MILUTIN OBRADOVIĆ and NIKOLA TUNESKI

Some properties of the class \mathcal{U}

Abstract. In this paper we study the class \mathcal{U} of functions that are analytic in the open unit disk $\mathbb{D}=\{z:|z|<1\}$, normalized such that $f(0)=f^{\prime}(0)-1=0$ and satisfy

$$
\left|\left[\frac{z}{f(z)}\right]^{2} f^{\prime}(z)-1\right|<1 \quad(z \in \mathbb{D})
$$

For functions in the class \mathcal{U} we give sharp estimates of the second and the third Hankel determinant, its relationship with the class of α-convex functions, as well as certain starlike properties.

1. Introduction. Let \mathcal{A} denote the family of all analytic functions in the unit disk $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ and satisfying the normalization $f(0)=$ $0=f^{\prime}(0)-1$. Let \mathcal{S}^{\star} and \mathcal{K} denote the subclasses of \mathcal{A} which are starlike and convex in \mathbb{D}, respectively, i.e.,

$$
\mathcal{S}^{\star}=\left\{f \in \mathcal{A}: \operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)}\right]>0, z \in \mathbb{D}\right\}
$$

and

$$
\mathcal{K}=\left\{f \in \mathcal{A}: \operatorname{Re}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]>0, z \in \mathbb{D}\right\} .
$$

Geometrical characterisation of convexity is the usual one, while for the starlikeness we have $f \in \mathcal{S}^{\star}$, if and only if $f(\mathbb{D})$ is a starlike region, i.e.,

$$
z \in f(\mathbb{D}) \quad \Rightarrow \quad t z \in f(\mathbb{D}) \text { for all } t \in[0,1]
$$

2000 Mathematics Subject Classification. 30C45, 30C50, 30C55.
Key words and phrases. Analytic, class \mathcal{U}, starlike, α-convex, Hankel determinant.

The linear combination of the expressions involved in the analytical representations of starlikeness and convexity brings us to the classes of α-convex functions introduced in 1969 by Mocanu [3] and consisting of functions $f \in \mathcal{A}$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]\right\}>0 \quad(z \in \mathbb{D}) \tag{1}
\end{equation*}
$$

where $\frac{f(z) f^{\prime}(z)}{z} \neq 0$ for $z \in \mathbb{D}$ and $\alpha \in \mathbb{R}$. Those classes he denoted by \mathcal{M}_{α}.
Further, let \mathcal{U} denote the set of all $f \in \mathcal{A}$ satisfying the condition

$$
\left|\mathrm{U}_{f}(z)\right|<1 \quad(z \in \mathbb{D})
$$

where the operator U_{f} is defined by

$$
\mathrm{U}_{f}(z):=\left[\frac{z}{f(z)}\right]^{2} f^{\prime}(z)-1
$$

All these classes consist of univalent functions and more details on them can be found in $[1,10]$.

The class of starlike functions is very large and in the theory of univalent functions it is significant if a class does not entirely lie inside \mathcal{S}^{\star}. One such case is the class of functions with bounded turning consisting of functions f from \mathcal{A} that satisfy $\operatorname{Re} f^{\prime}(z)>0$ for all $z \in \mathbb{D}$. Another example is the class \mathcal{U} defined above and first treated in [5] (see also [6, 7, 10]). Namely, the function $-\ln (1-z)$ is convex, thus starlike, but not in \mathcal{U} because $\mathrm{U}_{f}(0.99)=$ $3.621 \ldots>1$, while the function f defined by

$$
\frac{z}{f(z)}=1-\frac{3}{2} z+\frac{1}{2} z^{3}=(1-z)^{2}\left(1+\frac{z}{2}\right)
$$

is in \mathcal{U} and such that

$$
\frac{z f^{\prime}(z)}{f(z)}=-\frac{2\left(z^{2}+z+1\right)}{z^{2}+z-2}=-\frac{1}{5}+\frac{3 i}{5}
$$

for $z=i$. This property is the main reason why the class \mathcal{U} attracts huge attention in the past decades.

In this paper we give sharp estimates of the second and the third Hankel determinant over the class \mathcal{U} and study its relation with the class of α-convex and starlike functions.
2. Main results. In the first theorem we give the sharp estimates of the Hankel determinants of the second and third order for the class \mathcal{U}. We first give the definition of the Hankel determinant, whose elements are the coefficients of a function $f \in \mathcal{A}$.

