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Summary: In the present paper, implememtation of Preisach model of hysteresis to 
elastoplastic analysis of trusses subjected to cyclic is shown. It is also shown  that 
damage effects can be included in presented analysis by introducing basic concepts of 
continuum damage mechanics. Using finite element method, equilibrium equations are 
obtained and algorithm for numerical solution is defined. Some advantages of this 
approach are underlined through several numerical examples. 
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1. INTRODUCTION 
 
In the present paper, the Preisach model of hysteresis [1], which was already 
successfully implemented for solving problems of cyclic plasticity of axially loaded bar 
[3] and cyclic bending of elastoplastic beam [4] and [5], is extended to structural 
analysis of trusses subjected to cyclic loading. Application of the Preisach model to 
cyclic behavior of elasto-plastic material was introduced in 1993 by ([Lubarda, Sumarac 
and Krajcinovic [2],[3]). One of the most important properties of the Preisach operator is 
the so-called memory map [9], but in addition  it is shown in [2] that suggested 
(Preisach) model also possesses congruency and wiping out property, which makes this 
model [2],[3]  appropriate to describe hysteretic behavior of elasto-plastic material. This 
model has  advantage in comparison with classical approach [8], [11] because of 
simplicity and strict mathematical rigorous procedure.  
 
 

2. THE PREISACH MODEL OF HYSTERESIS FOR CYCLIC 
BEHAVIOR OF DUCTILE MATERIALS 

 
Definition and the most comprehensive analysis of Preisach model of hysteresis can be 
found in [9]. One dimensional hysteretic behavior of elasto-plastic material can be 
successfully described by the Preisach model [2] and [3]. Ductile material can be 
represented in various ways by a series or parallel connections of elastic (spring) and 
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plastic (slip) elements, Lubarda, at al. [2]. In this paper,  three-element units are used to 
model elastioplastic material with linear hardening [2]. Therefore, the Preisach function 
can be determined from the hysteresis nonlinearity as shown in [2] and the expression 
for stress as a function of applied strain is, consequently, 
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The first and second term on the right-hand side of (1) are elastic and plastic stress, 
respectively. For a system consisting of infinitely many of three-element units, 
connected in a parallel and with uniform yield strength distribution within the range 
Ymin≤Y≤Ymax, the total stress is 
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In (2) the integration domain A is the area of the band contained between the lines 
=2Ymin/E and =2Ymax/E in the limiting triangle, shown in [2] and [3]. For results 
obtained in experiment of cyclic loading of material in stable cycle loop, published in the 
paper [10], analytical solution was determined based on model of parallel connection of 
infinitely many elements [2],[3] presented in this paper. In this experiment, sample of 
Titanium alloy was subjected to strain controlled cyclic loadings =± 1.2% and stable 
hysteretic curves were obtained. By analyzing shape of this hysteresis, parameters for 
material behavior defined in (2) could be determined by considering geometry of 
experimental curve [2]. If Preisach triangle  is analyzed [2], it can be seen that elastic 
part of curve's reloading segment always defines constant strain value of 2Ymin/E, while 
the elastic and nonlinear plastic part of curve's reloading segment give constant strain 
value of 2Ymax/E. Hence, stress limits Ymin=450MPa and Ymax=999MPa are defined. 
Experimentally obtained stable cycle loop was in excellent agreement with one obtained 
using described model, as it is shown on Fig.1.(a) 
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Fig. 1. (a) Results of experiment of cyclic loading of alloy of Tittanium published in [10]  
and corresponding numerical model ; (b) Damage evolution law for damage variable  
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3. FINITE ELEMENT EQUATIONS FOR TRUSSES SUBJECTED TO 
CYCLIC LOADING AND DAMAGE 

 
Using principle of virtual displacements, equations for finite element analysis of trusses 
can be obtained: 
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where represents stresses in equilibrium with applied loads, i
CR denotes concentrated 

forces on point i of applied loads, iu denotes virtual displacements,  corresponding 
virtual strains and m= 1,2…k, where k is the number of elements (bars). Detailed 
formulation of algorithm for numerical analysis of trusses subjected to cyclic loading is 
shown in [6]. If only one element m of structure is analyzed, it is shown in [6] that 
equation (3) becomes: 
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It is considered that this problem would not require large displacement and large strain 
analysis, and if strain displacement matrix B is introduced, expressions in brackets of 
first and second part of (4) are actually defining elastic stiffness matrix and plastic 
stiffness matrix respectively. For the finite element assemblage, expression in Eq.(4) 
becomes 
 

el pl plK U K U R    (5) 

 
It is important to emphasize that elements of vectors U represent nodal displacements of 
the global system while elements of vector Upl represent differences of positive and 
negative sets in corresponding Preisach triangle, transformed in global system [6]. For 
solving problem of nonlinear static analysis, iterative procedure using Newton-Raphson 
initial stress method can be applied with appropriate convergence criterion. In presented 
analysis basic concepts of macroscopic damage is introduced. Simple isotropic damage 
theory is implemented by introducing scalar damage measure in form of scalar variable 
that evolves from 0 (undamaged material) to 1 (fully damaged material): 
 

