convex in D (i.e. complement of f(D) is connected by non-intersecting half
lines), and hence they belong to the class S. In general, g is not necessarily
normalized. Some particular choices of g ∈ C in Kg have special role in many
different contexts, for example, in deriving sufficient conditions for functions to
be in K (see [14]).

Now, we may recall the family U which has been studied in the recent years
together with its extension (see for instance, [1, 9, 15, 16, 17]):

U = {f ∈ A : |Uf (z)| < 1 for z ∈ D},
where

(1.2) Uf (z) = f ′(z)

(
z

f(z)

)2

− 1.

The boundedness of f ′(z)(z/f(z))2 forces f ∈ U to be non-vanishing in the
punctured unit disk 0 < |z| < 1. Hence f ′(z) 6= 0 in D and thus, f is locally
univalent in D. Moreover, it is known [1] that f ∈ U univalent in D and thus,
U ⊂ S. It is known [9, 15, 24] that neither U is included in S? nor includes S?
(see [9]). In fact, U is not a subset of S∗ as the function

f1(z) =
z

1 + 1
2
z + 1

2
z3

demonstrates. In view of this reasoning, general classes of functions was consid-
ered by Obradović and Ponnusamy, for example, for 0 < λ ≤ 1, the class

U(λ) = {f ∈ A : |Uf (z)| < λ for z ∈ D}.
In order to compare with the area principle of Gronwall for meromorphic func-
tions (see [19, p. 18, Theorem 1.3] and [8, p. 29, Theorem 2.1]), we observe that
mappings f ∈ S can be associated with the mappings F ∈ Σ, namely univalent
functions F of the form,

F (ζ) = ζ +
∞∑
n=0

cnζ
−n, |ζ| > 1,

which satisfies the condition F (ζ) 6= 0 for |ζ| > 1, by the correspondence

F (ζ) =
1

f(1/ζ)
, |ζ| > 1.
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Using the change of variable ζ = 1/z, the association f(z) = 1/F (1/z) quickly
yields the formula

F ′(ζ)− 1 = Uf (z),

where Uf is defined by (1.2) and a2 = f ′′(0)/2 = −c0. The last relation provides
the close connection that exists between f ∈ U and F ∈ Σ of meromorphic
univalent functions F (ζ) satisfying the condition |F ′(ζ)−1| < 1 for |ζ| > 1. One
of the interesting observations is that each function in

SZ =

{
z,

z

(1± z)2
,

z

1± z
,

z

1± z2
,

z

1± z + z2

}
belongs to U . Also, it is well-known that functions in SZ are the only functions in
S having integral coefficients in the Taylor series expansions of f ∈ S. Moreover,
every f ∈ U(λ) can be expressed as (cf. [16])

z

f(z)
= 1− a2z − λz

∫ z

0

ω(t)

t2
dt, a2 =

f ′′(0)

2
,

for some ω ∈ B1, where B1 denotes the class of analytic functions in the unit
disk D such ω(0) = ω′(0) = 0 and |ω(z)| < 1 for z ∈ D. More recently, Vasudev
and Yanagihara [29] discussed the class U(λ) in geometric perspectives.

When we say that f ∈ U in |z| < r it means that the condition |Uf (z)| < 1
holds in the sub disk |z| < r instead of the full unit disk D, which is indeed same
as saying that r−1f(rz) belongs to the class U . It is convenient to use the same
convention at similar situations. Some related classes to these families may now
be recalled:

R = {f ∈ A : Re f ′(z) > 0 for z ∈ D}
P(1/2) = {f ∈ A : Re (f(z)/z) > 1/2 for z ∈ D} and

C(−1/2) =

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> −1

2
for z ∈ D

}
.

We remark that C ⊂ S?(1/2) ⊂ P(1/2). Here S?(1/2) is the class of starlike
functions of order 1/2. Analytically, f ∈ S?(1/2) if and only if f ∈ A and
Re (zf ′(z)/f(z)) > 1/2 in D. Also, it is well-known that (see [28]) each function
in C(−1/2) is indeed convex in some direction and hence, C(−1/2) is included in
K. Many properties of these classes and their generalizations have been studied
extensively in the literature (see [8, 10, 19]). There are many necessary and
sufficient coefficient conditions for functions to be in these classes. The following
well-known necessary conditions for functions in S and some of its subclasses are
needed for our investigation:

(a) if f ∈ R, then |an| ≤ 2/n for all n ≥ 2
(b) if f ∈ P(1/2) ∪ C ∪ S?(1/2), then |an| ≤ 1 for all n ≥ 2
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(c) if f ∈ S, then |an| ≤ n for all n ≥ 2
(d) if f ∈ C(−1/2), then |an| ≤ (n + 1)/2 for all n ≥ 2 (see [26, Corollary 2]

and [23]).

