
33 © IWA Publishing 2016 Journal of Hydroinformatics | 18.1 | 2016

Downloaded from http
by guest
on 20 April 2019
Speeding up the water distribution network design

optimization using the ΔQ method

Damjan Ivetić, Željko Vasilić, Miloš Stanić and Dušan Prodanović
ABSTRACT
To optimize the design of a water distribution network (WDN), a large number of possible solutions

need to be examined; hence computation efficiency is an important issue. To accelerate the

computation, one can use more powerful computers, parallel computing systems with adapted

hydraulic solvers, hybrid algorithms, more efficient hydraulic methods or any combination of these

techniques. This paper explores the possibility to speed up optimization using variations of the ΔQ

method to solve the network hydraulics. First, the ΔQ method was used inside the evaluation

function where each tested alternative was hydraulically solved and ranked. Then, the convergence

criterion was relived in order to reduce the computation time. Although the accuracy of the obtained

hydraulic results was reduced, these were feasible and interesting solutions. Another modification

was tested, where the ΔQ method was used just once to solve the hydraulics of the initial network,

and the unknown flow corrections were added to the list of other unknown variables subject to

optimization. Two case networks were used for testing and were compared to the results obtained

using EPANET2. The obtained results have shown that the use of the ΔQ method in hydraulic

computations can significantly accelerate the optimization of WDN.
doi: 10.2166/hydro.2015.118

s://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf
Damjan Ivetić (corresponding author)
Željko Vasilić
Miloš Stanić
Dušan Prodanović
Faculty of Civil Engineering,
University of Belgrade,
Bulevar kralja Aleksandra 73,
Belgrade,
Serbia
E-mail: divetic@hikom.grf.bg.ac.rs
Key words | ΔQ method, acceleration, efficiency, genetic algorithms, looped networks, minimal

basis loops

NOMENCLATURE
Qij
(0)
 initial flow distribution (m3/s)
ΔQ
 flow correction (m3/s)
Rij
 pipe flow resistance
n
 flow exponent (-)
Lij
 pipe length (m)
Dij
 pipe inside diameter (m)
Λ
 friction factor (-)
g
 gravity acceleration (≅9.81 m s�2)
C
 Hazen–Williams roughness coefficient (-)
ΔHij
 pipe headloss (m)
ΔHres
 head difference between reservoirs (m)
vk
 flow velocity (m/s)
pj
 pressure head (m)
f
 fitness function ($),(€)
I
 investment in the network ($),(€)
Ip
 pressure head condition penalty ($),(€)
Iv
 flow velocity condition penaly ($),(€)
Cp
 specific value of pressure head penalty function ($),

(€)
Cv
 specific value of velocity penalty function (€)
t
 computation time (s)
INTRODUCTION

In the last decades, modern engineering practice has been

moving towards a higher degree of computer and software

usage. As computer sciences experience fast progress, engin-

eering practice is trying to catch up and utilize stronger

processors and new software capabilities that are

mailto:divetic@hikom.grf.bg.ac.rs

34 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded fr
by guest
on 20 April 201
introduced. One of the engineering fields which benefits

from this progress is hydraulics and water system analysis,

especially the numerical modelling of fluid flow and optim-

ization of the design and performance of water systems. In

this paper the focus is on the optimization of water distri-

bution networks (WDN), specifically the long computation

time needed for multiple runs of the hydraulic solver and

the possibility to reduce it.

In order to accelerate the computation or optimization

process, different approaches are possible: the use of more

powerful computers (faster processors), parallel computing

systems with adapted hydraulic solvers, hybrid algorithms,

more efficient hydraulic methods or any combination of

the previously mentioned options. The first approach is

strictly hardware-driven, in which the focus is on the IT

industry and its capability to develop hardware with more

raw power. The second approach has been addressed by

numerous authors, computer and communication scientists,

showing a variety of success in the results (Di et al. ;

Artina et al. ; Marques et al. ; Smith et al. ).

The SWMM numerical model for hydrodynamic rainfall–

runoff and urban drainage simulations has been parallelized

with minimal changes to the original code by Burger et al.

(), where the achieved speedup was from six up to 10

times. On the other hand, several attempts to parallelize

hydraulic solvers inside the EPANET2 have not been that

successful (Alonso et al. ; Crous et al. ; Burger

) although it seemed a straightforward task. The idea

was to tackle the matrix operations performed in each iter-

ation step of the solver with several available packages

that support parallel linear algebra (von zur Gathen ;

Van de Gejin ; Agullo et al. ). In the work of

Diao et al. (), significant code changes were made in

order to implement a domain decomposition as an idea

for EPANET2’s acceleration. The resulting speedup was

encouraging, reaching the value of eight times on one

tested network but the issue of severe and complicated

code changes makes this approach hard to implement.

