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Siniša Savatović1, Zoran Mišković2, Ratko Salatić3, Marina Latinović Krndija4 

ANALYTIC AND EXPERIMENTAL DETERMINATION IMPULSE 

RESPONSE OF SINGLE DEGREE OF FREEDOM SYSTEM 

Abstract 

The paper presents an experimental and analytical way of determining the impulse response of 

a linear time-invariant damped system with one degree of freedom.  

An experiment was conducted where the mass was excited by an impact load. Both the mass 

acceleration and impact force values were recorded. The magnitude of the system's frequency 

response was determined based on the recorded values, ensuring the relatively simple 

identification of the system's basic parameters. Those parameters were used to define a suitable 

mathematical model of the system, transfer function, and frequency response function in an 

analytical form. 

The impulse response of the system based on the recorded values of mass acceleration and impact 

load is expressed as a discrete function. This function is determined by applying the inverse 

discrete Fourier transform of the corresponding frequency response function. 

The impulse response of the system, based on the mathematical model, is expressed as a 

continuous function. This function is determined by applying the inverse Fourier transform of 

the corresponding frequency response. 

Finally, it was shown that the response of a system to arbitrary load could be determined by 

convolving the impulse response of the system with the load function. Convolution of continuous 

functions is difficult to perform, and it can be used only for the simplest problem and for 

understanding the physical phenomenon. Discrete convolution has a practical utility because it 

is easy to perform in some program languages like Matlab. However, discrete impulse response 

has limitations depending on the test conditions. 
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1.  INTRODUCTION 

The excitation response of a dynamic system can be calculated using the finite element 

method. This method is usually effective for a selected numerical model of a real structure or 

element. The problem is that real structures are usually complex and cannot be described simply by 

numerical or analytical procedures. Those models can be improved with experimentally determined 

parameters. In other words, model updating can be used to update parameters such as natural 

frequencies, damping ratios, mode shapes, etc. In this way, the structure's response under load can 

be better predicted according to the selected numerical or analytical model. Structure response can 

be determined entirely based on experiment. In that case, the structure test implies to record input–

applied load and output–structure response. Based on that, the structure's impulse response can be 

determined. This response includes every significant property of the structure, including the 

abovementioned parameters. The benefit of knowing the impulse response function (IRF) is that it 

can calculated the response on any load function using only the convolution of IRF and that load 

function.  

Real structures have an infinite number of degrees of freedom. Therefore, they have an 

infinite number of impulse responses. A real system with a continuously distributed mass can be 

discretized in a finite number of mass points. Consequently, loads that act in one point excite 

response in all these points. Thus, the multi-input-multi output (MIMO) system can be formed. 

Impulse response hm,n represents the response at place m due to the act of ideal impulse force at 

place n, where hm,n = hn,m, and , m, n = 1,2, . . M, where M is a finite number of discretized mass. 

For the sake of simplicity, without loss of generality, this paper presents determining impulse 

response for linear time-invariant damping single degree of freedom (single input-single output, 

SISO system). An experiment-based method for determining impulse response was demonstrated 

using a mathematical model to validate the impulse response functions. 

Impulse response and following functions based on the corresponding mathematical model 

are continuous (analog) functions. On the other hand, the system's impulse response and the 

following functions based on the conducted experiment are expressed in discrete form (digital form 

of functions). 

2.  A SHORT THEORY REVIEW OF SDOF SYSTEMS 

A linear, time-invariant (LTI) model with viscous damping is considered. The differential 

equation of motion can be represented in the following form: 

ẍ(t) + 2ϵ ẋ(t) + ω𝑠
2 x(t) =

δ(t)

𝑚
;   ∀𝑡 ∈ (0−, +∞) (1) 

where x(t) is displacement, 𝑡 is continuous time variable, 𝜔𝑠 is the system’s circular frequency, 

viscous damping coefficient can be calculated as ϵ = ζ ω𝑠, ζ is the damping ratio, δ(t) is the Dirac 

delta function and 𝑚  is the mass of system. For all 𝑡 ∈ (−∞, 0−) system response and loads is equal 

to zero (causal system and functions). It is also assumed that all initial conditions in (1) are equal to 

zero. Therefore, equation (1) can be expressed in the complex "s" plane using the Laplace transform 

as follows: 
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Figure 1. Magnitude of acceleration transfer function 