Definition 2. Let $f \in \mathcal{A}$. Then the q th Hankel determinant of f is defined for $q \geq 1$ and $n \geq 1$ by

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & & \vdots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right|
$$

Thus, the second and the third Hankel determinants are, respectively,

$$
\begin{align*}
& H_{2}(2)=a_{2} a_{4}-a_{3}^{2} \\
& H_{3}(1)=a_{3}\left(a_{2} a_{4}-a_{3}^{2}\right)-a_{4}\left(a_{4}-a_{2} a_{3}\right)+a_{5}\left(a_{3}-a_{2}^{2}\right) \tag{3}
\end{align*}
$$

Theorem 1. Let $f \in \mathcal{U}$ and $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$. Then we have the sharp estimates:

$$
\left|H_{2}(2)\right| \leq 1 \quad \text { and } \quad\left|H_{3}(1)\right| \leq \frac{1}{4}
$$

Proof. In [5] the following characterization of functions f in the class in \mathcal{U} was given:

$$
\begin{equation*}
\frac{z}{f(z)}=1-a_{2} z-z \int_{0}^{z} \frac{\omega(t)}{t^{2}} d t \tag{4}
\end{equation*}
$$

where function ω is analytic in \mathbb{D} with $\omega(0)=\omega^{\prime}(0)=0$ and $|\omega(z)|<1$ for all $z \in \mathbb{D}$.

If we put $\omega_{1}(z)=\int_{0}^{z} \frac{\omega(t)}{t^{2}} d t$, then we easily obtain $\left|\omega_{1}(z)\right| \leq|z|<1$ and $\left|\omega_{1}^{\prime}(z)\right| \leq 1$ for all $z \in \mathbb{D}$. If $\omega_{1}(z)=c_{1} z+c_{2} z^{2}+\cdots$, then $\omega_{1}^{\prime}(z)=$ $c_{1}+2 c_{2} z+3 c_{3} z^{2}+\cdots$ and $\left|\omega_{1}^{\prime}(z)\right| \leq 1, z \in \mathbb{D}$, gives (see relation (13) in the paper of Prokhorov and Szynal [8]):
(5) $\left|c_{1}\right| \leq 1,\left|2 c_{2}\right| \leq 1-\left|c_{1}\right|^{2}$ and $\left|3 c_{3}\left(1-\left|c_{1}\right|^{2}\right)+4 \overline{c_{1}} c_{2}^{2}\right| \leq\left(1-\left|c_{1}\right|^{2}\right)^{2}-4\left|c_{2}\right|^{2}$.

Also, from (4) we have

$$
\begin{aligned}
f(z)= & \frac{z}{1-\left(a_{2} z+c_{1} z^{2}+c_{2} z^{3}+\cdots\right)} \\
= & z+a_{2} z^{2}+\left(c_{1}+a_{2}^{2}\right) z^{3}+\left(c_{2}+2 a_{2} c_{1}+a_{2}^{3}\right) z^{4} \\
& +\left(c_{3}+2 a_{2} c_{2}+c_{1}^{2}+3 a_{2}^{2} c_{1}+a_{2}^{4}\right) z^{5} \cdots
\end{aligned}
$$

From the last relation we have
(6) $a_{3}=c_{1}+a_{2}^{2}, \quad a_{4}=c_{2}+2 a_{2} c_{1}+a_{2}^{3}, \quad a_{5}=c_{3}+2 a_{2} c_{2}+c_{1}^{2}+3 a_{2}^{2} c_{1}+a_{2}^{4}$.

We may suppose that $c_{1} \geq 0$, since from (6) we have $c_{1}=a_{3}-a_{2}^{2}$ and a_{3} and a_{2}^{2} have the same turn under rotation. In that sense, from (5) we obtain
(7) $\quad 0 \leq c_{1} \leq 1, \quad\left|c_{2}\right| \leq \frac{1}{2}\left(1-c_{1}^{2}\right) \quad$ and $\quad\left|c_{3}\right| \leq \frac{1}{3}\left(1-c_{1}^{2}-\frac{4\left|c_{2}\right|^{2}}{1+c_{1}}\right)$.

If we use (3), (6) and (7), then

$$
\begin{aligned}
\left|H_{2}(2)\right| & =\left|c_{2} a_{2}-c_{1}^{2}\right| \leq\left|c_{2}\right| \cdot\left|a_{2}\right|+c_{1}^{2} \leq \frac{1}{2}\left(1-c_{1}^{2}\right)\left|a_{2}\right|+c_{1}^{2} \\
& =\frac{1}{2} \cdot\left|a_{2}\right|+\left(1-\frac{1}{2} \cdot\left|a_{2}\right|\right) c_{1}^{2} \leq 1
\end{aligned}
$$

The functions $k(z)=\frac{z}{(1-z)^{2}}$ and $f_{1}(z)=\frac{z}{1-z^{2}}$ show that the estimate is the best possible.