In this paper we are mainly interested in the following question:

Problem 1.1. Suppose that f, g ∈ A such that f(z)/z and g(z)/z are non-
vanishing in D. If F is of the form

(1.3) F (z) =
z3

f(z)g(z)
for z ∈ D,

what can be said about the univalence of F?

Clearly, F could be considered as an operation acting on the space of analytic
functions into another with some standard procedure. Recall that if f ∈ S and
is of the form

z

f(z)
= 1 +

∞∑
n=1

cnz
n

then the well-known Area Theorem [10, Theorem 11 on p.193 of Vol. 2] gives
the following necessary coefficient condition

∞∑
n=2

(n− 1)|cn|2 ≤ 1.

This condition has been very helpful in solving many different problems in the
theory of univalent functions. However, a natural question concerning Problem
1.1 is the following: How do the Taylor coefficients of f and g influence the
property of the normalized analytic function F? Do the restrictions on the Taylor
coefficients of f and g provide examples of functions from U , for instance? The
answer is yes and we consider this problem for a few cases but from the proof one
can easily see that many general results could be obtained using our approach.

Throughout the discussion f, g ∈ A will be of the form

(1.4) f(z) = z +
∞∑
n=2

anz
n and g(z) = z +

∞∑
n=2

bnz
n.

The paper is organized as follows. In Section 2, we state our main results and
their direct consequences. Section 3 outlines the basic idea of the proof and
present a partial list of situations for which our conclusions in the main theo-
rems continue to hold with varying hypotheses. We present proofs of our main
theorems in Section 4. In Section 5, we present a case where our results can be
applied for Bessel functions of the first kind. The concluding section presents
further remarks on our methodology.
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2. Main Results and their consequences

We begin to present a first set of results based on the restrictions on the
coefficients of f and g.

Theorem 2.1. Let f, g, F ∈ A be as in Problem 1.1. Then we have the following:

(a) If |an| ≤ 1 and |bn| ≤ 1 for n ≥ 2, then F ∈ U in the disk |z| < r1 = 1/3.
(b) If |an| ≤ n and |bn| ≤ 1 for n ≥ 2, then F ∈ U in the disk |z| < r2 = 1/4.
(c) If |an| ≤ n and |bn| ≤ n for n ≥ 2, then F ∈ U in the disk |z| < r3 = 1/5.

All these results are best possible (as for the univalence is concerned).

The following corollary is a consequence of Theorem 2.1 and so, we do not need
a detailed explanation but it is sufficient to recall that if f ∈ P(1/2)∪C∪S?(1/2)
and g ∈ S, then we have |an| ≤ 1 and |bn| ≤ n for n ≥ 2, respectively.

Corollary 2.2. Let F be defined by (1.3). Then we have the following:

(a) f, g ∈ P(1/2) ∪ C ∪ S?(1/2) imply that F ∈ U in the disk |z| < 1/3. As for
the univalence, the radius 1/3 cannot be replaced by a bigger number and
thus the result is sharp.

(b) If f ∈ S and g ∈ P(1/2) ∪ C ∪ S?(1/2), then F ∈ U in the disk |z| < 1/4,
and the radius 1/4 is best possible (as for the univalence).

(c) If f, g ∈ S, then F ∈ U in the disk |z| < 1/5 and the radius 1/5 is sharp.

We now state our next result.

Theorem 2.3. Let f, g, F ∈ A be as in Problem 1.1. Then we have the following:

(a) If |an| ≤ 1 and |bn| ≤ 2/n for n ≥ 2, then F ∈ U in the disk |z| < r4, where
r4 ≈ 0.36027 is the root of the equation

(2.4) 2r − 3 +
2(3r − 2)

r
log(1− r) = 0

in the interval (0, 1).
(b) If |an| ≤ n and |bn| ≤ 2/n for n ≥ 2, then F ∈ U in the disk |z| < r5,

where r5 ≈ 0.26073 is the root of the equation

(2.5) 3(1− r)− 4(2r − 1)

r
log(1− r) = 0

in the interval (0, 1).
(c) If |an| ≤ 2/n and |bn| ≤ 2/n for n ≥ 2, then F ∈ U in the disk |z| < r6,

where r6 ≈ 0.399185 is the unique root of the equation

(2.6)
5− r
1− r

+
6

r
log(1− r) = 0

in the interval (0, 1).
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All these results are best possible (as for the univalence is concerned).

Corollary 2.7. Let F be defined by (1.3) and rj (j = 4, 5, 6) be as in Theorem
2.3. Then we have the following:

(a) f ∈ P(1/2)∪C ∪S?(1/2) and g ∈ R imply that F ∈ U in the disk |z| < r4.
As for the univalence the result is sharp.