X(s) = Hx(s)P(s) =
1

𝑚

1

(𝑠−𝜀)2+𝜔𝑑
2 = Hx(s)   (2) 

where the damped circular frequency of the system is determined as 𝜔𝑑 =  𝜔𝑠√1 − 𝜁2 and variable 

“s” as s = σ + jω. Real part of variable “s” is 𝜎, 𝜔 is circular frequency and 𝑗 = √−1. System 

response in “s” plane  X(s) is defined as product of transfer function Hx(s) and Laplace transform 

of applied load P(s). Response of the system X(s) is actually transfer function Hx(s) (displacement 

transfer function) because the Laplace transform of Dirac delta function is equal to 1 [4, 5]. The 

Acceleration transfer function is obtained multiplying Hx(s) by “s2” [4, 6].  

Ha(s) =
1

𝑚

𝑠2

(𝑠−𝜀)2+𝜔𝑑
2   (3) 

The magnitude of equation (3) for arbitrary parameters is shown in Figure 1. The roots of the 

numerator in expression (3) are poles of the transfer function or damped natural frequencies. 

Impulse response of the system is inverse Laplace transform of Ha(s): 

ha(t) =
1

𝑚
𝛿(𝑡) +

1

𝑚𝜔𝑑
𝑒−𝜖𝑡((𝜖2 − 𝜔𝑑

2) sin(𝜔𝑑𝑡) − 2𝜖𝜔𝑑 cos(𝜔𝑑𝑡));  ∀𝑡 ∈ (0−, +∞) (4) 

  

Figure 2. Magnitude of Frequency Response – Accelerance - left, Acceleration Impulse Response -

right 
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The function (4) tends to −2ϵ/m in the point t = 0+ and in the point t = 0 it contains Dirac delta 

function, see Figure 2 right. By replacing “s” with “jω” the equation (3) becomes frequency response 

function (FRF)  or accelerance FRF: 

Ha(j𝜔) =
1

𝑚

−𝜔2

(𝑗𝜔−𝜀)2+𝜔𝑑
2   (5) 

Magnitude of FRF (accelerance FRF) is shown on the Figure 2 left. The parameter ω0 ≈ 𝜔𝑠 is 

determined by simply picking the maximum point on the magnitude of FRF plot (accelerance plot). 

This is adequate for small value of ζ (ζ ≪ 1) becouse the system frequency can be calculated as 

ωs = ω0√1 − 2ζ2. The damping ratio ζ can be calculated with “3dB” method (Half power method) 

as depicted on Figure 2 left. Negative frequencies on Figure 2 left are not of interest. Such a way of 

determining system parameters 𝜔𝑠 and ζ can be used both for continuous and discrete functions. 

3. EXPERIMENT DESCRIPTION 

The model contains a mass m = 4.165 [kg]. Mass is suspended in such a way to allow 

motion in the direction of applied impact load and limit parasitic  rotational and transfersal motion 

components. 

 

Figure 3. Еexperiment description 

Acceleration response was regstred with an accelerometer with sensitivity 2000 [mV/
g ] (g = 9.81[m/s2]) and frequency range up to ≈ 300 [Hz] [7] in the direction of applying the 

force. Force was applied with impact hammer [8] with sensitivity 2.25 [mV/N] and force range 

±2224 [N]. The data acquisition was performed by the 24-bit universal measuring amplifier [9]. 

During the data acquisition process, the sampling rate 𝑓𝑠 = 9600 [𝐻𝑧] was adopted. Figure 3 

ilustrates the conducted experiment and corresponding mathematical model.  
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Figure 4. Recorded force - left and acceleration - right during measurements 

Figure 4 shows the registered records of impact force and acceleration. Figure 4 on the left 

shows the recorded impact force and the part corresponding only to the time during the impact for 

clarity. In the same Figure right, the acceleration record is shown with an enlarged part from the 

second to the 12th second for a better display of the mass oscillations after the impact. The shape of 

the recorded acceleration during the impact corresponds to the shape of the recorded impact force. 

