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Abstract Let A denote the family of all analytic functions f(z) in the unit disk D = {z ∈

C : |z| < 1}, normalized by the conditions f(0) = 0 and f ′(0) = 1. Let U denote the set of

all functions f ∈ A satisfying the condition
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Let Ω be the class of all f ∈ A for which

|zf
′(z) − f(z)| <

1

2
, z ∈ D.

In this paper, the relations between the two classes are discussed. Furthermore, some new

results on the class Ω are obtained.
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1 Introduction

Let A denote the family of all analytic functions f(z) in the unit disk D := {z ∈ C : |z| < 1},
normalized by the conditions f(0) = 0 and f ′(0) = 1. Denote by S the subset of A which consists

of univalent functions. Let S∗ and K denote the subclasses of S which are starlike and convex

in D, respectively, and let U denote the set of all f ∈ A satisfying the condition
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It is well known that U is a subclass of S [1]. In recent years, many scholars have studied the

properties of the family U [2–6].

In a recent paper, Peng and Zhong [7] introduced the class Ω which consists of functions f

in A satisfying the condition

|zf ′(z) − f(z)| < 1

2
, z ∈ D. (1.1)

Also, the authors showed that (1.1) is equivalent with

f(z) = z +
1

2
z

∫ z

0

ϕ(ζ)dζ, (1.2)

where ϕ is analytic in D and |ϕ(z)| ≤ 1, z ∈ D. We note that in the same paper it is proved

that Ω ⊂ S∗.

In this paper we discuss the relations between U and Ω. Also, we consider the other

properties of the class Ω and get some new results.

2 Relations Between U and Ω

Theorem 2.1 The class Ω is not a subset of the class U .

Proof Let us consider the function

ϕ1(z) =
z + a

1 + az
, 0 < a < 1.

Then ϕ1 : D → D, and the appropriate function f1 ∈ Ω given by (1.2) has the form

f1(z) = z +
1

2
z

∫ z

0

ζ + a

1 + aζ
dζ = z +

1

2a
z2 − 1 − a2

2a2
z log(1 + az).

From above we have

f ′
1(z) = 1 +

1

a
z − 1 − a2

2a2
log(1 + az) − 1 − a2

2a

z

1 + az
,

and so,
∣
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z

f1(z)

)2

f ′
1(z) − 1

∣

∣

∣

∣

∣

z=−1

=

∣

∣

∣

∣

∣

2a2
(

3a2 − a− (1 − a2) log(1 − a)
)

(2a2 − a− (1 − a2) log(1 − a))2
− 1

∣

∣

∣

∣

∣

→ 3

when a→ 1. It means that for the points in D near to the point z = −1 and for a close to 1 we

have
∣

∣

∣

∣

∣

(

z

f1(z)

)2

f ′
1(z) − 1

∣

∣

∣

∣

∣

> 1.

This implies that f1 6∈ U . �

Theorem 2.2 If f ∈ Ω , then f ∈ U in the disc |z| <
√√

5−1
2 = 0.78615 · · · .

Proof If f ∈ Ω, then we have the representation (1.2). If we put ω(z) =
∫ z

0
ϕ(ζ)dζ, then

|ω(z)| ≤ |z|, |ω′(z)| ≤ 1 and

f(z) = z +
1

2
zω(z). (2.1)

By using a result of Dieudonné ([8], pp.198–199), we have the next inequality

|zω′(z) − ω(z)| ≤ r2 − |ω(z)|2
1 − r2

, (2.2)
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where |z| = r and |ω(z)| ≤ r. It follows from (2.1) and (2.2) that
∣

∣
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)2

f ′(z) − 1
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∣
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∣

∣
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∣

∣

∣

∣

z

f(z)
− z

(

z

f(z)

)′
− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
2 (zω′(z) − ω(z)) − 1

4ω
2(z)

(

1 + 1
2ω(z)

)2

∣

∣

∣

∣

∣

≤
1
2 |zω′(z) − ω(z)| + 1

4 |ω(z)|2
(

1 − 1
2 |ω(z)|

)2

≤
1
2

r2−|ω(z)|2
1−r2 + 1

4 |ω(z)|2
(

1 − 1
2 |ω(z)|

)2 .

If
1
2

r2−|ω(z)|2
1−r2 + 1

4 |ω(z)|2
(

1 − 1
2 |ω(z)|

)2 < 1, (2.3)

then we have
∣

∣

∣

∣

∣

(

z

f(z)

)2

f ′(z) − 1

∣

∣

∣

∣

∣

< 1.