  ˆ1     (6) 

 
where ̂  represents effective stress of undamaged body (in case of elastic or elastoplastic 

analysis) and represents actual stress caused by damage. Effective strain of 
undamaged body ̂  is considered to be equal to effective strain of damaged body . In 
this approach for including damage into analysis, the plasticity formulation remains 
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standard. Algorithm for elastoplastic analysis including damage can be defined as 
explained in [14]. Ductile damage variable  can be defined as function of damage 

history parameter d  and and it grows from zero to one as the parameter d  grows 
from threshold o to its ultimate value u. Damage evolution can be defined as function 
that limits elastoplastic behavior in stress space and determines initiation of damage: 
 

d df     (7) 

 
where measure   can be adopted as equivalent plastic strain. The damage growth 
function governs damage variable evolution and it can be determined experimentally 
[15] in linear, power law or other form as shown on Fig.1.b. 
 
 

4. NUMERICAL EXAMPLES 
 
In all numerical examples, material properties for all truss bars are taken from 
experimental results [10], shown in paragraph 2.  
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Fig. 2. Geometry and loading of truss structure for all  numerical examples 
 
Truss structure shown in Fig.2. is analyzed under moving load pattern of two 
concentrated forces 2xV (V=6000kN). Structure consists of two types of bars. Horizontal 
bars with length of 6m, and cross section areas Ahor= 0.02m2 and diagonal bars with 
cross section areas Adia= 0.015m2. Although the applied moving load pattern 2xV doesn’t 
have cyclic character, bars will be subjected to load reversals, since these concentrate 
forces move across two span of continuous truss structure.  Structure is subjected to five 
consecutive cycles of loading according to pattern on Fig.2, and three different material 
models are analyzed and compared. In the first model, only elastoplastic behavior of 
material is defined, while in second and third model, linear and power law damage 
evolution for damage variable is coupled with plasticity, respectively.  
Parameters for damage variable are adopted as follows: o = 0.004, u = 0.3. By 
analyzing change of the tangent modulus on stress-strain curves, degradation of elastic 
and hardening modulus can be observed in models that included damage (Fig.3.b.) There 
is also stabilization of deformation occurred in all three different models of material 
(Fig.3.a.). It can be seen that resulting behavior is dependent from damage evolution law, 
so appropriate attention should be made for determination the nature of damage process. 
Summary and comparison of results according to three different analyzed models is 
presented on Table 1. 
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Fig. 3 (a) Vertical displacement of right midspan according to three analyzed models; 

(b) Stress - strain hysteresis curves for bar 18 according to three analyzed models 
 

Table 1. Results obtained in numerical analysis 

 
max damage–bar 

17 



max 
displacement 

[cm] 

max stress–bar 
17 

[Mpa] 

ElastoPlastic analysis - 38.10 912 

EP with linear damage evol. 0.021 38.58 911 

EP with pow.law damage 
evol. 

0.190 44.30 905 

 
If the applied load is increased, damage variables change, according to  corresponding 
evolution law. Consequently significant difference in structural response is obtained, as 
shown on Fig.4. where truss structure is analyzed under different leveles of applied load. 
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Fig. 4.(a) Maximum damage variable bar 17) vs. levels of applied load on analyzed 
structure;(b) Maximum vertical displacement (right midspan) vs. levels of applied load 

on analyzed structure. 
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5. CONCLUSIONS 
 
In the present paper it is shown that the Preisach model of hysteresis can be successfully 
applied in structural analysis of trusses  subjected to cyclic loading in the plastic range. 
Presented model is adequate in representing uniaxial material behavior in cyclic 
plasticity. Damage can be included in presented algorithm by introducing scalar damage 
variable and basic concepts of continuum damage mechanics. Damage evolution law has 
high influence on structural responce after damage initiation. It is also shown that the 
Preisach model can be defined in purely geometric terms, without any reference to 
analytical definition which is less atractive approach to engineers. Obvious advantage of 
presented approach reflects in analytical solution in closed form that provides 
mathematical rigor of the Preisach model, while its absolute equivalent geometric 
interpretation enables numerical effective solution and less computational cost. 
Considering all possibilities that Preisach model poses, this type of analysis in finite 
element procedures is yet to be applied. 
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ЕЛАСТОПЛАСТИЧНА АНАЛИЗА ОШТЕЋЕЊА 
РЕШЕТКАСТИХ НОСАЧА ПРИ ЦИКЛИЧНОМ 

ОПТЕРЕЋЕЊУ 
 

Резиме У овом раду, прказана је примена Прајзаковог модела хистерезиса, у 
структурној анализи решеткастих носача који су изложени цикличном 
опетрећењу. Такође је приказано да се ефекти оштећења могу укључити у 
приказану анализу увођењем основних принципа механике оштећења у 
континууму. Користећи методу коначних елемената, једначине равнотеже и 
алгоритам за нумеричко решавање је дефинисан. Неке предности оваквог 
приступа су наглашене кроз неколико нумеричких примера.  
 
Кључне речи: Циклична пластичност, Прајзаков модел, решеткасти носачи, 
оштећење 
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