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14 Abstract

15 Multi-model combination (averaging) methods (MMCMs) are used to improve the accuracy of 
16 hydrological (precipitation-runoff) outputs in simulation or forecasting/prediction modes. In this paper, 
17 we examined if the application of MMCMs can improve model performance in reproducing distributions 
18 of hydrological signatures, such as annual maxima or minima of varying durations. To this end, ten 
19 MMCMs were applied to 29 bucket-type models to simulate runoff in 50 high-latitude catchments. The 
20 MMCMs were evaluated by comparing the resulting simulated flows to the reference (i.e., best-
21 performing) individual model, considering various commonly used performance indicators, as well as 
22 model performance in reproducing the distributions of signatures. Additionally, we analysed whether 
23 (1) the selection of the candidate models, or (2) targeting specific signatures, such as annual maxima or 
24 minima, can improve performance of the model combinations. The results suggest that the application 
25 of MMCMs can improve accuracy of runoff simulations in terms of traditional performance indicators, 
26 but fails to improve performance in reproducing the distributions of signatures. Neither excluding poor-
27 performing models nor applying the MMCMs with the targeted signatures, improves this aspect of 
28 model performance. These findings clearly reveal the need for further research aiming at enhancing 
29 model performance in reproducing the distributions of hydrological signatures, which is essential for 
30 climate-change impact studies. 

31

32 1 Introduction 

33 Simulated flows are expected to represent different features of observed flow series as closely as 
34 possible. This is a prerequisite for making accurate hydrological forecasting and predictions, such as 
35 those under climate change (e.g., Booij and Krol, 2010), and, consequently, for effective water resources 
36 management (Pechlivanidis et al., 2013). Accuracy of simulated flows is quantified in terms of 
37 performance indicators, which are usually computed by comparing entire series of simulated and 
38 observed flows (e.g., Crochemore et al., 2015; Kiraz et al., 2023). However, models should also 
39 reproduce statistical properties of hydrological signatures, such as mean flows, annual maxima or 
40 minima (Coffey et al., 2004; Willems, 2009; Todorović et al., 2022). This is important for climate-
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41 change impact assessments, which predict changes in those signatures and their distributions under 
42 future climate (Lehner et al., 2006; Ludwig et al., 2009; Gain et al., 2013; Velazquez et al., 2013; 
43 Vansteenkiste et al., 2014; Karlsson et al., 2016; Gosling et al., 2017; Krysanova et al., 2017; Seiller et 
44 al., 2017; Mishra et al., 2020; Fatehifar et al., 2021). To improve this aspect of model performance, bias-
45 correction of simulated flows was proposed (González-Zeas et al., 2012; Bum Kim et al., 2021; Daraio, 
46 2020; Farmer et al., 2018; Hales et al., 2023). Alternatively, parameters of hydrological model alone 
47 (Ricard et al., 2019), or together with the parameters of a bias-correction method (Ricard et al., 2020) 
48 can be optimised to reproduce statistical properties of flows as closely as possible. Nevertheless, it 
49 should be emphasised that these approaches are still in their infancy. 

50 Another way to improve model performance is multi-modelling, which implies applications of 
51 numerous, different models that simulate the same variable(s) (Höge et al., 2019). The objective of 
52 multi-modelling is to combine outputs of individual models in an optimal manner to obtain so-called 
53 model combinations that outperform any individual model (“team-of-rivals”, Liang et al., 2011; 
54 Darbandsari and Coulibaly, 2020; Wan et al., 2021), since errors of individual candidate models are 
55 expected to partly cancel out (Tebaldi and Knutti, 2007). Combining (or averaging) the outputs of 
56 several candidate models is generally preferred over selection of a single “best performing” model 
57 (“winner-takes-all” approach, Höge et al., 2019), as it reduces bias towards selecting a single model 
58 (Raftery, 1995; Diks and Vrugt, 2010; Zhang and Liang, 2011). Broderick et al. (2016) highlighted that 
59 a single model cannot outperform all the other candidates according to different criteria. Therefore, 
60 different modelling objective(s) can lead to the selection of different models (Diks and Vrugt, 2010; 
61 Claeskens, 2016), which can yield quite divergent simulation results (Raftery, 1995). Additionally, small 
62 changes in the dataset can lead to a selection of a different model, which makes selection of single 
63 models less “stable” than multi-model averaging (Zhang and Liang, 2011). The latter is particularly 
64 convenient in cases where several models yield similar performances (Claeskens, 2016), which is quite 
65 common in hydrological modelling accompanied by parameter- (Beven and Binley, 1992) and structural 
66 equifinality (e.g., Knoben et al., 2020). 

67 Many multi-model averaging methods act at the level of simulated outputs, i.e., not the models are being 
68 averaged, but their outputs are combined to obtain weighted simulated variable of interest (Claeskens, 
69 2016). Therefore, Höge et al. (2019) proposed that the approaches focusing on the simulated outputs 
70 should be referred to as “multi-model combination methods” (MMCMs) rather than “model averaging”. 
71 This recommendation is adopted in this study.

72 There are numerous MMCMs that differ according to their theoretical foundations (Claeskens, 2016; 
73 Höge et al., 2019). Some of them, such as Bayesian model averaging, work with and result in probability 
74 density functions (Hjort and Claeskens, 2003; Wang et al., 2009; Mitra et al., 2019). Bayesian model 
75 averaging is frequently used in hydrological modelling (Ajami et al., 2007; Diks and Vrugt, 2010; Najafi 
76 et al., 2011). Alternatively, there are numerous MMCMs that result in point estimates of simulated 
77 variables (Diks and Vrugt, 2010). Point estimates of the simulated variables have various practical 
78 applications, and decision-makers and stakeholders generally prefer easily graspable point estimates 
79 over probability distributions (Krysanova et al., 2018). Consequently, the use of these MMCMs in 
80 hydrology have increased over the years (Liang et al., 2011; Najafi and Moradkhani, 2015; Arsenault et 
81 al., 2017).

82 Point estimates of a simulated variable are obtained by applying a weighting scheme over outputs of the 
83 candidate models (Spiegelhalter et al., 2002; Claeskens, 2016). Model weights are estimated over a 
84 training (calibration) period, and are further applied in an independent period, such as an evaluation 
85 period (in which the observations exist) or a future period that forecasts/predictions are made over 
86 (Tebaldi and Knutti, 2007; Diks and Vrugt, 2010; Arsenault et al., 2017). There are numerous MMCMs 
87 that differ according to the way in which the model weights are estimated (Claeskens, 2016; Wang et 
88 al., 2009). 

89 One approach to multi-modelling implies construction a regression-based statistical model (e.g., linear 
90 regression) to combine the outputs of candidate models (Dormann et al., 2018). The simplest method of 
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91 this kind is equal weighting (Block et al., 2009; Dormann et al., 2018). Although simple, it can often 
92 outperform the individual candidates (Tebaldi and Knutti, 2007; Krinner and Flanner, 2018; Sun and 
93 Trevor, 2018). Another method of this kind was proposed by Granger and Ramanathan (1984), who 
94 considered the predictions by candidate models to be the predictors in a linear regression model. Model 
95 weights are calculated as ordinary least square estimates of the regression model coefficients (Diks and 
96 Vrugt, 2010). Model weights are not restricted to sum up to one (i.e., they are not simplex weights), 
97 since Granger and Ramanathan (1984) demonstrated advantages of such weighting schemes.

98 Many MMCMs are based on information criteria (“bewildering alphabet of information criteria”, 
99 Spiegelhalter et al., 2014). Information criteria encompass a model likelihood term and a penalty term, 

100 and they are aimed at identifying a balance between flexibility and overfitting, both of which can be 
101 related to the number of model parameters (Spiegelhalter et al., 2002; Diks and Vrugt, 2010; Moral-
102 Benito, 2015; Höge et al., 2019). Some of the methods stemming from the information theory include: 
103 Akaike- (AIC, Akaike, 1970), deviance- (DIC, Spiegelhalter et al., 2014, 2002), focused- (FIC, 
104 Claeskens and Hjort, 2003) or “widely applicable” information criteria (WAIC, Watanabe, 2013). 
105 Alternatively, Bayesian- (BIC, Schwarz, 1978) and Kashyap information criteria (KIC) are grounded in 
106 Bayesian theory (Höge et al., 2019). In these MMCMs model weights typically sum up to one (simplex 
107 weights) (Claeskens and Hjort, 2001). 

108 In some methods model weights are estimated based on the candidate model performance (Kiesel et al., 
109 2020; Wang et al., 2019). These weights heavily depend on the performance indicator considered, and 
110 are, thus, highly subjective (Tebaldi and Knutti, 2007). Alternatively, the MMCM proposed by Bates 
111 and Granger (1969) estimates model weights based on past prediction errors, which are commonly 
112 approximated by sample variances of residual series (Diks and Vrugt, 2010).