Zecchin et al. () showed that iterative solvers precondi-

tioned with the algebraic multigrid method (AMG) are

faster than the current EPANET2 solvers only in cases of

large artificial networks, while for typical EPANET2 pro-

blems speedup was not obtained. Different optimization

algorithms have been used so far for the WDN design
om https://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf

9

optimization, such as differential evolutionary algorithms

(Suribabu ) and modified genetic algorithms (Montesi-

nos et al. ; Neelakantan & Suribabu ). Hybrid

algorithms, in general, as the tools for multi-objective

design, have outperformed the non sorting genetic algorithm

(NSGA II), mostly in terms of diversity of obtained Pareto

fronts (Wang et al. a), while lowest computational

burden has been achieved with the low-level hybrid algor-

ithm proposed by Craeco & Franchini (). Since the

focus of the paper is not on the optimization method, the

standard genetic algorithm (GA) (Savic & Walters ),

efficient in handling a single objective optimization problem

(Holland ), is used in combination with more efficient

hydraulic methods.

Currently, when a water supply network is to be opti-

mized, usually EPANET2 is used as the solver (Rossman

). EPANET2 is a reliable, free software package, avail-

able as a standalone EXE or DLL version, which can be

easily integrated with most optimization programs. When

used for single runs, EPANET2 is quite efficient in terms

of the computation time. Large networks can be solved in

a few minutes at maximum. However, a research scenario

such as the optimization of a network design, involves mul-

tiple runs of a hydraulic model, requiring significant

computation time for a single run of the optimization algor-

ithm (Diao & Rauch ).

To solve the continuity equation EPANET2 uses a so-

called global gradient algorithm (GGA) originated by

Todini & Pilati (). The hydraulic basis of this method,

and all other node methods, originates from Hardy Cross

and the method he originally called the method of balancing

flows (Cross ). At that time, Hardy Cross also intro-

duced the ΔQ method or the method of balancing heads,

for hydraulic calculation of a network (Cross ). The

ΔQmethod was derived from Cross’s original moment distri-

bution method, which he used for structural analysis. The

method was in common use in the 1950s and 1960s until

the arrival of computers and the node methods took over

the throne. Both methods introduced by Hardy Cross orig-

inate from ‘paper and pen’ solvers time, and thus are

classified as the local approaches for a network solution

(Todini & Rossman ). The most significant difference

is that in the node-based method, the number of non-linear

equations is equal to the number of nodes while in the ΔQ

35 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded from http
by guest
on 20 April 2019
method it is equal to the number of loops in the network.

The number of loops is usually much smaller than the

number of nodes. This already implies a modest reduction

of computation time if it is presumed that a similar

amount of resources is needed for both types of equations.

For example, the large BWSN2 benchmark network (Ost-

feld et al. ) with 12,527 nodes has only 2,308 loops.

The authors’ experience is that even aggregated, real size

water distribution networks usually have about five time

less loops than nodes.

Craeco & Franchini () presented a comparison of

the Newton–Raphson global algorithm and the ΔQ method

(loop flows algorithm), in which the latter had shown a

slightly smaller computation burden on fictitious networks.

In the same paper, the ΔQ method is recommended for net-

work design optimization algorithms.

In this paper, the possibility of using the ΔQ method in

hydraulic calculations of the network inside the optimiz-

ation algorithm’s evaluation function was explored. An

iterative solver of the non-linear equations based on the

ΔQ method was programmed in Cþþ as a DLL and

called from the optimization algorithm to make it compar-

able with the EPANET solver. The base point for the

analysis was the upgraded ΔQ method in which the hydrau-

lics was solved using the ΔQ method in which the shared

flow corrections are updated in the equations as the compu-

tation progresses. Furthermore, the following three modified

variations were derived: the fixed ΔQ method, the variable

ΔQ method and the fixed iteration ΔQ method. With the

first two variations, an attempt was made to bypass the com-

putational burden of the iterative solver. The idea was to

promote intelligent, hydraulically based solutions. The first

results presented by the authors (Stanić et al. 2012; Ivetić

et al. 2014), on the well-known problem of the New York

tunnels (NYT), were promising both in computational time

and in reaching the suboptimal solution. A step forward in

terms of the network complexity was made, and the

intermediate network of Fossolo (FOS) (Bragalli et al.

) was tested. All of the obtained results are presented

in this paper.

The paper is structured as follows: in the ‘Methods’ sec-

tion, the basics of the ΔQ method and minimal loop

detection algorithm are recapitulated, followed by a brief

description of the used optimization algorithm and
s://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf
variations of ΔQ method implementation. The section is

concluded with a brief formulation of the two case networks

and the performance indicators used for the comparison

with the EPANET2-based algorithm. The obtained improve-

ments of the performance indicators are presented and

deliberated in the ‘Results and discussion’ section. Finally,

conclusions are drawn and directions for further analysis

are formed.
METHODS

In order to employ the ΔQ method for hydraulic calcu-

lations, an analysis of network graph topology has to be

performed in the pre-processing stage. It is necessary to

detect all cycles, or loops in the network which are later

split and thus the network structure is changed (a tree-struc-

tured graph is obtained). Tree-structured or branched

networks are quite easy to handle in a water distribution

analysis and unknown flows and nodal heads can be

obtained in a double sweep algorithm (Stanić et al. 1998).