But the inequality (2.3) is equivalent to

|ω(z)|2 − 2(1 − r2)|ω(z)| + 2 − 3r2 > 0. (2.4)

Noting that |ω(z)| ≤ |z| = r, if we put |ω(z)| = t, with 0 ≤ t ≤ r, and consider the function

F (t) = t2 − 2(1 − r2)t+ 2 − 3r2,

then it is an elementary fact to show that the function F is positive for 0 ≤ r < r0 =

√√
5−1
2 ,

that is, the inequality (2.4) holds when |z| < r0. And therefore, f is in U in the disc |z| < r0.

�

3 Estimation of Coefficients

Definition 3.1 ([8], p.151) The logarithmic coefficients γn of f in S is defined by

log
f(z)

z
= 2

∞
∑

n=1

γnz
n, |z| < 1.

Theorem 3.2 Let f ∈ Ω and let γ1, γ2, γ3 be its logarithmic coefficients. Then

(a) |γ1| ≤ 1
4 ;

(b) |γ2| ≤ 1
8 ;

(c) |γ3| ≤ 1
12 .

All results are the best possible.

Proof We will use the representation (2.1). If we put ω(z) = c1z + c2z
2 + · · · , then from

|ω′(z)| = |c1 + 2c2z + 3c3z
2 + · · · | ≤ 1, we have

|c1| ≤ 1, |2c2| ≤ 1 − |c1|2, |3c3| ≤ 1 − |c1|2 −
4|c2|2

1 + |c1|
(3.1)
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(see Prokhorov and Szinal [9]). By using (2.1) we have

log
f(z)

z
= log

(

1 +
1

2
ω(z)

)

= log

(

1 +
1

2
(c1z + c2z

2 + · · · )
)

=
1

2
c1z +

1

2

(

c2 −
1

4
c21

)

z2 +
1

2

(

c3 −
1

2
c1c2 +

1

12
c31

)

z3 + · · · ,

which implies that

2γ1 =
1

2
c1, 2γ2 =

1

2

(

c2 −
1

4
c21

)

, 2γ3 =
1

2

(

c3 −
1

2
c1c2 +

1

12
c31

)

. (3.2)

Combining (3.1) with (3.2), we have

|γ1| =
1

4
|c1| ≤

1

4
, |γ2| ≤

1

8
(2|c2| +

1

2
|c1|2) ≤

1

8
.

Similarly,

12|γ3| =

∣

∣

∣

∣

3c3 −
3

2
c1c2 +

1

4
c31

∣

∣

∣

∣

≤ 3|c3| +
3

2
|c1||c2| +

1

4
|c1|3

≤ 1 − |c1|2 −
4|c2|2

1 + |c1|
+

3

2
|c1||c2| +

1

4
|c1|3

= ψ(|c1|, |c2|),

where

ψ(x, y) = 1 − x2 − 4y2

1 + x
+

3

2
xy +

1

4
x3, (x, y) ∈ D

and D is defined by the conditions: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, y ≤ 1
2 (1 − x2). It is easy to check

that the function ψ has only one critical point (0, 0) belonging to the boundary of the domain

D and that ψ(x, y) ≤ 1 in the domain D. This implies that |γ3| ≤ 1
12 . If we choose the function

ϕ in (1.2) to be 1, z, z2 respectively, then we obtain that all results in this theorem are sharp.

�

Theorem 3.3 If f(z) = z+
∞
∑

n=1
anz

n ∈ Ω and if the inverse function of f has an expansion

f−1(w) = w +A2w
2 +A3w

3 +A4w
4 + · · · (3.3)

near w = 0, then

|A2| ≤
1

2
, |A3| ≤

1

2
, |A4| ≤

5

8
.

All these results are the best possible.

Proof By using the identity f(f−1) = w and the representations for the functions f and

f−1, we can obtain the next relations














A2 = −a2,

A3 = −a3 + 2a2
2,

A4 = −a4 + 5a2a3 − 5a3
2.

(3.4)
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On the other hand, in view of (2.1), if we put ω(z) = c1z + c2z
2 + · · · , where |ω(z)| ≤ |z|,

|ω′(z)| ≤ 1, we have

f(z) = z +

∞
∑

n=2

1

2
cn−1z

n. (3.5)

Combining (3.4) with (3.5), we obtain






























A2 = −1

2
c1,

A3 = −1

2
c2 +

1

2
c21,

A4 = −1

2
c3 +

5

4
c1c2 −

5

8
c31.