113 In some MMCMs, model weights are optimised to minimise discrepancies between the linear 
114 combination of outputs of the candidate models and the corresponding observations (Lee and Song, 
115 2021). Dormann et al. (2018) referred to these methods as “tactical approach to estimating model 
116 weights”. In many MMCMs, such as cross-validation, jackknife, stacking and extensions thereof (Yang, 
117 2001), model weights are optimised to minimise predictive error over hold-out (validation) datasets 
118 (Claeskens, 2016; Dormann et al., 2018). Model weights can also be obtained by minimising Mallows 
119 criterion Cp in the training period (Diks and Vrugt, 2010; Moral-Benito, 2015; Claeskens, 2016). These 
120 methods, especially those that imply repetitive optimisation runs, can be computationally demanding. 
121 Additionally, optimisation of the weights can introduce uncertainties in the final projections (Tebaldi 
122 and Knutti, 2007). 

123 In hydrological modelling, multi-modelling can be performed either with different model structures or 
124 parameter sets obtained with different calibration strategies (Arsenault et al., 2017; Wan et al., 2021). 
125 Such model combinations (i.e., series of flows obtained after applying a MMCM) were shown to have 
126 better transferability and performance than individual models (Seiller et al., 2012; Gudmundsson et al., 
127 2012; Arsenault et al., 2017), and to improve the performance even in flow-ranges that are not 
128 specifically targeted in the calibration (Arsenault et al., 2015). Dusa et al. (2023) demonstrated that 
129 application of MMCMs improved not only the accuracy of simulated flows at the catchment outlet, but 
130 also at the outlets of the nested subcatchments that were not considered in the estimation of the MMCM 
131 weights. MMCMs were shown to improve accuracy of flow forecasts, especially with short lead times, 
132 and in projections of flood flows (Darbandsari and Coulibaly, 2020). MMCMs have been extensively 
133 used for climate-change impact assessments (Bastola et al., 2011), mainly in the context of climate 
134 model outputs (Min et al., 2007; Simonis et al., 2007; Tebaldi and Knutti, 2007; Bohn et al., 2010; Bhat 
135 et al., 2011; Fischer et al., 2012; Zhang et al., 2015). Arsenault et al. (2017) showed that application of 
136 MMCMs to the inputs for hydrological models can also be advantageous. Applications of MMCMs to 
137 different distribution functions for estimation of design floods were also reported (Di Baldassarre et al., 
138 2009; Okoli et al., 2018). 

139 Notwithstanding the merits of MMCMs, their applications are accompanied by numerous uncertainties 
140 related to the multi-modelling process. For example, different MMCMs may result in quite divergent 
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141 simulated outputs (Mitra et al., 2019), so there are great uncertainties associated with the selection of a 
142 MMCM (Najafi et al., 2011; Najafi and Moradkhani, 2015). Many studies singled out the Granger-
143 Ramanathan MMCM (sometimes followed by a bias-correction) and optimisation of the model weights 
144 as the most robust MMCMs (Diks and Vrugt, 2010; Broderick et al., 2016; Arsenault et al., 2017; Wan 
145 et al., 2021). However, there is no straightforward guidance on MMCM selection according to specific 
146 modelling objectives (Höge et al., 2019; Lee and Song, 2021), and selection of a MMCM has remained 
147 a subjective decision (Kiesel et al., 2020; Tebaldi and Knutti, 2007).

148 The selection of candidate models is another important step in multi-modelling, which is also lacking 
149 specific recommendations (Gosling et al., 2017). Some authors (e.g., Gosling et al., 2017) advocated 
150 that the ensemble should include as many candidate models as possible, even parsimonious ones, as the 
151 increasing number of models might mitigate the uncertainty (Tebaldi and Knutti, 2007). On the other 
152 hand, some authors argued that a greater number of candidates can be computationally intractable, and 
153 showed that inclusion of poor performing models increase uncertainties, and recommended that such 
154 models should be omitted from the ensemble (Najafi et al., 2011; Huang et al., 2020). Some studies 
155 demonstrated that even a small number of candidate models can yield satisfactory results, provided that 
156 robust candidates are selected (Lee and Song, 2021). Wan et al. (2021) showed that an increase in the 
157 number of candidate models considerably improves multi-model performance, but this improvement 
158 becomes limited if ensemble includes more than nine candidate models. An informed selection of 
159 candidate models is important not only to provide a more manageable ensemble, but also to reduce 
160 redundancy (Kiesel et al., 2020). To minimise the redundancy in the ensemble, Darbandsari and 
161 Coulibaly (2020) applied the Entropy-based selection algorithm to obtain a subset of the candidate 
162 models that resulted in minimum correlation among its members prior to the application of MMCMs. 
163 However, Tebaldi and Knutti (2007) argued that some degree of redundancy in the ensemble is 
164 inevitable, because all models are grounded in same basic principles and methods, even though they 
165 were developed by different research groups worldwide. 

166 Providing a specific guidance on the selection of MMCMs or the candidate models in the ensemble is 
167 rather challenging. Specifically, it is difficult to compare model combinations to the best performing 
168 individual model, since these comparisons heavily depend on the performance indicators and simulated 
169 variables analysed (Broderick et al., 2016; Seiller et al., 2015). In other words, a single performance 
170 indicator might not fully reveal robustness of the multi-model combination compared to the best 
171 performing individual model. Thus, different aspects of model performance should be considered 
172 (Tebaldi and Knutti, 2007). Another challenge in evaluating model combinations is the fact that 
173 MMCMs are not grounded in physical laws (e.g., Zaherpour et al., 2018). For example, mass 
174 conservation does not necessarily hold for hydrographs obtained with a MMCM (Höge et al., 2019), 
175 i.e., application of MMCMs can distort the water balance. Therefore, setting evaluation frameworks for 
176 model combinations, especially for simulations under future hydroclimatic conditions, has remained an 
177 open research question (Tebaldi and Knutti, 2007; Blöschl et al., 2019). 

178 In view of all these challenges, the objective of this study is to provide novel insights into performance 
179 of model combinations, and thereby facilitate making more informative decisions about applications of 
180 MMCMs for hydrological modelling. This study focuses not only on the overall performance of 
181 MMCMs quantified in commonly used indicators, but also on the MMCM ability to reproduce 
182 distributions of hydrological signatures relevant for climate change impact assessment, especially 
183 extreme flows, such as annual maxima and minima of various durations. The reason behind emphasising 
184 performance in extreme flows is twofold. Firstly, accurate estimation of these flows is a prerequisite for 
185 effective and sustainable water resources management and is, consequently, of great interest to decision-
186 makers and stakeholders (Broderick et al., 2016; Pechlivanidis et al., 2016). Secondly, accurate 
187 predictions of extreme flows still represent a great challenge to hydrological modelling, and most models 
188 fail to perform satisfactorily in extreme-flow range (Seibert, 2003; Oudin et al., 2006; Vaze et al., 2010; 
189 Kim et al., 2011; Lane et al., 2019; Mizukami et al., 2019; Topalović et al., 2020; Brunner et al., 2021). 
190 To advance previous research in the area of the MMCMs application in hydrological modelling, the 
191 following research questions are addressed:
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192 1) Can MMCMs improve different aspects of model performance, including the reproduction of the 
193 distributions of various hydrological signatures relevant for climate change impact studies, such 
194 as mean- or extreme flows of various durations?

195 2) Can preselection of candidate models (i.e., ensemble members) based on their performance, 
196 improve efficiency of MMCMs, including efficiency in reproducing distributions of various 
197 hydrological signatures?

198 3) Can performance of MMCMs in reproducing the distributions of signatures be improved if the 
199 MMCMs are applied over the series of these signatures? 

200

201 To address these research questions, ten commonly used MMCMs are applied to 29 spatially-lumped, 
202 bucket-type modes of various complexity, in 50 high-latitude catchments that cover a broad range of 
203 hydroclimatic conditions. Such multi-catchment, multi-model setup makes this study one of few in the 
204 area of multi-modelling in hydrology that involves a large set of catchments and models (e.g., Arsenault 
205 et al., 2017, 2015; Seiller et al., 2012; Wan et al., 2021; Dusa et al., 2023). 

206

207 2 Methodology
208 2.1 Data and Catchments

209 Evaluation of MMCMs in this study is conducted in 50 high-latitude catchments in Sweden (Figure 1), 
210 with long continuous series of observed daily precipitation, temperature and flows (1961-2020). These 
211 catchments are characterised by a relatively low variation in elevation and mild slopes (Figure 1a); 
212 however, they vary considerably in areas and latitudes (Table S1 of the Supplementary material). 
213 Specifically, the selected catchments cover a longitudinal range between 56°N to 68°N, and all three 
214 major climate zones in Sweden: namely, the polar tundra climate zone in the Scandinavian Mountains 
215 in north-western Sweden, the subarctic boreal climate in central and northern Sweden, and the warm-
216 summer hemiboreal climate zone (Dfb) in southern Sweden (Teutschbein et al., 2022; Tootoonchi et al., 
217 2023). As for land cover, the selected catchments are mainly covered by forests, and only few of the 
218 catchments are extensively cultivated. Fractions of glaciers and urbanised areas are negligible (up to 
219 1.6% and 3.1% of catchment area, respectively), while the share of lakes and wetlands is rather low in 
220 most catchments (median area of 12.1%; Table S1). Approximately one third of the study catchments 
221 are regulated, but the degree of regulation (i.e., impact of the reservoirs on flows) is quite low (Todorović 
222 et al., 2022; Tootoonchi et al., 2023), which is important since accommodation of reservoirs in 
223 hydrological models can be quite challenging, especially in a spatially-lumped setup (Todorović et al., 
224 2019; Oliveira et al., 2023). The selected catchments are predominately humid, with the wettest 
225 catchments being located in western Sweden (in terms of both precipitation and runoff; Figure 1b,c). 
226 Snow-dominated and transitional catchments prevail over the rain-dominated ones, as indicated by high 
227 values (above 150) of the centre of timing of the centre of mass of annual runoff (COM) in Figure 1d 
228 (Kormos et al., 2016; see section 2.4.1 and Table S1). In half of the catchments, snowfall represents 
229 more than one third of total annual precipitation (Figure 1e). A distinct north-south gradient in 
230 temperatures is apparent across the catchments (Figure 1f). The main physiographic and hydroclimatic 
231 characteristics of the selected catchments are outlined in Table S1 of the Supplementary material.