The ΔQ method

The ΔQ method was originally presented by Hardy Cross in

1936. It was proposed as one of the two possible methods

for flow analysis in networks of conduits. In his original

work, the ΔQ method was called the ‘Method of balancing

heads’ (Cross ). The method is based on the fact that

in every closed loop (circuit) of the water supply network

the sum of total head loss is equal to zero. This is derived

from the conservation of energy equation for a closed loop.

In order to apply this method, an initial distribution of

the flows needs to be assumed. In this research, graph

theory algorithms were used to obtain the initial flow distri-

bution. A graph breadth first search (BFS) propagation

algorithm (Jungnickel ) is started from a randomly

selected source node in the network (reservoir) and the

propagation continues until all the nodes in the network

have been reached. This propagation results in a spanning

tree (ST) which is a branched network. The order in

which the nodes are visited and the ST is formed is obtained

as well, and so it can be used to perform the backward

sweeping of node demands in order to determine the initial

36 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded fr
by guest
on 20 April 201
flow distribution. The ST is missing pipes that have not been

used during propagation, so they will be split at some point

(Figure 1(b)), and added to the ST to form a fictitious-

branched network (FBN). With one sweep backwards

through the FBN, satisfying continuity equation in every

node, the initial flow distribution is obtained. The initial

flows for the split pipes are equal to zero. These flows

are noted as Q(o)
ij and most likely will not satisfy the pre-

viously mentioned condition for the head losses in the

loop (Figure 1(a)). This implies that corrections to that initial

distribution must be made.

At the same split point flow correction ΔQ is introduced.

The Hazen–Williams (HW) equation is used to calculate

pressure head loss in a pipe. The expanded form of the

sum of the head losses for the loop (Figure 1(a)), written

in the adopted clockwise direction for the flow correction

ΔQ, becomes:

þ R12 (Q
(o)
12 þ ΔQ) Q(o)

12 þ ΔQ
��� ���n�1

þ R23 (Q
(o)
23 þ ΔQ) jQ(o)

23 þ ΔQjn�1

� R13 (Q
(o)
13 � ΔQ) jQ(o)

13 � ΔQjn�1 ¼ 0

(1)

where Rij is the HW pipe flow resistance characteristic, Q(o)
ij

is the initial pipe flow (m3 s�1) and n¼ 1.85 is the flow

exponent (–). The pipe flow resistance characteristic is cal-

culated as:

Rij ¼ 10:67L
C1:85D4:87

ij

(2)

where Lij is the pipe length (m), Dij is the pipe inside diam-

eter (m) and C is the HW roughness coefficient (–). Equation
Figure 1 | (a) Head loss sum in loop; (b) introduction of flow corrections; (c) loops with comm

om https://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf

9

(1) is a nonlinear equation that needs to be solved for the

flow correction ΔQ. For this purpose, the Newton (also

known as Newton–Raphson) iterative method (Hoffman

) was employed, which converges quadratically if the

initial approximation is sufficiently close to the solution.

The general form of the solution is:

ΔQiþ1¼ΔQi

�

P
loop

sign �Rij Q(o)
ij þP

pipe
sign �ΔQi

p

 !
Q(o)

ij þP
pipe

sign �ΔQi
p

�����
�����
n�1

n
P
loop

Rij Q
(o)
ij þP

pipe
sign �ΔQi

p

�����
�����
n�1

(3)

where i is the iteration number, ij is the ij-th pipe in the loop

and ΔQp is the p-th flow correction that corrects the initial

flow in the pipe ij (there can be more than one, if the pipe

is common for two loops (Figure 1(c)). The sign equals

one (1) if the direction of the introduced correction ΔQp is

the same as the direction of the initial flow and minus one

(�1) if otherwise. The iterative calculation is done until

the desired precision is reached.

The number of equations that need to be solved corre-

sponds to the number of loops in the network. In the

work of Todini & Rossman (), this method is called

the loop flows algorithm and it solves equations for all the

loops in the network simultaneously. In this research,

equations were solved in succession as the speed of the con-

vergence can be improved if the flow correction for one

loop, calculated in the current iteration, is used to calculate

the flow correction for another loop with which it shares a

common pipe. This way the ΔQ solver is upgraded. Take

Figure 1(c), for example: If the flow correction for the first
on pipe.

37 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded from http
by guest
on 20 April 2019
loop is calculated in the i-th iteration ΔQ(i)
1 , when the calcu-

lation for the flow correction in the second loop ΔQ(i)
2 is

conducted, flow in their common pipe 2–3 can be expressed

as Q(o)
23 þ ΔQ(i)

1 � ΔQ(i�1)
2 .

Aside from the ‘ordinary loops’, the term ‘pseudo loop’

is introduced (Larock et al. ). This is a loop that is

formed between two reservoirs/tanks with defined heads.