(3.6)

From (3.6) it follows that |A2| = 1
2 |c1| ≤ 1

2 . Also, by using (3.6) and (3.1), we have

|A3| ≤
1

2
|c2| +

1

2
|c1|2 ≤ 1

4
(1 − |c1|2) +

1

2
|c1|2 ≤ 1

4
+

1

4
|c1|2 ≤ 1

2
.

Finally, from (3.6), we obtain that

|A4| =
1

2

∣

∣

∣

∣

c3 −
5

2
c1c2 +

5

4
c31

∣

∣

∣

∣

≤ 1

2
· 5

4
=

5

8

by using the result of Prokhorov and Szinal (with µ = − 5
2 and ν = 5

2 )[9]. If we consider the

function w = f(z) = z + 1
2z

2, then we have that

z = f−1(w) = −1 +
√

1 + 2w = w − 1

2
w2 +

1

2
w3 − 5

8
w4 + · · · ,

which means that our results are the best possible. �

Theorem 3.4 Let f ∈ Ω and let γn, n = 1, 2, 3, · · · , be its logarithmic coefficients. Then

(a)
∞
∑

n=1
|γn|2 ≤ 1

4Li2
(

1
4

)

, where 1
4Li2

(

1
4

)

=
∞
∑

n=1

1
n2

(

1
4

)n+1
is the best possible;

(b)
∞
∑

n=1
n2|γn|2 ≤ 1

4 ;

(c) |γn| ≤ 1
2n
, n = 1, 2, · · · .

Proof (a) If f ∈ Ω, then from (2.1) we have

f(z) = z +
1

2
zω(z),

where |ω(z) ≤ |z| and |ω′(z)| ≤ 1. From here we have

f(z)

z
≺ 1 +

1

2
z,

which implies

log
f(z)

z
≺ log

(

1 +
1

2
z

)

,

or ∞
∑

n=1

2γnz
n ≺

∞
∑

n=1

(−1)n−1 1

n2n
zn.

By using Rogosinsky’s result([8], p.192) we obtain

∞
∑

n=1

4|γn|2 ≤
∞
∑

n=1

1

n222n
=

∞
∑

n=1

(

1
4

)n

n2
= Li2

(

1

4

)

.
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From the last equality we have the statement (a) of the theorem. The function f(z) = z + 1
2z

2

shows that our result is the best possible.

(b) By using the representation (2.1) and the facts for the function ω, we have

log
f(z)

z
= log

(

1 +
1

2
ω(z)

)

. (3.7)

From (3.7), after derivation, we get
(

log
f(z)

z

)′
=

1
2ω

′(z)

1 + 1
2ω(z)

. (3.8)

Noting that |ω(z)| ≤ 1 and |ω′(z)| ≤ 1, from (3.8) we have that
∣

∣

∣

∣

∣

∞
∑

n=1

2nγnz
n−1

∣

∣

∣

∣

∣

≤
1
2 |ω′(z)|

1 − 1
2 |ω(z)| < 1. (3.9)

The last relation (with |z| = r) gives

∞
∑

n=1

4n2|γn|2r2(n−1) < 1. (3.10)

Letting r tend to 1 in (3.10), we have the statement (b) of the theorem.

(c) From (b) of this theorem we have n2|γn|2 ≤ 1
4 , which implies |γn| ≤ 1

2n
, n = 1, 2, · · · .

�

Remark 3.5 If we compare the result (c) of Theorem 3.4 with the results of of Theorem

3.2, we conclude that it is not the best possible. We conjecture that |γn| ≤ 1
4n

for n = 1, 2, · · · .
But we don’t know how to prove it.

4 Robinson’s 1/2-Conjecture and 1/2 Theorem on the Class Ω

Theorem 4.1 Robinson’s 1/2-conjecture is valid for the class Ω, i.e., if f ∈ Ω, then the

function

F (z) =
1

2
(f(z) + zf ′(z)) (4.1)

is univalent in the disc |z| < 1
2 .

Proof If f ∈ Ω, then by (2.1) we have

f(z) = z +
1

2
zω(z),

where |ω(z)| ≤ |z| and |ω′(z)| ≤ 1 for z ∈ D. From here we have that the function F defined

by (4.1) is equal to

F (z) = z +
1

2
z(ω(z) +

1

2
zω′(z)) = z +

3

4
zω1(z),

where

ω1(z) =
2

3
(ω(z) +

1

2
zω′(z)).