232 Daily precipitation, temperature and runoff series over period 1961-2020 are obtained from a publicly 
233 accessible database (http://vattenwebb.smhi.se/), hosted by the Swedish Meteorological and 
234 Hydrological Institute (SMHI). The daily temperature and precipitation series are obtained from the 
235 SMHI’s national precipitation-temperature grid with 4 km x 4 km spatial resolution (SMHI, 2005; 
236 Johansson, 2000). The catchment-averaged values are calculated as an area-weighted average of all grid 
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237 cells partly or fully lying within a catchment. Locations of the stream gauges are obtained from SMHI’s 
238 SVAR database (Eklund, 2011; Henestål et al., 2012). 

239
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a) b)

c) d)

240 Figure 1. The selected catchments in Sweden: a) topography of the selected catchments, b) mean annual runoff 
241 (mm/year), c) mean annual precipitation (mm/year), d) timing of the centre of mass of annual flow (COM, in days 
242 of a water year), e) percentage of total precipitation as snowfall, and f) mean annual temperature (°C).

243
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e) f)

244 Figure 1. (continued)

245 2.2 Hydrological Models

246 This research builds on the modelling exercise in which 29 spatially-lumped bucket-type hydrological 
247 models of varying complexity (Table 1) are calibrated to simulate runoff in 50 high-latitude catchments 
248 (section 2.1), and evaluated by applying an approach proposed by Todorović et al. (2022). This approach 
249 to model evaluation takes into account model ability to reproduce distributions of series of hydrological 
250 signatures, in addition to commonly considered performance indicators, such as Nash-Sutcliffe 
251 efficiency coefficient (Nash and Sutcliffe, 1970).

252 The selected models vary in complexity: namely, the number of free model parameters range from six 
253 (ALPINE-2) to 21 (3DNet-Catch, HMETS), while the number of storages takes values between two and 
254 seven. All the models include a snow routine, which is based on the degree-day method in most models, 
255 whereas only few models contain a canopy routine. Complexity and conceptualisation of the soil and 
256 groundwater routines varies considerably across the models. Linear and non-liner outflow equations are 
257 applied for runoff routing in most models, while unit hydrographs are implemented in few models, such 
258 as HMETS, MORDOR and the models of the GR-group. To run all of these models in 50 high-latitude 
259 study catchments, some adjustments to the original model formulations have to be made. For example, 
260 snow routines are added to those models that do not have this feature in their original formulations (the 
261 GR-group of models, HYMOD, SAC-SMA, TOPMODEL, XINANJIANG). Conversely, snow routines 
262 of some models (HMETS, MORDOR) are simplified to be applicable with the available data that do not 
263 include minimum or maximum daily temperatures. Since the selected catchments are not covered with 
264 glaciers (section 2.1), glacier routines are omitted from those models that encompass such routine 
265 (COSERO, GSM-SOCONT). The details on the models are elaborated in Table S2 of the Supplementary 
266 material. 

267 The models are run with catchment-averaged daily precipitation depths and mean daily temperatures 
268 (section 2.1), and potential evapotranspiration computed with the Hamon method (Hamon, 1961). The 
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269 models are calibrated by using the Genetic algorithm (Vrugt, 2015) with the non-parametric version 
270 (Pool et al., 2018) of Kling-Gupta efficiency (Gupta et al., 2009) as the objective function. This 
271 performance indicator is selected as the objective function since it provides balanced sensitivity to model 
272 performance in both high- and low-flow range (Pool et al., 2018). The models are calibrated over the 
273 first half of the record period (water years 1962-1991), and evaluated in the second half of the record 
274 (water years 1991-2020), with one year for model warm-up that precedes both simulation periods. Such 
275 calibration/evaluation scheme is selected to enable assessment of model performance over climatically 
276 different periods, i.e., a differential-split sample test is applied (Klemeš, 1986). This 
277 calibration/evaluation scheme is considered robust (Seibert, 2003), and is generally recommended in 
278 cases of model application for climate change impact studies (Fowler et al., 2018). Additionally, the 
279 adopted calibration/evaluation scheme in this paper implies simulations over long periods that 
280 correspond to those in climate change impact studies (Todorović et al., 2022). 

281 The comparison between the two simulation periods shows an increase in temperature (especially in the 
282 winter, with the median value of 2.35°C), and a general increase in precipitation (except in the autumn 
283 in 64% of catchments). The median annual increase in temperature between the two periods amounts to 
284 +1.1°C, and closely corresponds to the projected increase in the future- (2070-2100) relative to the 
285 baseline period (1971-2010) under the RCP 2.6 scenario (Gutiérrez, J.M. et al., 2021; SMHI, 2022). The 
286 median observed increase in annual precipitation amounts to +9.5%, and it lies in-between the projected 
287 values obtained with the RCP 2.6 and RCP 8.5 scenarios (SMHI, 2022). Increase in temperature and in 
288 precipitation depths over the record period (1961-2020) is also confirmed by the results of the Mann-
289 Kendall test (Kendall, 1938; Mann, 1945). The test detects statistically significant upward trend in the 
290 mean annual- and winter temperatures in all catchments, and in spring-, summer-, and autumn 
291 temperatures in vast majority of catchments (in 96%, 86% and 92% of catchments, respectively). The 
292 Mann-Kendall test also indicates significant increasing trends in annual- and winter precipitation depths 
293 in most catchments (78% and 76%, respectively). Detected increase in temperature and in precipitation 
294 over the record period suggest that the adopted calibration/evaluation scheme provides a solid ground 
295 for proper assessment of performance under changing climate in the selected catchments.

296

297 Table 1. The hydrological models used for multi-modelling in this study.

ID Model Reference

1 3DNet-Catch Todorović et al., 2019

2 ALPINE-2 Knoben et al., 2019

3 COSERO Kling et al., 2015

4 ECHO Knoben et al., 2019; Schaefli et al., 2014

5 FLEX-IS Fenicia et al., 2011, 2008; Knoben et al., 2019b; Nijzink et al., 2016

6 GR4J Perrin et al., 2003

7 GR5J Pushpalatha et al., 2011
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8 GR6J Pushpalatha et al., 2011

9 GSM-SOCONT Knoben et al., 2019b

10 HBV-light – basic version Seibert and Vis, 2012; “HBV-light,” 2020

11 HBV-light – standard version Seibert and Vis, 2012; “HBV-light,” 2020

12 HBV-light – one GW box Seibert and Vis, 2012; “HBV-light,” 2020

13 HBV-light – three GW boxes Seibert and Vis, 2012; “HBV-light,” 2020

14 HMETS Martel et al., 2017; Francois, 2021

15 HYMOD Knoben et al., 2019; Perra et al., 2018

16 IHACRES Croke and Jakeman, 2004; DHI, 2017

17 MOPEX 2 Knoben et al., 2019b

18 MOPEX 3 Knoben et al., 2019b

19 MOPEX 4 Knoben et al., 2019b

20 MOPEX 5 Knoben et al., 2019b

21 MORDOR Andreassian et al., 2006; Garavaglia et al., 2017

22 NAM DHI, 2017

23 PDM HOUGHTON-CARR, 1999; Moore, 2007; Moore and Bell, 2002; DHI, 2017

24 PRMS Knoben et al., 2019b

25 SAC-SMA Maurer et al., 2010; Newman et al., 2015; Agnihotri and Coulibaly, 2020

26 SIMHYD Chiew et al., 2009; Chiew et al., 2010

27 TOPMODEL Knoben et al., 2019b; Clark et al., 2008
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298

299 2.3 Selection and Application of Multi-Model Combination Methods

300 Ten multi-model combination methods (MMCMs) used for point estimation are selected for this study. 
301 The method selection is primarily led by the ease of their implementation and computational 
302 requirements, i.e., by their practical applicability. Therefore, many computationally intensive methods 
303 are omitted from the analysis, such as stacking or jackknife methods (Dormann et al., 2018). Most of 
304 the selected methods are based on some information criterion (see Table 2). Key features of the selected 
305 methods are outlined in Table 2, while their detailed descriptions can be found in the cited references, 
306 primarily in the seminal paper by Diks and Vrugt (2010). Although bias correction is generally expected 
307 to improve the performance of model combinations (Arsenault et al., 2015), the results presented by 
308 Diks and Vrugt (2010) suggest negligible effects of such a procedure. Therefore, bias-correction is not 
309 applied in this study. 