(b) If f ∈ S and g ∈ R, then F ∈ U in the disk |z| < r5, and the result is best
possible (as for the univalence).

(c) If f, g ∈ R, then F ∈ U in the disk |z| < r6. The result is sharp.

Our final result follows.

Theorem 2.8. Let f, g, F ∈ A be as in Problem 1.1. Then we have the following:

(a) If |an| ≤ (n + 1)/2 and |bn| ≤ 1 for n ≥ 2, then F ∈ U in the disk

|z| < r7 = 4−
√
10

3
≈ 0.27924. As for the univalence the result is sharp.

(b) If |an| ≤ (n + 1)/2 and |bn| ≤ n for n ≥ 2, then F ∈ U in the disk

|z| < r8 = 5−
√
17

4
≈ 0.21922 and the result is best possible (as for the

univalence).
(c) If |an| ≤ (n + 1)/2 and |bn| ≤ 2/n for n ≥ 2, then F ∈ U in the disk
|z| < r9, where r9 ≈ 0.29399 is the unique root of the equation

(2.9) (r − 3)(1− r)− 4− 9r + 3r2

r
log(1− r) = 0

in the interval (0, 1). The result is best possible (as for the univalence).

We end the section with a corollary which is a consequence of Theorem 2.8.

Corollary 2.10. Let the function F be defined with (1.3) and rj (j = 7, 8, 9) be
as in Theorem 2.8. Then we have the following:

(a) If f ∈ C(−1/2) and g ∈ P(1/2) ∪ C ∪ S?(1/2), then F ∈ U in the disk
|z| < r7. As for the univalence the result is sharp.

(b) If f ∈ C(−1/2) and g ∈ S, then F ∈ U in the disk |z| < r8 and the result
is best possible (as for the univalence).

(c) If f ∈ C(−1/2) and g ∈ R, then F ∈ U in the disk |z| < r9. The result is
sharp.

3. General Guidelines for the Proofs of our results

3.1. Basic idea of the Proof. Assume the hypothesis of Problem 1.1 on
f, g, F ∈ A and the power series representations for f and g given by (1.4).
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Using the notations for f and F given by (1.2) and (1.3), respectively, a compu-
tation gives

UF (z) = −z2
(

1

F (z)
− 1

z

)′
= −z2

(
1

z

[
f(z)

z

g(z)

z
− 1

])′
=

f(z)

z

g(z)

z
− 1− z

(
f(z)

z

)′
g(z)

z
− z

(
g(z)

z

)′
f(z)

z

which may be further decomposed as

UF (z) =
g(z)

z

[
f(z)

z
− z

(
f(z)

z

)′
− 1

]
+
f(z)

z

[
g(z)

z
− z

(
g(z)

z

)′
− 1

]
−
(
f(z)

z
− 1

)(
g(z)

z
− 1

)
and by the triangle inequality, we have

|UF (z)| ≤
∣∣∣∣g(z)

z

∣∣∣∣ ∣∣∣∣f(z)

z
− z

(
f(z)

z

)′
− 1

∣∣∣∣+

∣∣∣∣f(z)

z

∣∣∣∣ ∣∣∣∣g(z)

z
− z

(
g(z)

z

)′
− 1

∣∣∣∣
+

∣∣∣∣f(z)

z
− 1

∣∣∣∣ ∣∣∣∣g(z)

z
− 1

∣∣∣∣ .(3.1)

The aim is to find estimate for |UF (z)| when some properties about f and g
or some appropriate coefficients conditions for an and bn are given. When the
coefficient conditions are given as in Theorems 2.1, 2.3 and 2.8, we may proceed
as follows: We use the representation of f in (1.4) and obtain for |z| ≤ r,

(3.2)

∣∣∣∣f(z)

z
− 1

∣∣∣∣ ≤ ∞∑
n=2

|an|rn−1 and

∣∣∣∣f(z)

z

∣∣∣∣ ≤ 1 +
∞∑
n=2

|an|rn−1

and similarly,

(3.3)

∣∣∣∣f(z)

z
− z

(
f(z)

z

)′
− 1

∣∣∣∣ =

∣∣∣∣∣−
∞∑
n=3

(n− 2)anz
n−1

∣∣∣∣∣ ≤
∞∑
n=3

(n− 2)|an|rn−1.