A number of such loops is one less than the number of reser-

voirs in the network. In that case Equation (3) becomes:

ΔQiþ1 ¼ ΔQi�

P
loop

sign � Rij Q(o)
ij þ P

pipe
sign � ΔQi

p

 !
Q(o)

ij þ P
pipe

sign � ΔQi
p

�����
�����
n�1

�ΔHres

n
P
loop

Rij Q
(o)
ij þ P

pipe
sign � ΔQi

p

�����
�����
n�1

(4)

where ΔHres is the difference of heads in the reservoirs.
Figure 2 | Different configurations of the spanning tree (ST).
Minimal basis loops’ detection

Prior to conducting the calculations using the ΔQ method,

network loops need to be detected. Initial loops’ detection

is done based on the results of the BFS propagation algor-

ithm previously mentioned. The number of loops

corresponds to the number of unused links during the BFS

propagation, which are not a part of the spanning tree so

they must be closing the circuit and creating the loops.

The initial loops are not likely to be geometrically minimal.

The geometrical minimal loop is defined as the one that

cannot be presented as a union of any other loops. Detecting

these loops is not an easy task. Some algorithms are based

on using the outer or the ‘back edges’ of the network (Jha

) but these have to be predefined. It is clear that in

the case of thousands of pipes this would be a very demand-

ing job. Craeco & Franchini () presented an algorithm

which utilizes the Dijkstra algorithm to search for the short-

est path (from the topological viewpoint, meaning that all

graph links have the same weight of one) between two

nodes.

In this research, another approach based on the graph

theory algorithms is presented. A network loop is
s://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf
considered to be minimal if it shares common pipes with a

minimum number of other loops. Also, the number of

these shared pipes should be minimal. The authors refer to

these loops as the topologically minimal loops and in the fol-

lowing sections they are referred to as the ‘minimal basis

loops’. This algorithm does not guarantee that identified

minimal basis loops will be the absolutely topological mini-

mal or geometrically minimal, which after all is not

necessary for the ΔQ method to be employed. However,

minimal basis loops defined in this manner will enable

obtainment of the simplest form of nonlinear equations to

be solved. The algorithm has been tested on numerous

examples and benchmark problems used in urban water

modelling and optimization literature and, in most cases, it

found minimal basis loops that are both topologically and

geometrically minimal. The presented algorithm for the

minimal basis loops’ identification takes three steps. First,

the BFS propagation algorithm is run to obtain the initial

spanning tree (ST) and the initial set of loops (InitSet).

The second step is the transformation of the ST in order to

get the set of loops with the smallest number of pipes

(STSet). Finally, decomposition is done if needed and a set

of final minimal basis loops (FSet) is extracted from the

graph. The algorithm steps are explained in the following

section.

Take, for example, the network in Figure 2(a). The BFS

propagation provided the ST (solid line) and unused pipes

(marked with dashed line) which complete two loops with

the following pipes – (p1, p5, p4) and (p1, p2, p3, p4).

These loops present the InitSet with such configuration

that there are two pipes (p1 and p4) in which flow needs

to be corrected with both flow corrections ΔQ1 and ΔQ2,

Figure 3 | The algorithm for the minimal basis loops detection.

38 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded fr
by guest
on 20 April 201
since both of these pipes are common to the two loops. The

total number of pipes in the loops for this configuration is

4þ 3¼ 7. In order to get a better configuration, unused

pipes will be swapped with adjacent ones that are used

during the propagation. For loop1, pipe p3 can be swapped

either with pipe p2 or p4. In both cases the ST configuration

would be such that the number of links in the loops would

stay the same, 4þ 3¼ 7. Now the second loop, loop2, is

tried. Its swapping pipe is p5 and it can be swapped with

p1 or p4. If pipe p5 is swapped with p4, a new configuration

of the ST gives the total number of links in loops as 3þ 3¼ 6

(Figure 2(b)). The same configuration would be obtained if

p5 was swapped with p1. So one of these configurations is

chosen (no matter which one) as it is better than the pre-

vious one and it is marked as the new best configuration.

The procedure is repeated until a better configuration

cannot be reached. The last configuration is remembered

as the STSet. For the considered simple example, this con-

figuration is at the same time the one with the minimal

basis loops. This means that in the last step of the algorithm,

which is the extraction of the final set of minimal basis

loops, STSet will be identified as FSet. This, however, does

not have to be the case, so in the following paragraph the

last step of the algorithm (extracting the FSet) will be

explained in detail and then illustrated on a more complex

example.

The extraction of the final minimal basis loops set (FSet)

is based on the sorting of the STSet set of loops by their

length (number of pipes) and creation of the overlapping

matrix which shows the number of common (shared)

pipes between any two loops. The overlapping matrix A is

a square matrix with the dimensions NL ×NL, where NL

is the number of the loops. The diagonal elements of the

matrix A are Aii¼ 0 since it represents an overlapping of

loop with itself and Aij is equal to the number of shared

pipes between the loops i and j. The decomposition con-

siders two loops at the time and it starts from the loops

with the highest number of shared pipes. The loop with

more pipes, or with more shared pipes, is considered to be

the large one (Lloop) and the other one is the small one

(Sloop). Once the candidates for the decomposition have

been detected, they are combined to create a new loop

(Nloop) which could possibly replace one of them in the

STSet of loops if it is a ‘more minimal basis’. First, it is
om https://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf

9

checked whether the Sloop is a minimal one. It is defined

as minimal if it shares one pipe with the others, or if it

does not share any pipes, in which case it is called a ‘hang-

ing loop’ (Hloop). If it satisfies this condition it is moved to

the final set of loops (FSet). If Nloop has a smaller number of

pipes than Lloop it replaces it in the STSet, which now has

one loop less since the Sloop is transferred to the FSet. If

it has more pipes than the Lloop, it still can be a candidate

to stay in the STSet if it shares smaller (or the same) number

of links with the other loops from the FSet and STSet. This

comes from the definition of a minimal basis loop in

which another criterion, besides the minimum number of

pipes in a loop, is the minimum number of shared pipes.