310 The implementation of MMCMs in this study closely follows the application of the hydrological models. 
311 Specifically, model weights are estimated over the calibration period (water years 1962-1991), and then 
312 applied in the evaluation period (water years 1991-2020) to assess the robustness of each MMCM 
313 (section 2.4). The combined simulated flows X are computed as a linear combination of flows simulated 
314 by all the models in the ensemble Xm, multiplied by corresponding model weights ωm, which may or 
315 may not be simplex (i.e., the weights may or may not add up to 1). The resulting multi-model 
316 combination X, which represents a series of simulated flows (referred to as ”model combination”), and 
317 reads as follows (Diks and Vrugt, 2010):

318 (1)

319 where  denotes transposed matrix of the simulated flows.

320

mm
1
w

=
= å

M
T
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X X
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TX

28 VIC/ARNO Clark et al., 2008; Knoben et al., 2019b

29 XINANJIANG Xingnan, 1994
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321 Table 2. Multi-model combination methods used in this study. 

№ Method Description and Equations Simplex 
Weights Reference

1 Equal weights 
(“democracy”), EW yes Kiesel et al., 2020

2 Akaike information 
criterion, AIC yes

Posada and Buckley, 2004; 
Diks and Vrugt, 2010; Liang 
et al., 2011; Symonds and 
Moussalli, 2011; Schöniger et 
al., 2014; (Claeskens, 2016

3
Corrected Akaike 
information 
criterion, AICc

AICc differs from AIC according to the penalty term, which is modified to account for size of the dataset 
(Höge et al., 2019).

yes 
Schöniger et al., 2014; Lute 
and Luce, 2017; Okoli et al., 
2018

4
Bayesian 
information 
criterion, BIC

yes Diks and Vrugt, 2010; 
Schöniger et al., 2014

m
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№ Method Description and Equations Simplex 
Weights Reference

5
Hannan-Quinn 
information 
criterion, HQIC

yes Claeskens, 2016; Ye et al., 
2004

6
Kashyap 
information 
criterion, KIC

yes Ye et al., 2004

7 Bates-Granger 
method, BG Sm is the sample variance of residual series εm of the mth model in the calibration period:

 

The denominator value is obtained from the residual series of all models within the ensemble. 

yes Diks and Vrugt, 2010

8
Granger-
Ramanathan 
method, GR

This method yields a column-vector of the set of weights Ω: 

no Diks and Vrugt, 2010
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№ Method Description and Equations Simplex 
Weights Reference

9 Mallows method, 
MM

Model weight vector Ωm is obtained by minimising the Mallows criterion, which penalises model complexity, i.e., number of 
parameters of the mth model, pm:

 

Sm is an estimate of the variance of the residual series. In this study, Sm is obtained from the model that yielded minimum RMSE, 
averaged over all catchments in the calibration period (following Diks and Vrugt, 2010). Optimisation is performed with the 
AMALGAM algorithm (Vrugt et al., 2009; Vrugt and Robinson, 2007) and from the prior distributions of the model weights. 

no Diks and Vrugt, 2010

10
Mallows method 
with simplex 
weights, MMsimplex

Non-simplex model weights obtained by applying the Mallows method are rescaled to have non-negative values that sum up to one. 
In case of negative weights obtained by applying the Mallows method, their value is set to 0 
(following recommendations by Lee and Song, 2021). 

yes Diks and Vrugt, 2010

322 Notation: ωm – weight of the mth model; N – length of the data series; M – the number of the models of the ensemble; pm – number of free parameters of mth model; L – model likelihood; 
323 Sm – estimated error of series simulated by mth model, which is approximated by the sample variance of the residuals εm; FI – discriminant of the observed Fisher information matrix; 
324 Ω – vector of the model weights; Xm – matrix of all simulated series by the M models, the matrix size is N by M; Y – column vector of observations (here: series of observed daily 
325 flows); Simplex weights imply non-negative weights that sum up to 1.

326
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327 2.4 Evaluation of the Multi-Model Combination Methods 

328 Three research questions are addressed in this study: (1) can MMCMs improve model performance, including 
329 reproduction of distributions of the hydrological signatures, and (2) can preselection of the candidate models, 
330 or (3) targeting particular signatures, enhance performance in reproducing distribution of the signatures? To 
331 address the first research question, performance of different model combinations (i.e., series of daily flows 
332 obtained with a MMCM) is evaluated in terms of various performance indicators, such as Nash Sutcliffe (Nash 
333 and Sutcliffe, 1970) or Kling-Gupta coefficients (Gupta et al., 2009), and with respect to how well the 
334 combinations can reproduce distributions of series of selected hydrological signatures (i.e., annual maxima 
335 and minima of various durations), following the approach presented by Todorović et al. (2022). Performance 
336 of the model combinations is compared to the (on average) best performing individual model, which is 
337 considered a reference model in this study (section 2.4.1). Six alternative subsets of models (i.e., ensembles of 
338 the candidate models) are created and fed into the MMCMs to address the second research question (section 
339 2.4.2). These alternative model combinations are evaluated is the same way as the combinations obtained with 
340 the complete model ensemble. In order to address the third research question, the MMCMs are applied with 
341 the series of annual maxima or minima of various length, as opposed to their application with entire series of 
342 simulated daily flows used to address the previous research questions (section 2.4.3). 

343

344 2.4.1 Performance of Model Combinations

345 Model weights of ten selected multi-model combination methods (MMCMs, Table 2) are obtained from the 
346 complete flow series in the calibration period (water years 1962-1991). This results in a set of model weights 
347 for the complete model ensemble (E0) for each MMCM, i.e., in ten different sets comprising 29 weight values 
348 each. These weights are employed to obtain model combinations in the evaluation period (water years 1991-
349 2020). This procedure is looped over the fifty catchments.

350 Evaluation of the model combinations builds on the approach proposed by (Todorović et al., 2022), i.e., 
351 performance is quantified in terms of (1) numerous performance indicators (Table 3), and (2) the percentage 
352 of the catchments in which the distributions of hydrological signatures are well reproduced (Table 4). A large 
353 number of performance indicators is selected to facilitate a rigorous evaluation of MMCMs, and is in line with 
354 the recommendations in the literature (Tebaldi and Knutti, 2007). Performance in reproducing distributions of 
355 the signatures is evaluated by applying the Wilcoxon sign-rank test with annual series of the signatures 
356 obtained from observed and simulated flows (Todorović et al., 2022). This test is based on the locations of the 
357 distributions, with an underlying assumption that the shapes of the distributions are similar (Kvam and 
358 Vidakovic, 2007; Montgomery and Runger, 2003). Although not all the properties of the distributions are taken 
359 into consideration through the testing procedure (e.g., variance, skewness), it is considered here that a model 
360 combination properly reproduces the distribution of a signature if the null hypothesis of the test is not rejected 
361 at 5% level of significance (following Todorović et al., 2022). 

362 To evaluate the effects of multi-modelling, the model combinations are compared to the individual, on average 
363 best performing model (Table 2, Figures S1 and S2 of the Supplementary material). To identify the model that 
364 is on average best performing one, all the candidate models (Table 1) are ranked (1) according to their 
365 performance in terms of various indicators, and (2) in reproducing distributions of the signatures. These ranks 
366 are obtained from (1) the median values of all indicators in all catchments, and (2) as the median percentage 
367 of catchments with properly reproduced distributions of the signatures. The model ranks obtained in the 
368 calibration and evaluation periods are averaged, as presented in Table 5. In case that two models share the 
369 same rank value, the lower value (i.e., higher rank) is assigned to the model that yields better performance in 
370 the evaluation period. This procedure indicates the MORDOR model (Andreassian et al., 2006; Garavaglia et 
371 al., 2017) as on average best performing one across the selected 50 catchments, according to various aspects 
372 of performance. Thus, this model is assigned the overall rank of 1 in Table 5, and is considered a reference in 
373 this study (hereafter referred to as the reference model). A single reference model for all catchments is preferred 
374 over a selection of the reference model for each catchment individually because a multi-catchment approach 
375 is employed in this study. Hence, it is deemed that one “multi-catchment reference” model can provide a 
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376 reliable benchmark that can assure consistent assessment of the MMCMs performance. Additionally, this 
377 approach is commonly adopted for evaluation of MMCMs in hydrological literature (e.g., Seiller et al., 2012). 

378 To evaluate MMCMs in this study, a performance indicator obtained by a model combination is compared to 
379 the corresponding value by the reference model in that catchment. This procedure is repeated for all 
380 performance indicators, and in all catchments, resulting in the percentage of catchments in which the MMCM 
381 outperformed the reference model according to a specific indicator. In other words, this study focuses on the 
382 frequency of outperformance, rather than on the values of the indicators per se. High frequency (greater than 
383 50%) indicates a robust MMCMs. Concerning the distributions of signatures, the percentage of catchments 
384 with well reproduced distributions by the reference model is subtracted from the percentage of obtained by the 
385 model combination. Differences are preferred over ratios between the two percentage values to avoid potential 
386 division by zero, in case that the reference model reproduces distributions properly in none of the catchments. 
387 High positive values of these differences suggest that the multi-model combination outperforms the reference 
388 model. 

389

390 Table 3. Performance indicators used for evaluation of the multi-model combination methods (adapted from Todorović 
391 et al., 2022).