For the data analysing procedure, a part of the acceleration record from the moment just 

before the impact until the end of the record was adopted. The impact force for analysis corresponds 

to part of the record during the impact. The rest of the samples of the record are replaced by zeros 

because it contain noise and registrated a parasitic low level of inertia force as a result of the 

movement of the operator arm after the impact. 

4. EXPERIMENTAL AND ANALYTIC RESULTS 

During the measurement, records of acceleration acc[n] and impact force p[n] were 

registered, where n = 0,1,2, . . . , N − 1. N is the total number of samples. A discrete Fourier 

transform of acc[n] and p[n] are the follwing functions, respectively:  

Acc[k] = ∑ acc[n]e−
j2π

N
knN−1

n=0 ; P[k] = ∑ p[n]e−
j2π

N
knN−1

n=0 ;  k, n = 0,1,2, … N − 1 (6) 

Figure 5 left shows the magnitude of Fourier transforms of registered values based on 

equations (6). It can be noted that there is a significant level of signal to noise ratio for frequencies 

above ≈ 300 [Hz] for the acceleration record, which is expected based on the metrological 

characteristics of the accelerometer. The impact force is not an ideal impulse. It has a finite duration, 

so the FRF (Accelerance) of the system is determined as follows: 

FRF[k] =
Acc[k]

P[k]
;  k = 0,1,2, … N − 1 (7) 

The magnitude of the equation (7) is shown on Figure 5 right. By dividing recorded values, 

the noise increases for higher frequencies than ≈ 300 [Hz]. That part needs to be removed. An 

elliptic (IIR – infinite impulse response) low-pass filter of the seventh order is adopted. Magnitude 

filter characteristic specifications are: minimal stopband attenuation δs = 60 [dB], cut of frequency 

– transition zone spans from fp = 300 to fst = 400 [Hz], passband riple tolerance δp = 0.3 [dB]. 
The Matlab function "𝑒𝑙𝑖𝑝𝑜𝑟𝑑" was applied to determine the required filter order to meet the 

specified requirements. The coefficients of the filter are determined by the Matlab function "ellipse".  
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The filtered frequency response FRFfilt[k], k = 0,1,2, … N − 1 was calculated as Fourier 

Transform of filtered impulse response ha𝑓𝑖𝑙𝑡[𝑛], n = 0,1,2, … N − 1. Function (vector) ha𝑓𝑖𝑙𝑡[𝑛] 

was determined with Matlab functions “filter” using vector of inverse Fourier transform of FRF[k] 
and filter corfficients. Figure 5 right shows the magnitude of the filtered frequency response 

FRF𝑓𝑖𝑙𝑡[k].  

The system parameters ωs and ζ can be determined by peack-picking method and “3dB” 

method [2], as mentioned at the end of the previous section, using magnitude of FRF[k] or FRF𝑓𝑖𝑙𝑡[k] 

fuction. Howewer, frequency resolution is not inaf high for adequate damping identification. The 

duration of records should have been longer.  Those parameters can be aproximately determined 

with optimal choise paremeters ωd, ε and V to fit continuous function 𝑎𝑐𝑐̅̅ ̅̅̅(t) based on equation (4) 

with recorded data acc[n] (from end of impact to end record). Equation (8) is aproximately response 

to applied impact force p[n]. Those parameters are calculated using function “NonlinearModelFit” 

in Mathematica program languege. 

acc̅̅ ̅̅ (t) =
V

mωd
e−ϵt ((ϵ2 − ωd

2) sin(ωdt) − 2ϵωd cos(ωdt)) (8) 

The required parameters are ωs ≈ 5.26 [𝑟𝑎𝑑/𝑠], ϵ ≈ 0.02 and 𝑉 ≈ 0.17. When the 

parameters ωs and ζ are replaced in equation (5), an analytical expression (exact solution) for the 

magnitude FRF characteristic can be defined as a continuous function in Figure 5 right. A suitable 

match can be seen in the frequency range ≈ (0.4 − 300) [𝐻𝑧] when comparing the continuous and 

discrete filtered magnitude characteristics. 