In general, for many basic subclasses of functions f ∈ S, a necessary coefficient
condition will be of the form

(3.4) |an| ≤ An(a, b, c) = a+ (b/n) + cn for all n ≥ 2,

where a, b, c are suitable real numbers such that An(a, b, c) > 0 for all n ≥ 2.
This is our basic here and in Section 6, we include a partial list of these cases.
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3.2. Basic inequalities for the proof of our main results. The following
equalities will be used in the sequel:

(3.5)
− log(1− r)

r
=
∞∑
n=1

rn−1

n
,

1

(1− r)2
=
∞∑
n=1

nrn−1,
1 + r

(1− r)3
=
∞∑
n=1

n2rn−1.

If an satisfies the condition (3.4), then with the help of (3.5) the first relation in
(3.2) gives∣∣∣∣f(z)

z
− 1

∣∣∣∣ ≤ a
∞∑
n=2

rn−1 + b
∞∑
n=2

rn−1

n
+ c

∞∑
n=2

nrn−1

= a

[
r

1− r

]
+ b

[
− log(1− r)

r
− 1

]
+ c

[
1

(1− r)2
− 1

]
which implies that

(3.6)

∣∣∣∣f(z)

z
− 1

∣∣∣∣ ≤ −(a+ b+ c) +
a

1− r
− b log(1− r)

r
+

c

(1− r)2

and thus,

(3.7)

∣∣∣∣f(z)

z

∣∣∣∣ ≤ 1− (a+ b+ c) +
a

1− r
− b log(1− r)

r
+

c

(1− r)2
.

Similarly, using the condition (3.4) and the rearrangement

(n− 2)[a+ (b/n) + cn] = −2a+ b+ (a− 2c)n+ cn2 − 2b

n
,

the relation (3.3) becomes∣∣∣∣f(z)

z
− z

(
f(z)

z

)′
− 1

∣∣∣∣
≤

∞∑
n=2

(n− 2)[a+ (b/n) + cn]rn−1

= (−2a+ b)
∞∑
n=2

rn−1 + (a− 2c)
∞∑
n=2

nrn−1 + c

∞∑
n=2

n2rn−1 − 2b
∞∑
n=2

rn−1

n

= (−2a+ b)

[
1

1− r
− 1

]
+ (a− 2c)

[
1

(1− r)2
− 1

]
+ c

[
1 + r

(1− r)3
− 1

]
+2b

[
log(1− r)

r
+ 1

]
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and thus, a simplification gives
(3.8)∣∣∣∣f(z)

z
− z

(
f(z)

z

)′
− 1

∣∣∣∣ ≤ a+b+c− 2a− b
1− r

+
a− 2c

(1− r)2
+
c(1 + r)

(1− r)3
+

2b log(1− r)
r

.

4. Proofs of main theorems

From the proof of our theorems, one can obtain a number of general theorems
for various other choices for a, b, c. A similar approach is possible to various other
situations although we omit them here.

4.1. Proof of Theorem 2.1. (a) Suppose that |an| ≤ 1 and |bn| ≤ 1 for n ≥ 2.
This means that we choose a = 1 and b = c = 0 in (3.4) and thus, by using the
relations (3.6), (3.7) and (3.8) (with a = 1, b = c = 0), one has

(4.1)


∣∣∣∣f(z)

z
− 1

∣∣∣∣ ≤ r

1− r
,

∣∣∣∣f(z)

z

∣∣∣∣ ≤ 1

1− r
, and∣∣∣∣f(z)

z
− z

(
f(z)

z

)′
− 1

∣∣∣∣ ≤ r2

(1− r)2

for |z| ≤ r. Similar inequalities hold for g (because |bn| ≤ 1 for n ≥ 2) and thus,
using these bounds, (3.1) gives us the estimate

|UF (z)| ≤ 2r2

(1− r)3
+

r2

(1− r)2
=

3r − 1

(1− r)3
+ 1

which is clearly less than 1 if 0 ≤ r < r1 = 1/3, i.e. F ∈ U for |z| < 1/3. In
particular, F is univalent for |z| < 1/3. If we choose f(z) = g(z) = z/(1−z), then
we obtain F (z) = z(1− z)2 and F ′(z) = 1− 4z + 3z2 showing that F ′(1/3) = 0
and thus, F is not univalent in any bigger disk. Thus, the radius 1/3 is best
possible.

