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Some properties of the class U

Abstract. In this paper we study the class U of functions that are analytic in
the open unit disk D = {z : |z| < 1}, normalized such that f(0) = f ′(0)−1 = 0
and satisfy ∣∣∣∣∣

[
z

f(z)

]2

f ′(z)− 1

∣∣∣∣∣ < 1 (z ∈ D).

For functions in the class U we give sharp estimates of the second and the third
Hankel determinant, its relationship with the class of α-convex functions, as
well as certain starlike properties.

1. Introduction. Let A denote the family of all analytic functions in the
unit disk D := {z ∈ C : |z| < 1} and satisfying the normalization f(0) =
0 = f ′(0) − 1. Let S? and K denote the subclasses of A which are starlike
and convex in D, respectively, i.e.,

S? =
{
f ∈ A : Re

[
zf ′(z)

f(z)

]
> 0, z ∈ D

}
and

K =

{
f ∈ A : Re

[
1 +

zf ′′(z)

f ′(z)

]
> 0, z ∈ D

}
.

Geometrical characterisation of convexity is the usual one, while for the
starlikeness we have f ∈ S?, if and only if f(D) is a starlike region, i.e.,

z ∈ f(D) ⇒ tz ∈ f(D) for all t ∈ [0, 1].
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The linear combination of the expressions involved in the analytical repre-
sentations of starlikeness and convexity brings us to the classes of α-convex
functions introduced in 1969 by Mocanu [3] and consisting of functions
f ∈ A such that

(1) Re

{
(1− α)zf

′(z)

f(z)
+ α

[
1 +

zf ′′(z)

f ′(z)

]}
> 0 (z ∈ D),

where f(z)f ′(z)
z 6= 0 for z ∈ D and α ∈ R. Those classes he denoted by Mα.

Further, let U denote the set of all f ∈ A satisfying the condition

|Uf (z)| < 1 (z ∈ D),

where the operator Uf is defined by

Uf (z) :=

[
z

f(z)

]2
f ′(z)− 1.

All these classes consist of univalent functions and more details on them
can be found in [1, 10].

The class of starlike functions is very large and in the theory of univalent
functions it is significant if a class does not entirely lie inside S?. One such
case is the class of functions with bounded turning consisting of functions f
from A that satisfy Re f ′(z) > 0 for all z ∈ D. Another example is the class
U defined above and first treated in [5] (see also [6, 7, 10]). Namely, the
function − ln(1−z) is convex, thus starlike, but not in U because Uf (0.99) =
3.621 . . . > 1, while the function f defined by

z

f(z)
= 1− 3

2
z +

1

2
z3 = (1− z)2

(
1 +

z

2

)
is in U and such that

zf ′(z)

f(z)
= −

2
(
z2 + z + 1

)
z2 + z − 2

= −1

5
+

3i

5

for z = i. This property is the main reason why the class U attracts huge
attention in the past decades.

In this paper we give sharp estimates of the second and the third Hankel
determinant over the class U and study its relation with the class of α-convex
and starlike functions.

2. Main results. In the first theorem we give the sharp estimates of the
Hankel determinants of the second and third order for the class U . We
first give the definition of the Hankel determinant, whose elements are the
coefficients of a function f ∈ A.
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Definition 2. Let f ∈ A. Then the qth Hankel determinant of f is defined
for q ≥ 1 and n ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q

...
...

...
an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ .
Thus, the second and the third Hankel determinants are, respectively,

(3)
H2(2) = a2a4 − a23,
H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22).

Theorem 1. Let f ∈ U and f(z) = z + a2z
2 + a3z

3 + . . .. Then we have
the sharp estimates:

|H2(2)| ≤ 1 and |H3(1)| ≤
1

4
.

Proof. In [5] the following characterization of functions f in the class in U
was given:

(4)
z

f(z)
= 1− a2z − z

∫ z

0

ω(t)

t2
dt,

where function ω is analytic in D with ω(0) = ω′(0) = 0 and |ω(z)| < 1 for
all z ∈ D.

If we put ω1(z) =
∫ z
0
ω(t)
t2

dt, then we easily obtain |ω1(z)| ≤ |z| < 1

and |ω′1(z)| ≤ 1 for all z ∈ D. If ω1(z) = c1z + c2z
2 + · · · , then ω′1(z) =

c1 + 2c2z + 3c3z
2 + · · · and |ω′1(z)| ≤ 1, z ∈ D, gives (see relation (13) in

the paper of Prokhorov and Szynal [8]):

(5) |c1| ≤ 1, |2c2| ≤ 1−|c1|2 and |3c3(1−|c1|2)+4c1c
2
2| ≤ (1−|c1|2)2−4|c2|2.