Similarly, after some calculations we also have

$$
\begin{aligned}
\left|H_{3}(1)\right| & =\left|c_{1} c_{3}-c_{2}^{2}\right| \leq c_{1}\left|c_{3}\right|+\left|c_{2}\right|^{2} \\
& \leq \frac{1}{3} c_{1}\left(1-c_{1}^{2}-\frac{4\left|c_{2}\right|^{2}}{1+c_{1}}\right)+\left|c_{2}\right|^{2} \\
& =\frac{1}{3}\left(c_{1}-c_{1}^{3}+\frac{3-c_{1}}{1+c_{1}}\left|c_{2}\right|^{2}\right) \\
& =\frac{1}{3}\left(c_{1}-c_{1}^{3}+\frac{3-c_{1}}{1+c_{1}} \cdot \frac{1}{4}\left(1-c_{1}^{2}\right)^{2}\right) \\
& =\frac{1}{12}\left(3-2 c_{1}^{2}-c_{1}^{4}\right) \leq \frac{3}{12}=\frac{1}{4} .
\end{aligned}
$$

The function $f_{2}(z)=\frac{z}{1-z^{3} / 2}$ shows that the result is the best possible.
In the rest of the paper we consider some starlikeness problems for the class \mathcal{U} and its connection with the class of α-convex functions.

First, let us recall the classical results about the relation between the starlike functions and α-convex functions.

Theorem 2.

(a) $\mathcal{M}_{\alpha} \subseteq \mathcal{S}^{\star}$ for every real $\alpha([4])$;
(b) for $0 \leq \frac{\beta}{\alpha} \leq 1$ we have $\mathcal{M}_{\alpha} \subset \mathcal{M}_{\beta}$ and for $\alpha>1, \mathcal{M}_{\alpha} \subset \mathcal{M}_{1}=\mathcal{K}$ $([9,4])$.

As an analogue of the above theorem we have
Theorem 3. For the classes \mathcal{M}_{α} the next results are valid.
(a) $\mathcal{M}_{\alpha} \subset \mathcal{U}$ for $\alpha \leq-1$;
(b) \mathcal{M}_{α} is not a subset of \mathcal{U} for any $0 \leq \alpha \leq 1$.

Proof. (a) Let $p(z)=\mathrm{U}_{f}(z)$. Then p is analytic in \mathbb{D} and $p(0)=p^{\prime}(0)=0$. From this we have $\left[\frac{z}{f(z)}\right]^{2} f^{\prime}(z)=p(z)+1$ and, after some calculations,

$$
2 \frac{z f^{\prime}(z)}{f(z)}-\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]=1-\frac{z p^{\prime}(z)}{p(z)+1} .
$$

The relation (1) is equivalent to

$$
\begin{equation*}
\operatorname{Re}\left\{(1+\alpha) \frac{z f^{\prime}(z)}{f(z)}-\alpha\left[1-\frac{z p^{\prime}(z)}{p(z)+1}\right]\right\}>0, z \in \mathbb{D} \tag{8}
\end{equation*}
$$

We want to prove that $|p(z)|<1, z \in \mathbb{D}$. If not, then according to the Clunie-Jack Lemma ([2]) there exists a $z_{0},\left|z_{0}\right|<1$, such that $p\left(z_{0}\right)=e^{i \theta}$ and $z_{0} p^{\prime}\left(z_{0}\right)=k p\left(z_{0}\right)=k e^{i \theta}, k \geq 2$. For such z_{0}, from (8) we get

$$
\begin{aligned}
\operatorname{Re} & \left\{(1+\alpha) \frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}-\alpha\left[1-\frac{k e^{i \theta}}{e^{i \theta}+1}\right]\right\} \\
& =(1+\alpha) \operatorname{Re}\left[\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right]+\alpha \frac{k-2}{2} \leq 0
\end{aligned}
$$

since $f \in \mathcal{S}^{\star}$ (by Theorem 2) and $\alpha \leq-1$. That is a contradiction to (1). It means that $|p(z)|=\left|\mathrm{U}_{f}(z)\right|<1, z \in \mathbb{D}$, i.e., $f \in \mathcal{U}$.
(b) To prove this part, by using Theorem 2(b), it is enough to find a function $g \in \mathcal{K}$ such that g does not belong to the class \mathcal{U}. Really, the function $g(z)=-\ln (1-z)$ is convex but not in \mathcal{U}.
Open problem. It remains an open problem to study the relationship between classes \mathcal{M}_{α} and \mathcal{U} when $-1<\alpha<0$ and $\alpha>1$.