After this, the current STSet is searched for the loops

(Hloops). If found, they are also moved from the STSet to

the FSet. The described steps of the algorithm are repeated

until the number of loops in the FSet corresponds to the

number of loops NL. A pseudo code for the algorithm is pre-

sented in Figure 3.

For illustration purposes, consider the network in

Figure 4. The result of the first step of the algorithm is the

Figure 4 | An illustration of the minimal basis loops detection algorithm.

39 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded from http
by guest
on 20 April 2019
initial set of the loops InitSet which is shown in Figure 4(a).

This set consists of four loops with a total of 16 pipes and

nine of them are shared between the loops. The second

step of the algorithm, described earlier, will provide an

improved set of the loops – STSet (Figure 4(b)). This set

has a smaller number of pipes (14) and smaller number of

pipes that are shared (4). Now the previously described

third step is employed to extract the final set of loops. The

first matrix A is created. Loop1 (p3, p8, p9, p10, p4) is

chosen for the Lloop since it is the longest one. It shares

pipes with all other loops but with loop3 (p3, p7, p4) it

shares most of them, two to be precise (p4 and p3). Thus,

loop3 is chosen as the Sloop. Combining these two loops

the Nloop is obtained (p8, p9, p10, p7). Sloop is minimal as

it shares only one pipe with other loops, p3 with loop4 and

p4 with loop2, and is transferred from the STSet to the FSet.

Nloop has four pipes which is smaller than the five pipes

of the Lloop, so Nloop replaces Lloop in the STSet. Now

STSet is modified and it has three loops that share no links

(Figure 4(c)). All of them are HLoops and are transferred to

the FSet, which now has four loops and the algorithm is fin-

ished. FSet has the loops with a total of 13 pipes and three

(p3, p4, p7) of them are shared between the loops.
Optimization method

GAs are employed as an optimization method and are effi-

cient in terms of running time and finding suboptimal

solutions (Holland ). GAs are called inside an
s://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf
optimization algorithm, after the pre-processing stage, with

the task to generate coded solutions which are to be tested

inside an evaluation function. The EPALG software, devel-

oped at the Faculty of Civil Engineering at the University

of Belgrade, was chosen for the GA. For every solution

examined, a new value of the fitness function is computed.

Based on this value, examined solutions are ranked, where

the solution with the lowest value of the fitness function is

ranked as suboptimal.

In this paper, some of the EPALG settings were kept

fixed throughout all of the optimization algorithm runs to

have comparable results between different methods. These

settings regard the GAs’ ability to converge to the best sub-

optimal solution and affect the way mutation, crossover,

selection and replacement are done inside GAs themselves.

The settings used were:

• Mutation: Type: Reinit number of bits affected: 1

• Crossover: Type: Two point Probability: 0.8

• Selection: Type: Tournament Number of solutions com-

peting: 2

• Replacement: Type: Uniform Portion of population being

replaced: 1

Implemented optimization algorithms

In the pre-processing stage after the FBN is derived,

unknown flows were calculated for the new network using

a back sweep algorithm. These flows satisfy the continuity

40 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded fr
by guest
on 20 April 201
equation in the network nodes, but are not an exact solution

for the pipe flows, which means that they can be used as a

starting assumption of the flows for the ΔQ method. This

is done only once, so later calls of the evaluation function

will just include an iterative solution for the flow correc-

tions, in the manner explained in ‘The ΔQ method’

section. When the convergence condition is met, final

flows can be calculated and pressure head distribution is

obtained using a forward sweep algorithm. This idea was

named the upgraded ΔQ method (Method A), and it

became the starting point of the investigation.

Several variations of optimization algorithmwere derived

and examined in order to reduce computation time. Testswere

made with the version of the optimization algorithm in which

values of the flow corrections were kept fixed, equal to the

initial values obtained in the pre-processing stage – the fixed

ΔQ method (Method B). There was a major applicability

issuewith thismethod in themore complex andnewnetworks.

In complex networks, with a large number of loops with diam-

eters inside a single loop varying significantly, the starting

assumptions for flow corrections, if they can be computed,

can have a significant difference from their final, exact

values. For the new networks for which there are no prede-

fined pipe diameters, starting assumptions for flow

corrections cannot be calculated in the pre-processing stage.

In order to overcome these shortcomings, another

approach was tested, the variable ΔQ method (Method C).