Also, from (4) we have

f(z) =
z

1− (a2z + c1z2 + c2z3 + · · · )
= z + a2z

2 +
(
c1 + a22

)
z3 +

(
c2 + 2a2c1 + a32

)
z4

+
(
c3 + 2a2c2 + c21 + 3a22c1 + a42

)
z5 · · · .

From the last relation we have

(6) a3 = c1+a
2
2, a4 = c2+2a2c1+a

3
2, a5 = c3+2a2c2+c

2
1+3a22c1+a

4
2.

We may suppose that c1 ≥ 0, since from (6) we have c1 = a3 − a22 and a3
and a22 have the same turn under rotation. In that sense, from (5) we obtain

(7) 0 ≤ c1 ≤ 1, |c2| ≤
1

2

(
1− c21

)
and |c3| ≤

1

3

(
1− c21 −

4|c2|2

1 + c1

)
.
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If we use (3), (6) and (7), then

|H2(2)| =
∣∣c2a2 − c21∣∣ ≤ |c2| · |a2|+ c21 ≤

1

2

(
1− c21

)
|a2|+ c21

=
1

2
· |a2|+

(
1− 1

2
· |a2|

)
c21 ≤ 1.

The functions k(z) = z
(1−z)2 and f1(z) =

z
1−z2 show that the estimate is

the best possible.
Similarly, after some calculations we also have

|H3(1)| =
∣∣c1c3 − c22∣∣ ≤ c1|c3|+ |c2|2

≤ 1

3
c1

(
1− c21 −

4|c2|2

1 + c1

)
+ |c2|2

=
1

3

(
c1 − c31 +

3− c1
1 + c1

|c2|2
)

=
1

3

(
c1 − c31 +

3− c1
1 + c1

· 1
4

(
1− c21

)2)
=

1

12

(
3− 2c21 − c41

)
≤ 3

12
=

1

4
.

The function f2(z) =
z

1−z3/2 shows that the result is the best possible. �

In the rest of the paper we consider some starlikeness problems for the
class U and its connection with the class of α-convex functions.

First, let us recall the classical results about the relation between the
starlike functions and α-convex functions.

Theorem 2.

(a) Mα ⊆ S? for every real α ([4]);
(b) for 0 ≤ β

α ≤ 1 we have Mα ⊂ Mβ and for α > 1, Mα ⊂ M1 = K
([9, 4]).

As an analogue of the above theorem we have

Theorem 3. For the classes Mα the next results are valid.

(a) Mα ⊂ U for α ≤ −1;
(b) Mα is not a subset of U for any 0 ≤ α ≤ 1.

Proof. (a) Let p(z) = Uf (z). Then p is analytic in D and p(0) = p′(0) = 0.

From this we have
[

z
f(z)

]2
f ′(z) = p(z) + 1 and, after some calculations,

2
zf ′(z)

f(z)
−
[
1 +

zf ′′(z)

f ′(z)

]
= 1− zp′(z)

p(z) + 1
.
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The relation (1) is equivalent to

(8) Re

{
(1 + α)

zf ′(z)

f(z)
− α

[
1− zp′(z)

p(z) + 1

]}
> 0, z ∈ D.

We want to prove that |p(z)| < 1, z ∈ D. If not, then according to the
Clunie–Jack Lemma ([2]) there exists a z0, |z0| < 1, such that p(z0) = eiθ

and z0p
′(z0) = kp(z0) = keiθ, k ≥ 2. For such z0, from (8) we get

Re

{
(1 + α)

z0f
′(z0)

f(z0)
− α

[
1− keiθ

eiθ + 1

]}
= (1 + α)Re

[
z0f
′(z0)

f(z0)

]
+ α

k − 2

2
≤ 0

since f ∈ S? (by Theorem 2) and α ≤ −1. That is a contradiction to (1).
It means that |p(z)| = |Uf (z)| < 1, z ∈ D, i.e., f ∈ U .
(b) To prove this part, by using Theorem 2(b), it is enough to find a function
g ∈ K such that g does not belong to the class U . Really, the function
g(z) = − ln(1− z) is convex but not in U . �

Open problem. It remains an open problem to study the relationship
between classes Mα and U when −1 < α < 0 and α > 1.