Since ω1(0) = 0 and

|ω1(z)| ≤
2

3
(|ω(z)| + 1

2
|z||ω′(z)|) ≤ 2

3
(|z| + 1

2
|z|) < 1, z ∈ D,
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it follows that |ω1(z)| ≤ |z| < 1
2 for |z| = r < 1

2 . Also, by the result of Dieudonné, we have

|zω′
1(z) − ω1(z)| ≤

r2 − |ω1(z)|2
1 − r2

≤ r2

1 − r2
<

1

3

for |z| = r < 1
2 . By using all these facts, we finally have

∣

∣

∣

∣

zF ′(z)

F (z)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

3
4zω

′
1(z)

1 + 3
4ω1(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

3
4 (zω′

1(z) − ω1(z)) + 3
4ω1(z)

1 + 3
4ω1(z)

∣

∣

∣

∣

≤
3
4 |zω′

1(z) − ω1(z)| + 3
4 |ω1(z)|

1 − 3
4 |ω1(z)|

<
3
4 · 1

3 + 3
4 · 1

2

1 − 3
4 · 1

2

= 1

for |z| = r < 1
2 , which implies that the function F is starlike in the disc |z| < 1

2 . �

Theorem 4.2 If f ∈ Ω , then

|f ′(z) − 1| < 1, z ∈ D.

Proof From the representation (2.1), we have

f ′(z) = 1 +
1

2
(ω(z) + zω′(z))

and it follows that

|f ′(z) − 1| ≤ 1

2
(|ω(z)| + |z||ω′(z)|) ≤ |z| < 1.

�

Theorem 4.3 If f ∈ Ω , then the range of f contains the disk {w : |w| < 1
2}. The number

1
2 is the best possible.

Proof If f ∈ Ω, then by the results in [7], we have f ∈ S⋆ and

|f(z)| ≥ |z| − 1

2
|z|2. (4.2)

Let Dr = {z ∈ C : |z| ≤ r} for 0 ≤ r < 1. Since f is univalent on Dr and the image of the

circle |z| = r under f is a Jordan curve Γr, f(Dr) is a closed domain bounded by Γr. Noting

the inequality (4.2), f(Dr) contains a closed disk {w : |w| ≤ r − r2

2 }. Since D =
⋃

0≤r<1

Dr,

f(D) =
⋃

0≤r<1

f(Dr) ⊃ {w : |w| < 1
2}.

If considering the function f(z) = z + 1
2z

2 ∈ Ω, we know that the number 1
2 is the best

possible. �

5 Libera Integral Operator

Libera [10] introduced the integral operator

L(f) =
2

z

∫ z

0

f(ζ)dζ,

where f ∈ A. The Libera integral operator has been studied by several authors on different

classes [11–14]. In the paper [10] Libera proved that L(f) ∈ K if f ∈ K and proved that

L(f) ∈ C if f ∈ C, where K and C are the class of convex functions and the class of close-to-

convex functions respectively. For the class Ω we have the same result.

Theorem 5.1 If f ∈ Ω , then L(f) ∈ Ω.
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Proof If f ∈ Ω, then

f(z) = z +
1

2
z

∫ z

0

ϕ(ζ)dζ = z +
1

2

∫ 1

0

z2ϕ(zt)dt,

where ϕ is analytic in D and |ϕ(z)| ≤ 1, z ∈ D.

L(f) =
2

z

∫ z

0

f(ζ)dζ

=
2

z

∫ z

0

(

ζ +
1

2

∫ 1

0

ζ2ϕ(ζt)dt

)

dζ

= z +
1

2
z2

∫ 1

0

(
∫ 1

0

2λ2ϕ(zλt)dt

)

dλ

= z +
1

2
z2

∫ 1

0

(
∫ 1

0

2λ2ϕ(zλt)dλ

)

dt

= z +
1

2
z2

∫ 1

0

ω(zt)dt,

where ω(z) =
∫ 1

0 2λ2ϕ(zλ)dλ. It is clear that ω(z) ∈ A. Since

|ω(z)| =

∣

∣

∣

∣

∫ 1

0

2λ2ϕ(zλ)dλ

∣

∣

∣

∣

≤
∫ 1

0

2λ2|ϕ(zλ)|dλ ≤
∫ 1

0

2λ2dλ < 1,

we have L(f) ∈ Ω. �

6 Coefficient Multipliers

The Hadamard product, or convolution, of two power series

f(z) =

∞
∑

n=0

anz
n and g(z) =

∞
∑

n=0

bnz
n

convergent in D is the function h = f ∗ g with power series

h(z) =

∞
∑

n=0

anbnz
n, |z| < 1.