 

Figure 5. Magnitude specter of recorded signals- left  and Accelerance FRF- right 

The function ha𝑓𝑖𝑙𝑡[n] can be compared with function ha(t) when the experimentally 

determined parameters ωs and ζ are replaced in equation (4), as shown in Figure 6. 

Figure 6 left illustrates the first 4 seconds of impulse responses for clarity. The total duration 

of ha𝑓𝑖𝑙𝑡[𝑛] equals to N ∙ T ≈ 30 [s]. On the other hand, exact impulse response ha(t) has infinite 

duration (𝑡 ∈ (0−, +∞)). At the same picture on the right, only the first 0.08 [s] is shown to compare 

the part corresponding to the impact determined experimentally with the exact.  

Now, when the experimentally impulse response is known, response to arbitrary excitation – 

load can be determined. To verify that, ha𝑓𝑖𝑙𝑡[n] can be used to determine response to applied load 

p[n]. This response  acĉ[n] should corespond to measure response acc[n] and it can be calculated 

as convolution of vectors p[n] and ha𝑓𝑖𝑙𝑡[𝑛] as follows: 

acĉ[n] = T𝑠 ∑ p[k]ha𝑓𝑖𝑙𝑡[𝑛 − 𝑘]n
k=0 ;  𝑛 = 0,1,2, … , 𝑁 − 1 (9) 
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Figure 6. Analytic and numeric system impulse response 

where the sampling period is calculated as T𝑠 = 1/𝑓𝑠. 

Figure 7 shows plots of recorded response acc[n] and calculated response acĉ[n]. At the 

Figure 7 right is shown only four seconds of response for clarity. It is evident that those functions 

are well correlated. There are delay of 20-40 samples. It is due to filter delay characteristic. Noise 

that exist in vector (function) acĉ[n] could be lower level if the cut of frequency of filter was smaller 

than chosen 300 [Hz]. However, riples after the main lobe at the biginning acĉ[n] due to the impact 

are bigger as the cut of frequency decreases. At the same thime the maximum acceleration in the 

pick become smaller. Becouse of the that, the cut of frequency would not be smaller then 10𝑓𝑠𝑖𝑠,𝑚𝑎𝑥, 

where 𝑓𝑠𝑖𝑠,𝑚𝑎𝑥 is natural frequency (SISO system) or the highest natural frequencies of interest for 

multi degree of freedom systems. In the other words, higher natural modes of vibration than chosen 

in such a way in the response would not be properly reconstruct. In the other hand ha𝑓𝑖𝑙𝑡[n] would 

not be used for load with smaller frequency of ≈ 0.4 [Hz], see Figure 5 right. In this region 

magnitude of FRF𝑓𝑖𝑙𝑡 function deviates significantly from exact function ha(t). 

 

Figure 7.Experiment acceleration record and reconstructed response 

5. CONCLUSION 

The method of determining the system's impulse response by an experimental procedure in 

the discrete form is presented and compared with the solution in a closed mathematical form. An 

LTI system with single degree of freedom was chosen so that the mathematical model could be as 
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simple as possible and, on the other hand, similar to the physical-real model. The same procedure 

can be applied to a system with multi degrees of freedom. It is necessary to repeat the procedure of 

applying the known force while recording the response at desired location. 

The impulse response is useful function because it can be used to predict response to arbitrary 

load (excitation) by convolution of those functions. Convolution of continuous functions is difficult 

to perform, and it can be used only for the simplest problem and for understanding the physical 

phenomenon. Discrete convolution has a practical utility because it is easy to perform. However, 

there are some limitations, such as the impulse response of civil structures is always infinite but it 

can be register a finite number of samples. Likewise, applied devices for quantity measurements 

have their own metrological limitations properties. In addition, there is a problem with applying the 

impact load on real structures and its simultaneous recording. 
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