(b) Suppose that |an| ≤ n and |bn| ≤ 1 for n ≥ 2. As in Case (a) but by
using the relations (3.6), (3.7) and (3.8) with a = b = 0 and c = 1, one has for f
the inequalities

(4.2)


∣∣∣∣f(z)

z
− 1

∣∣∣∣ ≤ r(2− r)
(1− r)2

,

∣∣∣∣f(z)

z

∣∣∣∣ ≤ 1

(1− r)2
, and∣∣∣∣f(z)

z
− z

(
f(z)

z

)′
− 1

∣∣∣∣ ≤ r2(3− r)
(1− r)3
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for |z| ≤ r. Inequalities of the form (4.1) holds for the function g in place of f .
This observation and (4.2) give the following estimate for (3.1):

|UF (z)| ≤ r2(3− r)
(1− r)4

+
r2

(1− r)4
+
r2(2− r)
(1− r)3

=
4r − 1

(1− r)4
+ 1

which implies that |UF (z)| < 1 for 0 ≤ r < r2 = 1/4, i.e. F ∈ U for |z| < 1/4. If
we put f(z) = z/(1−z)2 and g(z) = z/(1−z), then we see that F (z) = z(1−z)3

and F ′(z) = (1−4z)(1−z)2. Thus, F ′(1/4) = 0 and hence, F cannot be univalent
in a larger disk. Consequently, the radius 1/4 is best possible as for univalence
of F is concerned.

(c) Assume that |an| ≤ n and |bn| ≤ n for n ≥ 2. Then (4.2) holds and it also
holds for g in place of f . In view of these observations, as in cases (a) and (b),
it follows easily that

|UF (z)| ≤ 2r2(3− r)
(1− r)5

+
r2(2− r)2

(1− r)4
=

5r − 1

(1− r)5
+ 1,

and thus, |UF (z)| < 1 for 0 ≤ r < r3 = 1/5, i.e. F ∈ U for |z| < 1/5. By putting
f(z) = g(z) = z/(1−z)2, we get F (z) = z(1−z)4 and so, F ′(z) = (1−5z)(1−z)3.
We see that F ′(1/5) = 0 which means that F cannot be univalent in the disk
|z| < r if r > 1/5. Again, the radius 1/5 is best possible. 2

4.2. Proof of Theorem 2.3. (a) Suppose that |an| ≤ 1 and |bn| ≤ 2/n for
n ≥ 2. Then (4.1) holds. Since |bn| ≤ 2/n for n ≥ 2 (i.e. considering the choice
a = c = 0 and b = 2 in (3.4)), by using the relations (3.6), (3.7) and (3.8), one
has for g the inequalities
(4.3)
∣∣∣∣g(z)

z
− 1

∣∣∣∣ ≤ −2− 2

r
log(1− r),

∣∣∣∣g(z)

z

∣∣∣∣ ≤ −1− 2

r
log(1− r), and∣∣∣∣g(z)

z
− z

(
g(z)

z

)′
− 1

∣∣∣∣ ≤ 2 +
2

1− r
+

4

r
log(1− r) =

4− 2r

1− r
+

4

r
log(1− r)

for |z| ≤ r. Using (4.1) and (4.3), we have the estimate

|UF (z)| ≤
(
−1− 2

r
log(1− r)

)
r2

(1− r)2
+

1

1− r

(
4− 2r

1− r
+

4

r
log(1− r)

)
+

r

1− r

(
−2− 2

r
log(1− r)

)
= 1− 1

(1− r)2

(
2r − 3 +

2(3r − 2)

r
log(1− r)

)
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which is less than 1 provided φ1(r) > 0, where

φ1(r) = 2r − 3 +
2(3r − 2)

r
log(1− r).

This gives the conclusion |UF (z)| < 1 for 0 ≤ r < r4, i.e. F ∈ U for |z| < r4,
where r4 is the root of the equation (2.4), namely, φ1(r) = 0. If we put f(z) =
z/(1 − z) and g(z) = −z − 2 log(1 − z), then we see that an = 1 and bn = 2/n
for n ≥ 2. We see that

F (z) =
z(1− z)

−1− (2/z) log(1− z)

and thus,

F ′(z) =
2z − 3 + 2(3z−2)

z
log(1− z)

[−1− (2/z) log(1− z)]2
.

It follows that F ′(r4) = 0 and hence, F cannot be univalent in a larger disk.

(b) Suppose that |an| ≤ n and |bn| ≤ 2/n for n ≥ 2. Then (4.2) and (4.3)
hold. As a consequence of these observations, we have the estimate

|UF (z)| ≤
(
−1− 2

r
log(1− r)

)
r2(3− r)
(1− r)3

+
1

(1− r)2

(
4− 2r

1− r
+

4

r
log(1− r)

)
+
r(2− r)
(1− r)2

(
−2− 2

r
log(1− r)

)
= 1− 1

(1− r)3

(
4(2r − 1)

r
log(1− r)− 3(1− r)

)
which is less than 1 provided φ2(r) > 0, where

φ2(r) =
4(2r − 1)

r
log(1− r)− 3(1− r).

This gives the conclusion |UF (z)| < 1 for 0 ≤ r < r5, i.e. F ∈ U for |z| < r5,
where r5 is the root of the equation (2.5), namely, φ2(r) = 0.