It is clear that

h(sz) =
1

2π

∫ 2π

0

f(seit)g(ze−it)dt

for |z| < 1 and 0 ≤ s < 1.

Let Hp(0 < p ≤ ∞) be the Hardy space consisting of the functions f ∈ A which satisfies

the condition that Mp(r, f) remains bounded as r → 1, where

Mp(r, f) =

{

1

2π

∫ 2π

0

|f(reiθ)|pdθ
}

1

p

, 0 < p <∞

and

M∞(r, f) = max
0≤θ<2π

|f(reiθ)|.

The closed unit ball of H∞ is denoted by B, that is,

B = {ϕ(z) : ϕ(z) ∈ A, |ϕ(z)| ≤ 1}.
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A complex sequence {λn} is said to be a coefficient multiplier of a family F of analytic

functions into a family G if
∑

λnanz
n belongs to G for each f(z) =

∑

anz
n ∈ F . If we let

g(z) =
∑

λnz
n, then the sequence{λn} is a coefficient multiplier of F into G if and only if

g ∗ f ∈ G for each f(z) ∈ F .

Lemma 6.1 If f ∈ H∞, g ∈ A and h = f ∗ g, then

h(z) =
1

2π

∫ 2π

0

f(eit)g(ze−it)dt.

Proof
∣

∣

∣

∣

h(sz) − 1

2π

∫ 2π

0

f(eit)g(ze−it)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2π

∫ 2π

0

[f(seit) − f(eit)]g(ze−it)dt

∣

∣

∣

∣

≤ 1

2π

∫ 2π

0

|f(seit) − f(eit)||g(ze−it)|dt

≤
{

1

2π

∫ 2π

0

|f(seit) − f(eit)|dt
}

max
|ζ|=|z|

|g(ζ)|.

Since f ∈ H∞ ⊂ H1, it follows that([15], p.21)

lim
s→1

∫ 2π

0

|f(seit) − f(eit)|dt = 0.

Therefore
∣

∣

∣

∣

h(sz) − 1

2π

∫ 2π

0

f(eit)g(ze−it)dt

∣

∣

∣

∣

→ 0

as s→ 1. This prove that

h(z) =
1

2π

∫ 2π

0

f(eit)g(ze−it)dt.

�

Lemma 6.2 Suppose g ∈ A. Then g ∗ f ∈ B for any f ∈ B if and only if

min
h∈H1

‖g(ze−it) − eith(eit)‖1 ≤ 1 (6.1)

holds for each z ∈ D.

Proof For any given z ∈ D, g(z/ζ)/ζ is analytic in the region {ζ : |ζ| > |z|}. So it can

define a continuous linear functional on H∞ as follows:

φz(f) =
1

2πi

∫

|ζ|=1

f(ζ)g(
z

ζ
)
1

ζ
dζ.

According to Lemma 6.1, for each z ∈ D

φz(f) = (g ∗ f)(z).

Thus, g ∗ f ∈ B for any f ∈ B if and only if |φz(f)| ≤ 1 for all f ∈ B and for each z ∈ D, or

equivalently, if and only if

‖φz‖ = sup
f∈H∞,‖f‖∞≤1

|φz(f)| ≤ 1.

Since([15], p.131)

‖φz‖ = sup
f∈H∞,‖f‖∞≤1

|φz(f)| = min
h∈H1

‖g(ze−it)e−it − h(eit)‖1 = min
h∈H1

‖g(ze−it) − eith(eit)‖1,

we complete the proof of the lemma. �
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Theorem 6.3 Suppose h ∈ A. Then h∗f ∈ Ω for all f ∈ Ω if and only if h(z) = z+z2g(z),

where g ∈ A and

min
h∈H1

‖g(ze−it) − eith(eit)‖1 ≤ 1

holds for each z ∈ D.

Proof f ∈ Ω if and only if there exists a ϕ ∈ B such that

f(z) = z +
1

2
z

∫ z

0

ϕ(ζ)dζ,

or equivalently,

f(z) = z +
1

2

∫ 1

0

z2ϕ(zt)dt.

Since for any h(z) = z + z2g(z) ∈ A

(h ∗ f)(z) =
(

z + z2g(z)
)

∗
(

z +
1

2

∫ 1

0

z2ϕ(zt)dt

)

= z +
1

2

∫ 1

0

z2(ϕ ∗ g)(zt)dt,

it follows that h ∗ f ∈ Ω for all f ∈ Ω if and only if ϕ ∗ g ∈ B for all ϕ ∈ B. By Lemma 6.2, we

get the conclusion. �
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