The initial values of flow corrections, as calculated during

the pre-processing stage, were assumed to be new unknown

variables, subject to optimization together with other

unknowns (e.g., pipe diameters). In addition, one more pen-

alty function has to be added in the fitness function

calculation, which will guide the optimization of the flow

corrections. Mutual for these two approaches (Methods B

and C) is the fact that in each evaluation function call, no

time-consuming iterative hydraulic computation has to be

done. Furthermore, based on the results of previous tests

(Ivetić et al. 2014) with fixed ΔQ method (B), the idea to

run only a few iterations inside ΔQ method solver in order

to obtain some ‘near to exact’ flow corrections (fixed iter-

ation ΔQ method (Method D) was explored.

In order to make a comparison with the EPANET2

solver, an unbiased, iterative solver for the ΔQ method

was made in the form of a DLL file which will be
om https://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf

9

integrated inside the evaluation function of the optimiz-

ation algorithm.
The upgraded ΔQ method inside an optimization
algorithm (Method A)

The key points for the hydraulic solver implementation

inside the optimization algorithm are the pre-processing

stage and the evaluation function. The ways that these two

parts of the algorithm are formed will be the focal points

for all of the presented methods’ description. Here the ΔQ

method iterative solver for Equation (1) is programmed as

a DLL file. Equation (1) is solved using the flow corrections

obtained through an iterative computation of Equation (3).

In every pass through the evaluation function, a solver is

run externally and the results of the hydraulic calculation

(pressure and flow distribution) are used to compute a

value of the fitness function. The pre-processing stage,

which is mutual for all alternatives, and the evaluation func-

tion computation are described below.

• Pre-processing stage (preceded by a call of GA):

1. The BFS algorithm is run, a directed ST is obtained, the

FBN is formed and the initial flow distribution is

determined.

2. Minimal basis loop detection as explained in the previous

section (Figure 4).

3. If the starting disposition includes prebuilt pipes (pipes with

known diameter e.g., NYT), a network flow distribution is

computed and the resulting flow corrections ΔQ can be

stored as starting values for further GA calls. It is presumed

that flow corrections calculated this way will not differ

much from their final values which will be calculated for

every call of the evaluation function, thus, this should

speed up the convergence of Equation (3), if it is possible.

• Evaluation function calculation:

1. For every tested alternative, the ‘exact’ values of the flow

corrections are computed by calling the iterative solver

(DLL file) from the optimization algorithm. In order to

improve the convergence and thus to reduce the compu-

tational burden, flow corrections from current iteration

are used as explained in ‘The ΔQ method’ section.

41 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded from http
by guest
on 20 April 2019
2. Using exact flow corrections, the pressure head distri-

bution for the network is calculated in only one pass.

3. The fitness function is calculated.

The fixed ΔQ method inside an optimization algorithm
(Method B)

The fixed ΔQ method is developed and implemented in a

similar manner to Method A. It was differentiated from

Method A by omitting the iterative calculation of Equation

(1), which means that there is no need to call the DLL

solver inside the evaluation function.

• The evaluation function calculation:

1. For every tested alternative, the previously determined

values of flow corrections ΔQ are used. This variation of

ΔQ method implementation is feasible only for networks

with pre-existing pipes (pipes with known diameters)

due to the fact that the initial values of the flow correc-

tions must be computed in the pre-processing stage.

2. Using the fixed flow corrections, the pressure head distri-

bution for the fictitious branch network is calculated in

only one pass.

3. The fitness function is calculated.

The variable ΔQ method inside an optimization algorithm
(Method C)

In Method A, each evaluation function’s calculation

involves the iterative calculation of the ‘exact’ flow correc-

tions. In the variable ΔQ method, it is assumed that flow

corrections are unknown variables, whose values are,

together with pipes’ diameters values, optimized.

• The evaluation function calculation:

1. For every tested alternative (having pipes’ diameters and

flowcorrections as variables to optimize) only the pressure

head distribution for the FBN is calculated in one pass.

2. The fitness function is calculated.

3. An additional penalty function is added to the value of the

fitness function, to compensate for the fact that the used

flow corrections are not ‘exact’. If the pressure drop

between the neighbouring nodes where the loop is split

is positive in the direction of water flow, the value of the
s://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf
penalty function is zero. This solution is feasible, meaning

that the pressure reducing valve could be installed in the

place where the pressure drop occurs. However, if the

pressure drop between neighbouring nodes where the

loop is split is negative, the solution would require pump-

ing between these nodes, and it has to be penalized. The

same penalty value as for pressure head deficiency is used.

To reduce the search space for flow corrections, the

value is entered as multiplication of the flow corrections

computed in the pre-processing stage ΔQ0, M × ΔQ0. The

range of possible values for multiplication factors can vary,

meaning that the used search space is problem dependent

and should be handled with care.

Method C does not solve the network for the ‘exact’

flows, instead it produces some sort of suboptimal network

flows which further implies that the accuracy of the hydrau-

lic results is degraded compared to Method A.

The fixed iteration ΔQ method inside an optimization
algorithm (Method D)

This approach uses the DLL iterative solver with a pre-

defined number of iterations.

• The evaluation function calculation:

1. For every tested alternative, near to exact values of flow cor-

rections are computed by a predefined number of iterations

in a solver.As in the previous case, convergence is improved

through a current iteration flow correction update.