If we put f(z) = z/(1 − z)2 and g(z) = −z − 2 log(1 − z), then we see that
an = n and bn = 2/n for n ≥ 2. We see that

F (z) =
z(1− z)2

−1− (2/z) log(1− z)

and thus,

F ′(z) = −
(1− z)

[
3(1− z)− 4(2z−1)

z
log(1− z)

]
[−1− (2/z) log(1− z)]2

.

It follows that F ′(r5) = 0 and hence, F cannot be univalent in a larger disk.
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(c) As in cases (a) and (c) of Theorem 2.1, we first observe that (4.3) holds
(by hypotheses) both for f and g. This observation and a computation give the
following estimate for (3.1):

|UF (z)| ≤ 2

(
−1− 2

r
log(1− r)

)(
4− 2r

1− r
+

4

r
log(1− r)

)
+

(
−2− 2

r
log(1− r)

)2

= 1 +

(
−1− 2

r
log(1− r)

)[
5− r
1− r

+
6

r
log(1− r)

]
which implies that |UF (z)| < 1 for 0 ≤ r < r6, i.e. F ∈ U for |z| < r6, where r6
is the root of the equation (2.6), namely, φ3(r) = 0, where

φ3(r) =
5− r
1− r

+
6

r
log(1− r).

If we put f(z) = g(z) = −z− 2 log(1− z), then we see that an = bn = 2/n for
n ≥ 2, F (z) = z[−1− (2/z) log(1− z)]−2 and thus

F ′(z) = −
5−z
1−z + 6

z
log(1− z)

[−1− (2/z) log(1− z)]3
.

It follows that F ′(r6) = 0 and hence, F cannot be univalent in a larger disk. 2

4.3. Proof of Theorem 2.8. (a) Let f, g, F ∈ A be as in Problem 1.1, |an| ≤
(n + 1)/2 and |bn| ≤ 1 for n ≥ 2. As before we see that (4.1) holds with g in
place of f . Moreover, since |an| ≤ (n+ 1)/2, f satisfies the inequalities

(4.4)


∣∣∣∣f(z)

z
− 1

∣∣∣∣ ≤ 3r − 2r2

2(1− r)2
,

∣∣∣∣f(z)

z

∣∣∣∣ ≤ 2− r
2(1− r)2

, and∣∣∣∣f(z)

z
− z

(
f(z)

z

)′
− 1

∣∣∣∣ ≤ 2r2 − r3

(1− r)3
.

for |z| ≤ r. As a consequence of these inequalities, the relation (3.1) simplifies
to

|UF (z)| ≤ 1

1− r

(
2r2 − r3

(1− r)3

)
+

2− r
2(1− r)2

(
r2

(1− r)2

)
+

r

1− r

(
3r − 2r2

2(1− r)2

)
=

9r2 − 8r3 + 2r4

(1− r)4

= 1− 3r2 − 8r + 2

2(1− r)4
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which is less than 1 provided 3r2 − 8r + 2 > 0, i.e. if 0 ≤ r < r7 = 4−
√
10

3
. This

means that F ∈ U in the disk |z| < r7 and so, F is univalent in that disk.

As for the sharpness of the radius, we choose

f(z) =
z(2− z)

2(1− z)2
= z +

∞∑
n=2

(
n+ 1

2

)
zn and g(z) =

z

1− z
,

so that an = (n+ 1)/2, bn = 1 and thus, F defined by (1.3) takes the form

F (z) =
2z(1− z)3

2− z
.

We compute that

F ′(z) =
2(1− z)2(3z2 − 8z + 2)

(2− z)2

and thus, F ′(r7) = 0 which means that F is not univalent in a bigger disk.

(b) Let f, g, F ∈ A be as in Problem 1.1. For f and g, by assumption, we have
|an| ≤ (n + 1)/2 and |bn| ≤ n for n ≥ 2, respectively. Following the arguments
as in the other cases, we easily have the estimate

|UF (z)| ≤ 1

(1− r)2

(
2r2 − r3

(1− r)3

)
+

2− r
2(1− r)2

(
r2(3− r)
(1− r)3

)
+

3r − 2r2

2(1− r)2

(
r(2− r)
(1− r)2

)
=

8r2 − 10r3 + 5r4 − r5

(1− r)5

= 1− 2r2 − 5r + 1

(1− r)5

which implies that |UF (z)| < 1 provided 2r2−5r+ 1 > 0, i.e. F ∈ U for |z| < r8,

where r8 = 5−
√
17

4
is the root of the equation 2r2 − 5r + 1 = 0 in the interval

(0, 1). As for the sharpness is concerned, we choose the univalent functions

f(z) =
z(2− z)

2(1− z)2
and g(z) =

z

(1− z)2

so that an = (n+ 1)/2 and bn = n for n ≥ 2. Moreover, F defined by (1.3) then
takes the form

F (z) =
2z(1− z)4

2− z
and thus,

F ′(z) =
4(1− z)3(2z2 − 5z + 1)

(2− z)2
.
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It follows that F ′(r8) = 0 which means that F is not univalent in a disk with
bigger radius.