Performance 
Indicator Description, Equation and References

KGE

KGE1/√Q

KGEwy

Kling-Gupta efficiency (KGE) coefficient is computed as follows (Gupta et al., 2009):

KGE is computed from:

o daily flows, KGE;

o reciprocal of root-transformed daily flows (KGE1/√Q) to put more emphasis on low flows (Santos et al., 2018);

o daily flows in a representative year, obtained by averaging daily flows on a specific calendar day over the entire 
simulation period, KGEwy (Schaefli et al., 2014).

NPKGE

Non-parametric formulation of KGE indicator (Pool et al., 2018) is computed as KGE, with Spearman instead of Pearson 
correlation coefficient, and with the ratio of standard deviations estimated from FDCs:

NSE

Nash-Sutcliffe efficiency coefficient (Nash and Sutcliffe, 1970) is computed from flows (NSE) and log-transformed flows 
(NSElogQ) by applying the following equation:

LME

Liu-Mean Efficiency represents a modification of KGE computed from daily flow series (Liu, 2020): 
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Performance 
Indicator Description, Equation and References

R2

Coefficient of determination (e.g., Krause et al., 2005):

VE

Volumetric efficiency (Criss and Winston, 2008):

LE

Lindström efficiency coefficient represents a modified version of NSE coefficient (Seibert and Vis, 2010):

KGEfdc

KGE obtained from entire flow duration curves (FDC; KGEfdc) and from different FDC segments obtained from flows that are 
exceeded given % of time of the simulation period:

o extremely high flows: exceeded 5% of time;

o high flows: exceeded 5-20% of time;

o mean flows, exceeded 20-70% of time;

o low flows, exceeded 70-95% of time;

o extremely low flows, exceeded 95-100% of time (Pfannerstill et al., 2014);

o overall low flow segment, exceeded 70-100% of time.

ABQmax

ABQmin

These performance indices are computed from the mean values of the extremes, obtained from daily series of simulated 
and observed flows  (following Mizukami et al., 2019):

Series of annual maxima and minima obtained from daily flows are considered in this study. 

392
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393 Table 4. Hydrological signatures used for evaluation of the multi-model combination methods (adapted from Todorović 
394 et al., 2022).

Hydrological Signature Description, Equation and References

Mean annual flow, Qmean Mean flows in a water year (from 1st October to 30th September). 

Mean spring flow, Qspring Series of mean flows in the spring (1st March through 31st May) over the simulation period (Chen et al., 2017). 

1-, 5- and 30-day maximum 
annual flows,  for d=1, 5 

and 30

Series of annual maxima obtained from daily flows averaged over 5 and 30-days in each water year of the 
simulation period (Dankers et al., 2014; Vis et al., 2015).

1-,3-, 7-, 10-, 20-, 30- and 90 
day minimum flows, for 

d=1, 3, 7, 10, 20 and 30

Series on minimum flows averaged over a given number of days obtained in each water year of the simulation 
period (Richter et al., 1996; Olden and Poff, 2003; Garcia et al., 2017). 

10th and 90th flow percentiles in 
wet seasons, Qwet,10p and Qwet,90p

Series of specific flow percentiles obtained in each water year of the simulation period. Wet season is defined as 
period from 1st April through 30th September (Yarnell et al., 2020).

10th and 90th flow percentiles in 
dry seasons, Qdry,10p and Qdry,90p

Series of specific flow percentiles obtained in each water year of the simulation period. Dry season is defined as 
period from 1st October through 31st March (Yarnell et al., 2020).

Timing of the centre of mass of 
annual flow, COM

Timing is computed from daily flows Qi and for each year in a simulation period (Mendoza et al., 2015; Kormos et 
al., 2016):

 

where ti represents the ith ordinal day of a water year.

Spring onset 
(spring “pulse day”), SPD

Spring onset is the ordinal number of the day in which the negative difference between the streamflow mass curve 
and the mean streamflow mass curve is the greatest (Cunderlik and Ouarda, 2009). Spring onset series is obtained 
from values in each water year of a simulation period.

High flow frequency, HFF

Series of mean number of days in a water year with flows greater than 5 times the mean observed flow in the 
simulation period. In the literature, flows greater than 9 times the mean observed flow are used for high flow 
frequency computations (Westerberg and McMillan, 2015; Krysanova et al., 2017). Since the considered 
catchments in this paper exhibit relatively low flow variability, this threshold is reduced to 5. 

Low-flow frequency, LFF Series of mean number of days in a water year with flows smaller than 20% of the mean observed flow in the 
simulation period (Nicolle et al., 2014; Westerberg and McMillan, 2015; Krysanova et al., 2017).

Timing of the maximum 
annual flow, TQmax

Ordinal number of a day in which maximum annual flow occurred, obtained in each water year of the simulation 
period (Richter et al., 1996).

Timing of the minimum annual 
flow, TQmin

Ordinal number of a day in which minimum annual flow occurred, obtained in each water year of the simulation 
period. If there are several consecutive days with the same minimum flows, the mean timing of these days in a 
water year is adopted (Vis et al., 2015; Parajka et al., 2016).
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395

396 2.4.2 Assessment of the Impact of Preselection of Candidate Models on Performance of Model 
397 Combinations

398 To assess the effects of preselecting candidate models on the performance of multi-model combination (the 
399 second research question), six alternative ensembles are created (denoted by E1 through E5 and Euni, Table 5). 
400 Five of these ensembles (E1 – E5) are obtained by successively reducing the number of candidate models 
401 (approximately in steps of five) by omitting the poor performing models, down to the smallest ensemble with 
402 five best performing (i.e., most elite) candidates. The model selection is guided by the overall model ranks 
403 (Table 5), which are obtained from their performance quantified in terms of various indicators, and 
404 performance in reproducing the distributions of signatures (Figures S1-S2 of the Supplementary material). 
405 Ensembles with fewer than five members are not considered here (following recommendations by Seiller et 
406 al., 2012). Another alternative ensemble (denoted by Euni) is created by keeping only one best-performing 
407 model from each group, and discarding remaining models from the group (namely, GR-, MOPEX- and HBV-
408 light groups), which results in the ensemble of 21 models. The objective of creating such an ensemble is to 
409 reduce potential redundancy in the pool of candidate models (following Kiesel et al., 2020). 

410 The model weights are obtained separately for each ensemble, yielding thereby six sets of weights for each of 
411 ten MMCM, i.e., sixty sets of weights in every catchment. The model weights are estimated from the entire 
412 flow series in the calibration period (water years 1962-1991), and further applied in the evaluation period 
413 (water years 1991-2020). The model combinations are evaluated by applying the same approach as in case of 
414 the complete ensemble (E0). 

415

416 Table 5. The hydrological models and their ranks according to performance indicators and efficiency in reproducing 
417 distributions of hydrological signatures, and the overall ranks, and different model ensembles created based on the overall 
418 model ranks. The size of the ensemble is gradually reduced from E0 (includes all models) down to E5 (includes five most 
419 elite models), while Euni contains only one model from each group (GR-, MOPEX-, and HBV-light groups). Values in 
420 parentheses by the ensemble labels indicate the number of models included, which are indicated by the values of 1 in the 
421 shaded cells. The reference model with the overall rank of 1 is shown in bold. 

Model Ranks Ensemble with preselected models

ID Model

Preform. Indicators Distributions Overall E0 (29) E1 (25) E2 (20) E3 (15) E4 (10) E5 (5) Euni (21)

1 3DNet-Catch 16 17 16 1 1 0 0 0 1 1

2 ALPINE-2 26 29 28 0 0 0 0 0 1 0

3 COSERO 19 21 21 1 0 0 0 0 1 1

4 ECHO 22 19 22 1 0 0 0 0 1 1

5 FLEX-IS 25 26 26 0 0 0 0 0 1 0

6 GR4J 1 5 2 1 1 1 1 1 1 1

7 GR5J 5 9 6 1 1 1 1 0 0 1
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8 GR6J 8 11 8 1 1 1 1 0 0 1

9 GSM-SOCONT 13 7 11 1 1 1 0 0 1 1

10 HBV-light – basic version 6 3 5 1 1 1 1 1 0 1

11 HBV-light – standard version 4 2 3 1 1 1 1 1 1 1

12 HBV-light – one GW box 9 15 12 1 1 1 0 0 0 1

13 HBV-light – three GW boxes 3 4 4 1 1 1 1 1 0 1

14 HMETS 24 25 24 1 0 0 0 0 1 1

15 HYMOD 10 22 15 1 1 1 0 0 1 1

16 IHACRES 11 8 9 1 1 1 1 0 1 1

17 MOPEX 2 17 20 18 1 1 0 0 0 0 1

18 MOPEX 3 20 18 19 1 1 0 0 0 0 1

19 MOPEX 4 14 6 10 1 1 1 1 0 1 1

20 MOPEX 5 23 16 20 1 1 0 0 0 0 1

21 MORDOR 2 1 1 1 1 1 1 1 1 1

22 NAM 21 14 17 1 1 0 0 0 1 1

23 PDM 18 24 23 1 0 0 0 0 1 1

24 PRMS 29 28 29 0 0 0 0 0 1 0

25 SAC-SMA 15 13 14 1 1 1 0 0 1 1

26 SIMHYD 28 27 27 0 0 0 0 0 1 0

27 TOPMODEL 12 12 13 1 1 1 0 0 1 1

28 VIC/ARNO 27 23 25 1 0 0 0 0 1 1
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422

423 2.4.3 Assessment of the Impact of Selection of a Target Hydrological Signature on Performance of 
424 Model Combinations