In the next theorem we consider starlikeness of the function

(9) g(z) =
z/f(z)− 1

−a2
,

where f ∈ U and a2 =
f ′′(0)

2 6= 0, i.e., its second coefficient does not vanish.
Namely, we have

Theorem 4. Let f ∈ U . Then, for the function g defined by (9) we have:
(a) |g′(z)− 1| < 1 for |z| < |a2|/2;
(b) g ∈ S? in the disk |z| < |a2|/2 and even more∣∣∣∣zg′(z)g(z)

− 1

∣∣∣∣ < 1 (|z| < |a2|/2);

(c) g ∈ U in the disk |z| < |a2|/2 if 0 < |a2| ≤ 1.
The results are best possible.

Proof. Let f ∈ U with a2 6= 0 . Then, by using (4), we have
z

f(z)
= 1− a2z − zω1(z),

where ω1 is analytic in D such that |ω1(z)| ≤ |z| and |ω′1(z)| ≤ 1. The
appropriate function g from (9) has the form

g(z) = z +
1

a2
zω1(z).

From here |g′(z)− 1| = 1
|a2| |ω1(z) + zω′1(z)| < 1 for |z| < |a2|/2.
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By using previous representation, we obtain∣∣∣∣zg′(z)g(z)
− 1

∣∣∣∣ = ∣∣∣∣ zω′1(z)

a2 + ω1(z)

∣∣∣∣ ≤ |z|
|a2| − |z|

< 1

if |z| < |a2|/2. It means that the function g is starlike in the disk |z| < |a2|/2.
If we consider function fb defined by

(10)
z

fb(z)
= 1 + bz + z2, 0 < b ≤ 2,

then fb ∈ U and

gb(z) =

z
fb(z)

− 1

b
= z +

1

b
z2.

For this function we can easily see that for |z| < b/2,

Re
zg′b(z)

gb(z)
≥

1− 2
b |z|

1− 1
b |z|

> 0.

On the other hand, since g′b(−b/2) = 0, the function gb is not univalent in
a bigger disk, which implies that our result is best possible.

Also, by using (9) and the next estimation for the function ω1:

|zω′1(z)− ω1(z)| ≤
r2 − |ω1(z)|2

1− r2
,

(where |z| = r and |ω1(z)| ≤ r), after some calculation, we get

|Ug(z)| =

∣∣∣∣∣∣∣
1
a2
(zω′1(z)− ω1(z))− 1

a22
ω2
1(z)(

1 + 1
a2
ω1(z)

)2
∣∣∣∣∣∣∣

≤ |a2||zω
′
1(z)− ω1(z)|+ |ω1(z)|2

(|a2| − |ω1(z)|)2

≤
|a2| r

2−|ω1(z)|2
1−r2 + |ω1(z)|2

(|a2| − |ω1(z)|)2

=:
1

1− r2
ϕ(t),

where we put

ϕ(t) =
(1− r2 − |a2|)t2 + |a2|r2

(|a2| − t)2
and |ω1(z)| = t, 0 ≤ t ≤ r. We have

ϕ′(t) =
2|a2|

(|a2| − t)3
(
(1− r2 − |a2|)t+ r2

)
=

2|a2|
(|a2| − t)3

(
(1− |a2|)t+ (1− t)r2

)
≥ 0,
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because 0 < |a2| ≤ 1 and 0 ≤ t < 1. It means that ϕ is an increasing
function and

ϕ(t) ≤ ϕ(r) = (1− r2)r2

(|a2| − r)2
.

Finally, we have

|Ug(z)| ≤
r2

(|a2| − r)2
< 1,

since |z| < |a2|/2. This implies the second statement of the theorem.
As for sharpness, we can also consider the function fb defined by (10)

with 0 < b ≤ 1. For |z| < b
2 we have

|Ugb(z)| ≤
1
b2
|z|2(

1− 1
b |z|
)2 < 1,

which implies that gb belongs to the class U in the disk |z| < b/2. �

We believe that part (b) of the previous theorem is valid for all 0 < |a2| ≤
2. In that sense we have the next

Conjecture 1. Let f ∈ U . Then the function g defined by the expression
(9) belongs to the class U in the disk |z| < |a2|/2. The result is the best
possible.
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