(c) As in the other cases, the assumption that |an| ≤ (n+1)/2 and |bn| ≤ 2/n
for n ≥ 2, clearly gives the estimate

|UF (z)| ≤
(
−1− 2

r
log(1− r)

)
r2(2− r)
(1− r)3

+
2− r

2(1− r)2

(
4− 2r

1− r
+

4

r
log(1− r)

)
+

3r − 2r2

2(1− r)2

(
−2− 2

r
log(1− r)

)
= 1− 1

(1− r)3

(
(r − 3)(1− r)− 4− 9r + 3r2

r
log(1− r)

)
which is less than 1 provided ψ(r) > 0, where

ψ(r) = (r − 3)(1− r)− 4− 9r + 3r2

r
log(1− r),

i.e. if 0 < r < r9. This means that F ∈ U for |z| < r9 where r9 is as in the
statement, namely, the root of the equation ψ(r) = 0 in the interval (0, 1) (see
(2.9)).

In order to prove the sharpness of the radius, we consider the univalent func-
tions

f(z) =
z(2− z)

2(1− z)2
and g(z) = −z − 2 log(1− z).

We see that an = (n + 1)/2 and bn = 2/n for n ≥ 2. Using these functions, the
corresponding F has the form

F (z) =
z(1− z)2

(1− (z/2)) (−1− (2/z) log(1− z))

and thus, after some computation, one can easily see that

F ′(z) =
(1− z)[(z − 3)(1− z)− ((4− 9z + 3z2)/z) log(1− z)]

[(1− (z/2)) (−1− (2/z) log(1− z))]2
.

It follows that F ′(r9) = 0 which means that F is not univalent in a disk with
bigger radius. 2

5. Applications

There is a vast literature dedicated to the mapping properties of special func-
tions (see for example [20, 21, 25] on Gaussian hypergeometric functions and
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[2, 3, 4, 5] on Bessel functions). Let us consider the normalized Bessel function
fν : D→ C, defined by

fν(z) = 2νΓ(ν + 1)z1−
ν
2Jν(
√
z) = z +

∑
n≥2

(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(ν + n)
zn,

where Jν stands for the Bessel function of the first kind. Observe that the
inequality ∣∣∣∣ (−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(ν + n)

∣∣∣∣ ≤ 1

is equivalent to

(5.1) 4n−1(n− 1)!(ν + 1)(ν + 2) · · · (ν + n− 1) ≥ 1,

and this holds for each n ≥ 2 if ν ≥ −3
4
. Here we used that the left-hand side of

the inequality (5.1) is increasing in n when ν > −1. Similarly, the inequality∣∣∣∣ (−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(ν + n)

∣∣∣∣ ≤ n

is equivalent to
4n−1n!(ν + 1)(ν + 2) · · · (ν + n− 1) ≥ 1,

and this holds for each n ≥ 2 when ν ≥ −7
8
. Thus, if we consider the function

Fν,µ : D→ C, defined by

Fν,µ(z) =
z3

fν(z)fµ(z)
=

1

2ν+µΓ(ν + 1)Γ(µ+ 1)
· z1+

ν+µ
2

Jν(
√
z)Jµ(

√
z)
,

in view of Theorem 1 we have the following result.

Corollary 5.2. The following assertions are true:

(a) If ν, µ ≥ −3
4
, then Fν,µ ∈ U in the disk |z| < 1

3
.

(b) If ν ≥ −7
8

and µ ≥ −3
4
, then Fν,µ ∈ U in the disk |z| < 1

4
.

(c) If ν, µ ≥ −7
8
, then Fν,µ ∈ U in the disk |z| < 1

5
.

Moreover, by following the proof of [6, Theorem 1.6], it can be shown that
fν ∈ C(−1/2) if and only if ν ≥ ν?, where ν? ' −0.287872 . . . is the unique root
of the equation (2ν − 5)Jν+1(1) + 5Jν(1) = 0. Taking into account this result,
Theorem 2.8 yields the following consequence.

Corollary 5.3. The following assertions are true:

(a) If ν ≥ ν? and µ ≥ −3
4
, then Fν,µ ∈ U in the disk |z| < r7.

(b) If ν ≥ ν? and µ ≥ −7
8
, then Fν,µ ∈ U in the disk |z| < r8.