425 The MMCMs can be applied both over the entire flow series, and over the series of targeted hydrological 
426 signatures, such as series of annual maxima. To address the third research question, model weights are obtained 
427 from the series of selected signatures in the calibration period. In this study, this analysis is performed only 
428 with the series of extreme flows, i.e., annual maxima and minima of various durations (Table 4). Specifically, 
429 series of 1-, 5-, and 30-day annual maxima, and 1-,3-, 7-, 10-, 20-, 30-, and 90-day annual minima obtained in 
430 water years (Table 4), are used to estimate model weights, yielding ten sets of weights for each MMCM, i.e., 
431 one hundred wights in total. Series of particular extreme flows (e.g., 30-day annual minima) in the evaluation 
432 period are simulated by using the corresponding set of the weights. These analyses are conducted with the 
433 complete ensemble of 29 candidates (E0). Application of MMCMs with the series of a targeted signature results 
434 only in the series of that particular signature over the simulation period. Therefore, performance of the 
435 MMCMs can be quantified only as the percentage of catchments in which the distribution of a particular 
436 signature (extreme flows) is well reproduced, and these values can be compared to the corresponding results 
437 of the reference model or the MMCMs applied over the complete series of daily flows (E0). 

438

439 3 Results 
440 3.1 Performance of Model Combinations

441 Application of MMCMs generally improves model efficiency, i.e., the model combinations outperform the 
442 reference individual model in over half of the catchments in most performance indicators, particularly over the 
443 evaluation period (Figure 2). On the contrary, variability in the performance of MMCMs across the indicators 
444 is more pronounced in the calibration period (indicated by dark-shaded colours in the top panel of Figure 2). 
445 The MMCMs improve values of Kling-Gupta coefficient (KGE), Nash-Sutcliffe coefficient computed from 
446 daily flows (NSE), R2 and Lindström efficiency coefficient (LE), as indicated by dark-blue cells in Figure 2. 
447 These indicators reflect model performance in reproducing runoff dynamics, and are generally sensitive to 
448 high flows (Moriasi et al., 2007; Krause et al., 2005; Legates and McCabe, 1999). Subtle improvement in 
449 Nash-Sutcliffe coefficient computed from log-transformed flows (NSElogQ) and KGE computed for a 
450 representative year (KGEwy) is also obtained with the multi-modelling. As for the other indicators, the effects 
451 of multi-modelling are either negligible (e.g., Liu-mean efficiency coefficient, LME), or model combinations 
452 are largely outperformed by the reference model, especially KGE obtained from extremely low flows (KGE95-
453 100), and the indicators computed from annual maxima (ABQmax) and minima (ABQmin). The objective function 
454 in the calibration of the candidate models, NPKGE (section 2.2), which already takes high values (Figure S1), 
455 is improved in only few cases in the evaluation period. 

456 The reference model is most often outperformed by the MMCMs based on the information criteria and 
457 especially by the Granger-Ramanathan method (GR, Table 2), which outperforms the reference model in terms 
458 of NSE, R2 and LE in all catchments in the calibration period (Figure 2). The information criteria-related 
459 MMCMs exhibit rather uniform (almost identical) performance, regardless of the indicator. Overall 
460 performance across ten MMCM is largely consistent over two simulation periods, with exception of the Bates-
461 Granger method (BG), which performance improves in the evaluation period, and the Mallows methods (MM 
462 and MMsimplex), but to a lesser extent. 

463

29 XINANJIANG 7 10 7 1 1 1 1 0 1 1
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464 Figure 2. The percentage of catchments in which a multi-model combination method outperforms the reference model 
465 according to a specific indicator (Table 3) in the calibration (top) and evaluation periods (bottom panel). 

466

467 As opposed to the performance indicators, the application of the MMCMs does not improve performance in 
468 reproducing distributions of the hydrological signatures (Figure 3). Specifically, the percentage of catchments 
469 in which the distribution of a signatures is properly reproduced by the model combinations is consistently 
470 lower than the values obtained by the reference model (Figure 3). The MMCMs neither improve performance 
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471 in the signatures that are well reproduced by the candidate models (e.g., 30-day annual maxima or spring onset, 
472 SPD), nor in the signatures that are poorly reproduced by the candidate models, such as annual minima (Figure 
473 S2 of the Supplementary material). The smallest differences between the model combinations and the reference 
474 model are obtained in the dry season flow percentiles, which are well reproduced in almost none of the 
475 catchments in both simulation periods. Performance of the MMCMs in reproducing distributions of signatures 
476 is somewhat higher in the signatures related to mean-, spring-, or high-flows, or runoff timings (e.g., SPD, 
477 COM or timing of annual maxima, TQmax; Table 4), than in signatures related to low-flows (Figure 3). 
478 Differences in the percentage of catchments with properly reproduced distributions across MMCMs are minor 
479 in most signatures, with few exceptions, such as annual maxima of various durations or high-flow frequency 
480 (HFF). This suggests that none of the MMCMs is clearly superior over the others. Nevertheless, the GR method 
481 slightly outperforms other MMCM in reproducing distributions of some signatures, such as mean and spring 
482 flows, 30-day annual maxima or minima or wet season flow percentiles, particularly in the calibration period 
483 (Figure 3). The GR method is closely followed (and even outperformed in few instances) by the information 
484 criteria-based MMCMs, and this pattern persists in both simulation periods. 

485 The results presented thus far refer to the entire set of catchments, meaning that considerable variation in their 
486 hydroclimatic and physiographic properties (section 2.1) is overlooked. To examine whether catchment 
487 properties reflect on the performance of MMCMs, the performance of five selected methods in each study 
488 catchment is mapped (Figure S3 of the Supplementary material). To facilitate the presentation of the results, 
489 only percentages of the performance indicators and the hydrological signatures according to which a MMCM 
490 outperformed the reference model in each catchment, are shown. These maps reveal large variability in 
491 MMCM performance across the catchments, however, no apparent relationship between the performance level 
492 of a MMCM, and catchment area, latitude, or climate zone can be found. 
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493 Figure 3. The percentage of catchments in which a multi-model combination method outperforms the reference model 
494 in reproducing distributions of the hydrological signatures (Table 4) according to the results of the Wilcoxon rank sum 
495 test in the calibration (top) and evaluation periods (bottom panel). 

496

497 3.2 Impact of Preselection of Candidate Models on Performance of Model Combinations

498 To assess the impact of preselection of the candidate models on efficiency of the MMCMs, various 
499 performance indicators (Table 3) are computed for six alternative ensembles E1 – E5, and Euni (Table 5), and 
500 compared to the reference model. This results in the percentage of catchments in which the reference model is 
501 outperformed by a MMCM according to a specific indicator. These results for three selected ensembles are 
502 shown in Figure 4, while the complete results are presented in Figure S4 of the Supplementary material. 

503 These results reveal a strong resemblance among ensembles E1 – E5, which is indicated by the overall patterns 
504 in the heatmaps, and by the average performance across the MMCMs (shown in the rightmost column of each 
505 heatmap). Specifically, the ranks of ten MMCMs according to the average performance remain consistent 
506 across the ensembles (including E0), and in both simulation periods. The results also show similarities between 
507 E1 – E5 and E0, which reflect in the indicators that are most improved with multi-modelling (KGE, NSE, R2 
508 and LE), and in the higher frequency of outperformance of the reference model in the evaluation period (section 
509 3.1). Despite the overall resemblance, there are differences among the ensembles E1 – E5. The most apparent 
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510 is a general increase in the mean performance of MMCMs with reducing the ensemble size down to the most 
511 elite candidate models (Figure 5). In other words, most MMCMs yield best average performance either with 
512 E4 or E5, with exception of GR and MM in the calibration that yield the highest performance with E0 and E3, 
513 respectively (Figure 5). Additionally, model combinations obtained with E0 are on average outperformed by 
514 ensembles E1 – E5 in most cases (indicated by the prevalence of blue cells in Figure S5), except for the GR 
515 method in both periods, and MM in the evaluation (Figure 5). The indicator values generally increase with 
516 reducing the ensemble down to most elite candidates (Figures S4 and S5 of the Supplementary material), but 
517 such behaviour is not exhibited by indicators computed from annual maxima and minima (ABQmax, ABQmin), 
518 and some other indicators with GR and especially E5 (KGE, LME, VE; Figure S5). An increase in performance 
519 with selection of more elite candidates is primarily noted in EW, BG and MMsimplex, and in GR and MM in the 
520 evaluation period. Conversely, the information criteria-related MMCMs exhibit fairly consistent performance 
521 across all ensembles (including Euni) in both simulation periods, i.e., they can be considered least “sensitive” 
522 to the selection of the candidate models. The performance of ensemble Euni is notably lower in comparison to 
523 the other ensembles, with an exception of the GR method in the calibration (Figure 5). However, it should be 
524 emphasised that the differences in the overall performance across the ensembles can be minor in some cases 
525 (e.g., differences across information criteria-based MMCMs, in both periods, or between E0 and Euni in the 
526 calibration; Figure 5), even though size of these ensembles varies considerably from five (E5) to 29 (E0) 
527 candidate models.