In the next theorem we consider starlikeness of the function

$$
\begin{equation*}
g(z)=\frac{z / f(z)-1}{-a_{2}} \tag{9}
\end{equation*}
$$

where $f \in \mathcal{U}$ and $a_{2}=\frac{f^{\prime \prime}(0)}{2} \neq 0$, i.e., its second coefficient does not vanish.
Namely, we have
Theorem 4. Let $f \in \mathcal{U}$. Then, for the function g defined by (9) we have:
(a) $\left|g^{\prime}(z)-1\right|<1$ for $|z|<\left|a_{2}\right| / 2$;
(b) $g \in \mathcal{S}^{\star}$ in the disk $|z|<\left|a_{2}\right| / 2$ and even more

$$
\left|\frac{z g^{\prime}(z)}{g(z)}-1\right|<1 \quad\left(|z|<\left|a_{2}\right| / 2\right)
$$

(c) $g \in \mathcal{U}$ in the disk $|z|<\left|a_{2}\right| / 2$ if $0<\left|a_{2}\right| \leq 1$.

The results are best possible.
Proof. Let $f \in \mathcal{U}$ with $a_{2} \neq 0$. Then, by using (4), we have

$$
\frac{z}{f(z)}=1-a_{2} z-z \omega_{1}(z)
$$

where ω_{1} is analytic in \mathbb{D} such that $\left|\omega_{1}(z)\right| \leq|z|$ and $\left|\omega_{1}^{\prime}(z)\right| \leq 1$. The appropriate function g from (9) has the form

$$
g(z)=z+\frac{1}{a_{2}} z \omega_{1}(z)
$$

From here $\left|g^{\prime}(z)-1\right|=\frac{1}{\left|a_{2}\right|}\left|\omega_{1}(z)+z \omega_{1}^{\prime}(z)\right|<1$ for $|z|<\left|a_{2}\right| / 2$.

By using previous representation, we obtain

$$
\left|\frac{z g^{\prime}(z)}{g(z)}-1\right|=\left|\frac{z \omega_{1}^{\prime}(z)}{a_{2}+\omega_{1}(z)}\right| \leq \frac{|z|}{\left|a_{2}\right|-|z|}<1
$$

if $|z|<\left|a_{2}\right| / 2$. It means that the function g is starlike in the disk $|z|<\left|a_{2}\right| / 2$.
If we consider function f_{b} defined by

$$
\begin{equation*}
\frac{z}{f_{b}(z)}=1+b z+z^{2}, \quad 0<b \leq 2 \tag{10}
\end{equation*}
$$

then $f_{b} \in \mathcal{U}$ and

$$
g_{b}(z)=\frac{\frac{z}{f_{b}(z)}-1}{b}=z+\frac{1}{b} z^{2}
$$

For this function we can easily see that for $|z|<b / 2$,

$$
\operatorname{Re} \frac{z g_{b}^{\prime}(z)}{g_{b}(z)} \geq \frac{1-\frac{2}{b}|z|}{1-\frac{1}{b}|z|}>0
$$

On the other hand, since $g_{b}^{\prime}(-b / 2)=0$, the function g_{b} is not univalent in a bigger disk, which implies that our result is best possible.

Also, by using (9) and the next estimation for the function ω_{1} :

$$
\left|z \omega_{1}^{\prime}(z)-\omega_{1}(z)\right| \leq \frac{r^{2}-\left|\omega_{1}(z)\right|^{2}}{1-r^{2}}
$$

(where $|z|=r$ and $\left|\omega_{1}(z)\right| \leq r$), after some calculation, we get

$$
\begin{aligned}
\left|\mathcal{U}_{g}(z)\right| & =\left|\frac{\frac{1}{a_{2}}\left(z \omega_{1}^{\prime}(z)-\omega_{1}(z)\right)-\frac{1}{a_{2}^{2}} \omega_{1}^{2}(z)}{\left(1+\frac{1}{a_{2}} \omega_{1}(z)\right)^{2}}\right| \\
& \leq \frac{\left|a_{2}\right|\left|z \omega_{1}^{\prime}(z)-\omega_{1}(z)\right|+\left|\omega_{1}(z)\right|^{2}}{\left(\left|a_{2}\right|-\left|\omega_{1}(z)\right|\right)^{2}} \\
& \leq \frac{\left|a_{2}\right| \frac{r^{2}-\left|\omega_{1}(z)\right|^{2}}{1-r^{2}}+\left|\omega_{1}(z)\right|^{2}}{\left(\left|a_{2}\right|-\left|\omega_{1}(z)\right|\right)^{2}} \\
& =: \frac{1}{1-r^{2}} \varphi(t),
\end{aligned}
$$