2. Using near to exact flow corrections, the pressure head dis-

tribution for the network is calculated in only one pass.

3. The fitness function is calculated.

The reference method: EPANET2 DLL inside an
optimization algorithm (Method R)

The reference optimization algorithm, used for comparison

purposes, in terms of both suboptimal solutions and

needed computation time, is based on the EPANET2

hydraulic solver. The solver is called as a DLL file in

every pass through the evaluation function, and obtained

results are used for the fitness function value computation.

In this case the pre-processing stage is not needed, while

the evaluation function processing has the following form.

42 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded fr
by guest
on 20 April 201
• The evaluation function calculation:

1. For every tested alternative, an EPANET2 DLL file is

called for hydraulic simulation of the network, in the

same way as the DLL for the ΔQ method is called in

optimization algorithms (A) and (D). The results,

needed for the fitness function calculation, are extracted

from the solver and stored.

2. The fitness function is calculated.

The comparison between different optimization algor-

ithms is made through the following performance

indicators: 1) value of fitness function f; 2) computation

time t; and 3) speedup factor, expressed as the ratio of the

reference optimization algorithm (R) computation time

and examined algorithm (A, B, C or D) computation time.

Speedup factor ¼ tR
tA,B,C,D

(5)

In the case of algorithm A, the convergence criterion

was 10�6 m3 s�1 in two successive iterations. For Method

D, the number of iterations was fixed to 10 if the conver-

gence criterion is not met.
Figure 5 | (a) Starting NYT network; (b) modified fictitious branch network.

om https://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf

9

Case networks

NYT network

The NYT reconstruction used for the initial testing of the

GA with the ΔQ method application was extracted from

the literature (Dandy et al. ). The starting network for

optimization is presented in Figure 5(a).

This is an example of a gravitational WDN made out of

nn¼ 20 nodes with nr¼ 1 source node or reservoir. The

nodes and the reservoir are interconnected with np¼ 21

large pipes forming nl¼ 2 loops. The current disposition of

the system cannot satisfy the minimal nodal pressure head

values of 20 m of water column. Therefore, it is necessary

to reconstruct the network in order to meet the given con-

dition in nodes. Changing the diameters of existing pipes

is not possible due to the problem of excessive water

demand shortfall so the remaining options are either: (a)

to duplicate the existing tunnel with some of the diameters

offered; or (b) to do nothing. The number of diameters in

the catalogue for new pipes is 15. Together with the do noth-

ing option, this makes 16 possible solutions for every pipe in

43 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded from http
by guest
on 20 April 2019
the network, forming a search space of size 1.93 × 1025. The

fitness function f for this example is made up of two parts;

the first one is investment in the water network I (Equation

(6)) and the second is the penalty Ip for failing to meet the

minimal nodal pressure head values (pmin¼ 20 m H2O).

min
{Dk}

f ¼ I þ Ip;

I ¼
X
k

Ck(Dk)Lk; Ip ¼
X
j

max(O, (pmin
j � pj)) � Cp

(6)

In the above equation, Ck, Dk and Lk are cost of the new

pipe per meter, diameter and length of the pipe, respectively,

j is the number of a node, pj is the pressure head value in the

node j while O is the function whose value is above zero if

the pj< pmin. The specific value of the penalty function is

Cp¼ 15,000,000 $/m.
FOS network

With theNYTreconstruction issue being classified as amedium

sized optimization problem (Wang et al. b), a step forward

was to test an intermediate size optimization problem.

The FOS network, another benchmark example from the

literature, was chosen. The starting network topography was

defined from the EPANET2’s inp file (http://emps.exeter.ac.

uk/media/universityofexeter/emps/research/cws/downloads/

data/3-epanet/FOS.inp).

The FOS network, as well as the NYT network, is a grav-

itational WDN. Pipe diameters are unknown and have to be

optimized tomeet the given conditions. The network includes

nn¼ 36 nodes with nr¼ 1 source node or reservoir, intercon-

nected with np¼ 58 pipes forming nl¼ 22 loops. The
Table 1 | The maximum pressure heads of each demand node of FOS

Ni Pmax (m) Ni Pmax (m) Ni Pmax (m)

1 55.85 7 53.10 13 59.10

2 56.60 8 54.50 14 58.40

3 57.65 9 55.00 15 57.50

4 58.50 10 56.83 16 56.70

5 59.76 11 57.30 17 55.50

6 55.60 12 58.36 18 56.90

s://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf
minimum pressure head of all the demand nodes is 40 m,

while the maximum pressure head of each node is given in

Table 1. Besides pressure head condition, flow velocity con-

dition needs to be satisfied, where in each pipe it has to be

less than 1 m/s. For the network pipes, 22 different diameters

are available in catalogue. This means that the search space

has the size of 7.25 × 1077. The fitness function is made of

three parts: investment in the distribution network I, penalty

Ip for unfulfilled pressure head conditions and Iv penalty for

failing to meet maximum velocity condition.