528 Preselection of the candidate models does not improve the performance of MMCMs in reproducing 
529 distributions of the signatures, and the MMCMs clearly remain outperformed by the reference model in this 
530 respect, regardless of the ensemble used (Figure S6 of the Supplementary material). Furthermore, performance 
531 of different ensembles in reproducing distributions of signatures largely corresponds the performance by E0, 
532 and it remains fairly constant across the ensembles (pale-shaded cells in Figure S7), with marginally higher 
533 performance by E3, E4 and E5, mainly with the EW and both MM methods. In some instances, a decrease in 
534 this aspect of performance relative to E0 is obtained (e.g., with the GR method with E5 in the calibration period). 
535 The differences between E0 and other alternative ensembles are mainly detected in annual maxima of various 
536 durations. 

537
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538 Figure 4. The percentage of the catchments in which a model combination outperforms the reference model according 
539 to a specific performance indicator (Table 3) in the evaluation period. The model combinations are obtained with the 
540 daily flow series and with three different ensembles (Table 5) that include 25 (E1) and 5 (E5) candidate models, and 21 
541 candidate models from different groups (Euni). 

542

543

544 Figure 5. The average performance of the model combinations obtained with all ensembles (Table 5). The cell values 
545 show the percentage of catchments in which the model combination outperforms the reference model, averaged over all 
546 performance indicators (Table 3). The font size is adjusted to indicate best performing ensemble for each multi-model 
547 combination method. 

548

549 3.3 Impact of Selection of a Target Hydrological Signature on Performance of Model Combinations

550 Estimation of model combinations obtained from the series of targeted signatures (i.e., annual maxima and 
551 minima of various durations), instead of entire flow series, results in the model combinations that can be used 
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552 for simulation of those series alone. Therefore, these model combinations can only be evaluated in terms of 
553 performance in reproducing distributions of the series of targeted signatures. Figure 6 shows the percentage of 
554 catchments in which distributions of annual maxima and minima of various durations are properly reproduced 
555 by the model combinations obtained with the targeted signatures, and by the reference model. The reference 
556 model outperforms all model combinations according to the targeted signatures both simulation periods, 
557 although it is closely followed by the MM method in reproducing annual minima of short durations in 
558 calibration. Performance in reproducing distributions of annual maxima is considerably lower in comparison 
559 to the reference model in both periods (Figure 6 and Figure S8 of the Supplementary Material). The BG and 
560 MM methods slightly outperform other MMCMs in the calibration period, but performance of MM noticeably 
561 drops in evaluation, and the greatest difference in average performance between two simulation periods is 
562 shown by this exact MMCM. The BG method slightly outperforms other MMCMs in all targeted signatures 
563 in the evaluation period (Figure S8).

564 Marginal impact of application of MMCMs with the targeted signatures is also indicated by the fact that the 
565 model combinations obtained with the complete daily flow records (E0) yield a higher percentage of 
566 catchments with properly reproduced distributions in many instances, especially in the evaluation period 
567 (Figure S8). Specifically, E0 outperforms the model combinations created with the targeted signatures with all 
568 information criteria-based MMCMs in both simulation periods, and with GR and MM methods in the 
569 evaluation period. This pattern is particularly pronounced in annual minima of various durations. The 
570 exceptions in this regard are the EW, BG and the MM methods in the calibration period (Figure S8). 

571

C
A

L
IB

R
A

T
IO

N
 (1

96
2-

19
91

)
E

V
A

L
U

A
T

IO
N

 (1
99

1-
20

20
)

Q max
,1

Q max
,5

Q max
,30

Q min,
1

Q min,
3

Q min,
7

Q min,
10

Q min,
20

Q min,
30

Q min,
90

Hydrological Signatures

0

20

40

60

80

100

%
 C

at
ch

m
en

ts

REF. MODEL EW AIC AICc BIC HQIC KIC BG GR MM MMsimplex

Q max
,1

Q max
,5

Q max
,30

Q min,
1

Q min,
3

Q min,
7

Q min,
10

Q min,
20

Q min,
30

Q min,
90

Hydrological Signatures

0

20

40

60

80

100

%
 C

at
ch

m
en

ts

REF. MODEL EW AIC AICc BIC HQIC KIC BG GR MM MMsimplex



29

572 Figure 6. The percentage of catchments in which model combinations obtained with the series of annual 
573 maxima and minima of various durations, and the reference model properly reproduce distributions of these 
574 signatures in the calibration (top) and evaluation periods (bottom panels).

575

576 4 Discussion 
577 4.1 Performance of Model Combinations

578 Application of the MMCMs improves model performance in terms of commonly used indicators in many 
579 instances, which corroborates the results of previous studies (Diks and Vrugt, 2010; Seiller et al., 2012; Dusa 
580 et al., 2023). The greatest improvements are obtained for the indicators that reflect performance in runoff 
581 dynamics and in high flows, such as KGE, NSE, R2 or LE (Table 3), which are improved in all catchments by 
582 the Granger-Ramanathan (GR) method in the calibration period. Application of MMCMs has a minor impact 
583 on the performance indicators related to extreme flows, especially to low flows (e.g., KGE computed from the 
584 extremely low-flow FDC segment or ABQmin), which are not satisfactorily reproduced by the candidate models 
585 in this study (Figure S2). Slight improvements are also obtained for many indicators that are already well 
586 reproduced by the model ensemble, such as the objective function used for model calibration (NPKGE) or VE 
587 or KGEFDC in calibration (Figure S1). This pattern can suggest that multi-modelling cannot lead to a noteworthy 
588 improvement of the indicators that already take rather low- or high values, which could explain a higher effect 
589 of multi-modelling in the evaluation period than in calibration. However, this should not be considered a strict 
590 rule, since opposing examples can be found. For example, KGE or KGEwy, which are well reproduced by the 
591 model candidates in the calibration period, are improved in many catchments by applying MMCMs, while 
592 KGE70-100, which takes quite low values in majority of the candidate models is improved in some catchments 
593 in evaluation. In other words, a relationship between the indicator value obtained by the candidate models, and 
594 the level of improvement by multi-modelling is not a straightforward one. 

595 Application of equal weighting (EW) improves values of the indicators, but to a lesser degree than other 
596 methods. The greatest improvement in performance indicators is obtained with the MMCMs based on the 
597 information criteria and (especially) the GR method. The former yields fairly consistent levels of improvement 
598 across the simulation periods, which can be explained by the fact that all these methods result in rather high 
599 weights assigned to a single model (here: parsimonious GR4J model, Table 1). Further, in this study a large 
600 dataset is used, which counteract the effects of the penalty terms in the information criteria-based methods. 
601 Good performance of the GR method was also demonstrated in many studies (e.g., Diks and Vrugt, 2010; 
602 Arsenault et al., 2015; Broderick et al., 2017; Arsenault et al., 2017; Wan et al., 2021). The Mallow’s method 
603 generally outperforms its simplex version, which is consistent with the results presented by Diks and Vrugt 
604 (2010).

605 Although the MMCMs improve values of many performance indicators, no improvements are obtained in 
606 terms of reproduction of distributions of signatures in comparison to the reference model. In other words, the 
607 null hypothesis of the Wilcoxon rank sum test, stating that the distributions of series of signatures obtained 
608 from observed flow series and from model combinations have same properties, are not rejected at 5% level of 
609 significance in fewer catchments. This is in line with the conclusions presented by Todorović et al. (2022), 
610 who argued that good performance in terms of the commonly used indicators does not assure that the 
611 distributions of the series of hydrological signatures are well reproduced. Poor performance is rather 
612 pronounced in the signatures related to low-flows, which corroborates the results by Wan et al. (2021).

613 These results could be explained by analysing high and low flows. Figure 7a presents observed and simulated 
614 hydrographs in the rainfall-dominated Vassboten catchment, as well as the flow duration curve (FDC), scaled 
615 to highlight agreement between simulated and observed runoff in high- (Figure 7b) and low flows (Figure 7c). 
616 The simulated hydrographs and FDCs are obtained by the reference model and with ten model combinations. 
617 The hydrographs and the FDCs clearly show that the model combinations tend to underestimate the highest 
618 peak flows, and overestimate low flows during prolonged dry periods, and these discrepancies are more 
619 pronounced than in the reference model. Numerous previous studies showed that high model performance in 
620 extreme flows represents a great challenge, since model calibration tends to move flow distribution tails 
621 towards the central value (“squeezing” of the flow distribution, Farmer et al., 2018). The results presented in 
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622 this study suggest that application of the MMCMs with long daily flow series “squeezes” the flow distribution 
623 even more, and, thereby, deteriorates model performance in reproduction of distributions of the signatures. 

624

a)

b
)

c
)

625 Figure 7. Runoff in the Vassbotten catchment in the calibration period: a) observed (Qobs, black line) and simulated 
626 runoff with the best performing individual model (purple line), and with ten multi-model combination methods (grey 
627 lines), and flow duration curves with b) logarithmically scaled abscissa to emphasise high flows and c) logarithmically 
628 scaled ordinate to emphasise low flows.