Clearly, Corollaries 5.2 and 5.3 could be used to generate new set of functions
belonging to the class U .
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6. Concluding Remarks

Let us now consider situations dealing with the inequalities (3.4). A particular
consideration in (1.1) will be the five convex functions g, where

g(z) ∈
{
z, z/(1− z), − log(1− z),

1

2
log

(
1 + z

1− z

)
, − i√

3
log

(
1 + αz

1 + αz

)}
(where α = (−1 + i

√
3)/2) so that

1/g′(z) ∈
{

1, (1− z)2, 1− z, 1− z2, 1− z + z2
}

which led to introduce

K1 = {f ∈ A : Re f ′(z) > 0 for z ∈ D}
K2 = {f ∈ A : Re (1− z)2f ′(z) > 0 for z ∈ D}
K3 = {f ∈ A : Re (1− z)f ′(z) > 0 for z ∈ D}
K4 = {f ∈ A : Re (1− z2)f ′(z) > 0 for z ∈ D}, and

K5 = {f ∈ A : Re (1− z + z2)f ′(z) > 0 for z ∈ D}.

Functions in Kj (j = 1, 2, . . . , 5) are obviously close-to-convex in D and each
of these classes plays a special role in certain circumstances (see [14, 20, 25]).
Moreover, these results are generalized in many ways and a necessary coefficient
condition for a function to be in Kj (j = 1, 2, . . . , 5) will be of the form (3.4).
For example, if

K1(α) = {f ∈ A : Re f ′(z) > α for z ∈ D}

for some α ∈ [0, 1), then |an| ≤ 2(1−α)/n for all n ≥ 2. It is important to point
out that functions in K1 := K1(0) ≡ R are not necessarily starlike.

As remarked in the introduction and also from the statement of our main
results, one can observe from a careful analysis that the results and the method-
ology of this article are applicable in general settings although we deal in this
paper only important cases. In order to have this feeling, it would be interesting
to recall also the following few cases:

(a) if f ≺ g and g ∈ R ∪ C, then |an| ≤ 1 for all n ≥ 2 (See [11, Theorem 5]
and [8, p. 195, Theorem 6.4])

(b) if f ≺ g and g ∈ S∗, then |an| ≤ n for all n ≥ 2 (See [8, p. 195, Theorem
6.4])

(c) if f ≺ g and g ∈ S, then |an| ≤ n for all n ≥ 2 (See [8, p. 196] and [7])
(d) if f ∈ A with Re (f(z)/z) > α in D for some α ∈ [0, 1), then |an| ≤ 2(1−α)

for all n ≥ 2
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(e) if f ∈ G, then |an| ≤ 1/(n(n− 1)) for all n ≥ 2, where

G =

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
<

3

2
for z ∈ D

}
.

Each f ∈ G is known to be starlike in D. See [18] for details and further
investigation on this class.

Here ≺ denotes the usual subordination.

Now, it is worth pointing out that our results are applicable for the cases (a)–
(c). The cases (d)–(e) along with other general assumptions could be used to
prove several new results. In addition to this remark, it is worth recalling some
related problems in the literature for which our methodology works, because
there are many other important classes of functions for which our results could
be stated after some investigations. A sequence of real numbers {ck}k≥1 is said
to be totally monotonic (resp. n-times monotonic) if ∆0ck = ck ≥ 0 and ∆mck =
∆m−1ck − ∆m−1ck+1 ≥ 0 for all m ≥ 1, k ≥ 1 (resp. ∆mck ≥ 0 for m =
0, 1, . . . , n). An n-times monotonic sequence is denoted by Mn.

In [31], Wirths has shown that if f ∈ A and {ak}k≥1 are totally monotonic,
then the largest number r∗ such that f ∈ S∗ in |z| < r∗ is r∗ ≈ 0.934. Similar
results are obtained for other related families of functions from A. In another
article [32], Wirths has shown that if {(k+1−2β)ak}k≥1 ∈M2 for some β ∈ [0, 1),
then f ∈ S∗(β), where S∗(β) denotes the class of starlike functions of order β in
D. Finally, a necessary and sufficient condition for the coefficients of f ∈ A to
be totally monotonic is that

f(z) =

∫ 1

0

z

1− tz
dµ(t)

for some probability measure µ(t) defined on the unit interval [0, 1]. Such func-
tions are known to be univalent in D. Thus, our results are applicable for ana-
lytic functions in D whose Taylor coefficients form a totally monotonic sequence.
Moreover, Wirths [30] has found the radius of starlikeness for the class of func-
tions of the above form, and the radius of convexity for this class was proved to
be 1/

√
2 (see [27]).
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[2] Á. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen,
73 (2008) 155–178.
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Babeş-Bolyai University
Cluj-Napoca 400591, Romania
Address:
Institute of Applied Mathematics
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