where we put

$$
\varphi(t)=\frac{\left(1-r^{2}-\left|a_{2}\right|\right) t^{2}+\left|a_{2}\right| r^{2}}{\left(\left|a_{2}\right|-t\right)^{2}}
$$

and $\left|\omega_{1}(z)\right|=t, 0 \leq t \leq r$. We have

$$
\begin{aligned}
\varphi^{\prime}(t) & =\frac{2\left|a_{2}\right|}{\left(\left|a_{2}\right|-t\right)^{3}}\left(\left(1-r^{2}-\left|a_{2}\right|\right) t+r^{2}\right) \\
& =\frac{2\left|a_{2}\right|}{\left(\left|a_{2}\right|-t\right)^{3}}\left(\left(1-\left|a_{2}\right|\right) t+(1-t) r^{2}\right) \geq 0
\end{aligned}
$$

because $0<\left|a_{2}\right| \leq 1$ and $0 \leq t<1$. It means that φ is an increasing function and

$$
\varphi(t) \leq \varphi(r)=\frac{\left(1-r^{2}\right) r^{2}}{\left(\left|a_{2}\right|-r\right)^{2}}
$$

Finally, we have

$$
\left|\mathrm{U}_{g}(z)\right| \leq \frac{r^{2}}{\left(\left|a_{2}\right|-r\right)^{2}}<1
$$

since $|z|<\left|a_{2}\right| / 2$. This implies the second statement of the theorem.
As for sharpness, we can also consider the function f_{b} defined by (10) with $0<b \leq 1$. For $|z|<\frac{b}{2}$ we have

$$
\left|\mathrm{U}_{g_{b}}(z)\right| \leq \frac{\frac{1}{b^{2}}|z|^{2}}{\left(1-\frac{1}{b}|z|\right)^{2}}<1
$$

which implies that g_{b} belongs to the class \mathcal{U} in the disk $|z|<b / 2$.
We believe that part (b) of the previous theorem is valid for all $0<\left|a_{2}\right| \leq$ 2. In that sense we have the next

Conjecture 1. Let $f \in \mathcal{U}$. Then the function g defined by the expression (9) belongs to the class \mathcal{U} in the disk $|z|<\left|a_{2}\right| / 2$. The result is the best possible.

References

[1] Goodman, A. W., Univalent Functions. Vol. I, Mariner Publishing Co., Inc., Tampa, FL, 1983.
[2] Jack, I. S., Functions starlike and convex of order α, J. London Math. Soc. 3 (2) (1971), 469-474.
[3] Mocanu, P. T., Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (34) (1969), 127-133.
[4] Miller, S. S., Mocanu, P., Reade, M. O., All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554.
[5] Obradović, M., Pascu, N. N., Radomir, I., A class of univalent functions, Math. Japon. 44 (3) (1996), 565-568.
[6] Obradović, M., Ponnusamy, S., New criteria and distortion theorems for univalent functions, Complex Variables Theory Appl. 44 (3) (2001), 173-191.
[7] Obradović, M., Ponnusamy, S., On the class \mathcal{U}, in: Proc. 21st Annual Conference of the Jammu Math. Soc. and National Seminar on Analysis and its Application, 2011, 11-26.
[8] Prokhorov, D. V., Szynal, J., Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125-143 (1984).
[9] Sakaguchi, K., A note on p-valent functions, J. Math. Soc. Japan 14 (1962), 312-321.
[10] Thomas, D. K., Tuneski, N., Vasudevarao, A., Univalent Functions. A Primer, De Gruyter, Berlin, 2018.

Milutin Obradović
Department of Mathematics Faculty of Civil Engineering
University of Belgrade
Bulevar Kralja Aleksandra 73
11000 Belgrade
Serbia
e-mail: obrad@grf.bg.ac.rs

Nikola Tuneski
Department of Mathematics and Informatics
Faculty of Mechanical Engineering
Ss. Cyril and Methodius University in Skopje Karpoš II b.b.
1000 Skopje
Republic of North Macedonia
e-mail: nikola.tuneski@mf.edu.mk

Received February 5, 2019