629

630 4.2 Impact of Preselection of Candidate Models on Performance of Model Combinations

631 Alternative ensembles are created to evaluate impact of preselection of candidate models on the performance 
632 of MMCMs: namely, five ensembles comprising 25 (E1) through five most elite candidate models (E5), and 
633 one ensemble with one model from each model group (Euni; Table 5). These ensembles are specifically created 
634 to enable assessment of the effects of robustness of the candidate models (E1 – E5), and redundancy in the 
635 ensemble (Euni) on MMCM performance. 

636 Our results suggest a general increase in model performance with exclusion of poor performing models. In 
637 most cases, the best results are obtained either with E4 (10 candidate models) or E5, which suggests that the 
638 ensemble size is not decisive for MMCM performance, and that high performance can be achieved with a low 
639 number of robust candidates, which corroborates findings by Lee and Song (2021). On the other hand, these 
640 results to some extent contradict findings by Wan et al. (2021), who demonstrated that increasing ensemble 
641 size from five to nine noticeably improves performance of the combinations, while any further increase in the 
642 ensemble size yields only marginal improvements. Our results corroborate the latter; however, no “leap” in 
643 MMCM performance level between E4 and E5 is not obtained in this study. 
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644 Ensemble Euni encompasses 21 candidate models, but few well-performing models are left out of the ensemble 
645 to reduce potential “redundancy” (Table 5 and Figure S1). This leads to poorer performance than other 
646 ensembles in this study, which also suggests that performance (i.e., robustness) of the candidate models, rather 
647 than their diversity, dictates performance of MMCMs. As for the size of the ensemble, this study shows that 
648 this is not the key criterion for creation of an ensemble, provided that there are five or more candidate models. 

649 The candidate models in this study are selected specifically according to their performance, including 
650 performance level, and consistency across different aspects and periods. Nevertheless, alternative approach to 
651 candidate selection could be adopted, such as application of the information criteria (Claeskens et al., 2019). 
652 Bearing in mind that information criteria, when applied with complete daily series, result in the highest weight 
653 assigned to a single model, whereas the weights assigned to the other candidates take values close to zero (even 
654 in the smallest ensembles of only five candidate models), it is deemed that such an approach could not 
655 significantly facilitate creation of model ensembles in this study. Application of other approaches to 
656 preselection of candidate models, such as a re-sampling procedure used by Wan et al. (2021), requires future 
657 research.

658 Although average performance does not vary substantially across the ensembles, there are variations across 
659 the indicators and across the MMCMs. Reduction in the size of the ensemble deteriorates performance in some 
660 indicators (mainly those that are most improved with the E0 compared to the reference model), but improves 
661 in some other indicators. As for the variations among the MMCMs, the results indicate the methods based on 
662 the information criteria as least sensitive to the ensemble, which could be explained by the fact that these 
663 methods consistently assign the greatest weight to a single candidate model, as discussed in the previous 
664 section. On the other hand, the GR method is shown most sensitive to the selection of the candidate models, 
665 closely followed by EW, BG, and both MM methods. 

666 Concerning performance in reproduction of the distributions, there is a strong similarity across the ensembles 
667 (including E0), which remains consistent across the MMCMs, signatures and simulation periods. Eliminating 
668 poorly performing models leads to slight improvements, mostly in the signatures related to annual maxima and 
669 with the EW, and both MM methods. However, none of the ensembles outperforms the reference model in this 
670 regard, suggesting that the issue with “squeezing” of the flow distribution (Farmer et al., 2018) cannot be 
671 compensated by eliminating candidate models from the ensemble. 

672 The conclusions on the impact of the candidate model preselection on MMCM performance presented here 
673 are drawn from the application of 29 models in 50 high-latitude catchments. Further analyses can be conducted 
674 in other catchments (e.g., from other climate zones), and with larger ensembles that can be created by 
675 employing some of the modular frameworks, such as FUSE (Clark et al., 2008) or MARRMoT (Knoben et al., 
676 2022), or by implementing e.g., a semi-distributed model setup (following Dusa et al., 2023).

677

678 4.3 Impact of Selection of a Target Hydrological Signatures on Performance of Model Combinations

679 Application of MMCMs only with series of targeted signatures, such as annual maxima or minima of various 
680 durations, generally does not assure that the distributions of these series are better reproduced than by the 
681 reference model or by the model combinations obtained with the complete daily flow series. Our results suggest 
682 in fact a poorer performance, which is inconsistent with the general scientific perception that targeting 
683 signatures leads to improvement in performance of the model combinations (e.g., Tebaldi and Knutti, 2007). 
684 This could be attributed to the fact that the annual series (here: annual maxima and minima) are insufficiently 
685 long to enable proper estimation of model weights, as opposed to the entire flow series. Application of the 
686 peak-over-threshold method (e.g., Vukmirović and Plavšić, 1997) or the pooled station-year method over 
687 homogenous regions (such as those identified by Teutschbein et al. (2022) for the study catchments) can assure 
688 longer series of extreme flows. Estimation of MMCM weights over such series could improve performance in 
689 this regard, and testing of this hypothesis requires further research. 

690 Poor model performance in reproducing distributions of extreme flows could be to some extent attributed to 
691 the fact that most of the candidate models do not give high performance in this regard, especially when it 
692 comes to low flows (Figure S2). This could partly be attributed to the calibration strategy (e.g., Topalović et 
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693 al., 2020), which is not considered in this study. Specifically, this study focuses on the benefits of MMCMs 
694 application itself, and it is deemed that the impacts of the calibration of the candidate models on reasoning on 
695 effects of the MMCMs in this study are marginal. However, model calibration with alternative objective 
696 function(s) that put emphases on extreme flows might improve this aspect of model performance (by the 
697 candidate models and MMCMs), but further research is needed to test this hypothesis. 

698 Multi-modelling with the targeted series in this study reveals some features of the MMCMs that are not 
699 exhibited to that extend when applied with complete series of flows. For example, considerable drop in 
700 performance of the MM method in the evaluation period can suggest its proneness to overfitting, when applied 
701 with short series. Interestingly, this is not exhibited by its simplex version, MMsimplex. Further research is 
702 needed to analyses under which conditions overfitting occurs, and to which extent that can affect the 
703 transferability of the model combinations. The GR method is singled out as one of the best performing when 
704 applied with the complete flow series. However, such characterisation cannot be attributed in simulations with 
705 the series of targeted signatures, which can indicate sensitivity of this method to the input data. 

706

707 5 Conclusions 

708 This study provides novel insights in performance of model combinations obtained by applying ten multi-
709 model combination methods (MMCMs) with daily flow series simulated by 29 models in 50 high-latitude 
710 catchments. Performance of the model combinations is quantified in terms of commonly used indicators, such 
711 as Nash-Sutcliffe and Kling-Gupta coefficients, and in terms of percentage of catchments in which the 
712 distributions of hydrological signatures are properly distributed. The model combinations are evaluated by 
713 comparing different aspects of their performance to the performance of the reference model.

714 The application of the MMCMs can improve model performance in terms of some indicators when compared 
715 to the reference model in both calibration and evaluation periods. The greatest improvement is obtained with 
716 the MMCMs based on the information criteria and the Granger-Ramanathan (GR) method. However, it should 
717 be emphasised that no MMCM is superior over the others: for example, GR can be sensitive to the input data, 
718 the Mallows method can be prone to overfitting, while information criteria-based methods can be irresponsive 
719 to selection of the candidate models, and application with elite ensembles may not improve their performance. 
720 As for the remaining MMCMs, their performance improves by omitting poor performing models from the 
721 ensemble. This study shows that neither the size of the ensemble (provided that it comprises more than five 
722 candidates), nor diversity within the ensemble are as crucial for the MMCM performance as the robustness of 
723 the candidate models. 

724 No improvement is obtained in terms of reproducing the distributions of the signatures in this study. From the 
725 standpoint of annual maxima or minima, application of multi-model combination methods leads to further 
726 “squeezing” of the flow distribution, moving the distribution tails even closer to the mean values. Neither 
727 preselection of candidate models, i.e., excluding of poor-performing models from the ensemble, nor 
728 application of the combination methods specifically with a series of the targeted signatures, such as annual 
729 maxima or minima, improves performance of the model combinations in this regard. These results suggest that 
730 we “cannot wring water from a stone”, i.e., application of MMCMs cannot enhance this aspect of model 
731 performance of the original model ensemble. Proper reproduction of the distributions of signatures, particularly 
732 extreme flows, clearly remains a great challenge to hydrological models. Thus, we argue that further research 
733 is needed to improve this aspect of their performance, in particular because robust and reliable simulations of 
734 such distributions are crucial for climate-change impact studies and sustainable water resources management 
735 in general.
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1133 Highlights

1134 - Ten multi-model combination methods (MMCMs) are created from 29 models in 50 basins
1135 - MMCMs improve some performance indicators, especially the Granger-Ramanathan method
1136 - MMCMs do not improve performance in reproducing distributions of hydrological signatures
1137 - Application with series of targeted signatures does not improve MMCM performance
1138 - MMCM performance is improved by selecting more robust candidate models for ensembles
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