min
{Dk}

f ¼ I þ Ip þ Iv; I ¼
X
k

Ck(Dk)Lk

Ip ¼
X
j

max(O, (pmin
j � pj)), (pj � pmax

j) � Cp

Iv ¼
X
k

max (O, (vk � vmax
k))�Cv

(7)

The pressure head penalty function has an expanded

form compared to Equation (6), with a maximal pressure

head condition introduced, where pj
max is the maximal

pressure head for j-th node. In the velocity penalty function

vk is the flow velocity in k-th pipe, vk
max is the maximal vel-

ocity for k-th pipe. The specific values of penalty functions

for pressure and velocity are Cp¼ 15,000,000 €/m and

Cv¼ 50,000,000 €/m, respectively.
RESULTS AND DISCUSSION

The results of all presented ΔQ methods (A, B, C and D) are

compared to the results obtained using the EPANET2

hydraulic solver (R). The first tests of the ΔQ method
Ni Pmax (m) Ni Pmax (m) Ni Pmax (m)

19 58.10 25 56.6 31 56.60

20 58.17 26 57.6 32 56.80

21 58.20 27 57.1 33 56.40

22 57.10 28 55.35 34 56.30

23 56.80 29 56.5 35 55.57

24 53.50 30 56.9 36 55.10

http://emps.exeter.ac.uk/media/universityofexeter/emps/research/cws/downloads/data/3-epanet/FOS.inp
http://emps.exeter.ac.uk/media/universityofexeter/emps/research/cws/downloads/data/3-epanet/FOS.inp
http://emps.exeter.ac.uk/media/universityofexeter/emps/research/cws/downloads/data/3-epanet/FOS.inp
http://emps.exeter.ac.uk/media/universityofexeter/emps/research/cws/downloads/data/3-epanet/FOS.inp

44 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded fr
by guest
on 20 April 201
implementation, including all variations (A, B, C and D)

were run on the NYT network. These different approaches

share the same modified FBN (Figure 5(b)). There are two

loops in the network: the larger loop 1 contains a reservoir

along with the nodes numbered from 2 to 15, while loop 2

has nodes 11, 9, 16 and 20. The location of the split is arbi-

trary and inconsequential. Loop 1 was split in the proximity

of node 6 where a new node 60 is introduced as a start node

for the downstream pipe. Loop 2 was split close to node 20,

with the new node 200 being generated. Flow corrections for

loops 1 and 2, ΔQ1 and ΔQ2, respectively, are introduced as

demands in the nodes 6 and 20, and in the nodes 60 and 200

as negative demands or inflows. A comparison of obtained

results, for 1,000 generations and population of 100, is

given in Table 2.

For the FOS network 22 minimum basis loops were

obtained. Loops are also geometrically minimal. The InitSet

had a total of 175 pipes, the STSet 143 and the FSet 101

pipes. Optimization algorithms A and D were tested for

four different GA settings (Table 3). Comparisons of

computed performance indicators are shown in Figures 6

and 7, respectively.

The computer used for testing was an Intel i7-2630QM

CPU with 6 GB of RAM memory. The obtained optimal sol-

ution using the EPANET2 DLL, for the NYT problem, is the

same as one taken from the literature fopt¼ 38.6 × 106 $

(Dandy et al. ), proving it as a valid reference for this

investigation.
Table 2 | A comparison of the optimization algorithms performance indicators for NYT

GA optimization
algorithm

Fitness function
f [106 $]

CPU time
t [s]

Speedup
factor [-]

EPANET2 DLL (R) 38.6 390 /

Upgraded ΔQ (A) 38.6 18.5 21.1

Fixed ΔQ (B) 40.2 5 78.0

Variable ΔQ (C) 39.8 5.5 70.9

Fixed iteration ΔQ (D) 39.0 18.4 21.2

Table 3 | GA evaluation function settings for FOS network tests

No. test 1 2 3 4

GA generations 1,000 1,000 2,000 2,000

GA population 100 200 100 200

om https://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf

9

The computed performance indicators for the NYT net-

work (Table 2) showed significant reduction of the

computation time for the optimization algorithm in all of

the examined variations (A, B, C and D). In terms of the

speedup factor, best results were derived with the variation

B, with the value of 78.0. This was expected since no itera-

tive computation was performed inside the evaluation

function. Approach C had a slightly smaller speedup factor

of 70.9, probably due to the fact that an extra penalty func-

tion had to be computed for every examined alternative. It

is to be expected to have a further reduction of this factor

in real applications, since we have knowledge from the pre-

vious tests that the correct values of ΔQ1 and ΔQ2 deviate

not more than 25% from the first iteration (Ivetić et al.

2014), and we could make the search space rather narrow.

This is due to the fact that it is a case of an existing,

simple network with just two loops. It is obvious that this

approach needs to be adjusted in order to allow the GA to

perform a successful search for the suboptimal values of

flow corrections, in the rather broad search space. Methods

A and D had shown a similar computational burden, with

the speedup factors of 21.1 and 21.2, respectively. The simi-

lar computational burden is probably due to the fact that for

the NYT example, a prefixed number of iterations (10) for

variation D was sufficient to compute the ‘exact’ or at least

near to the ‘exact’ values of flow corrections. Furthermore,

approach A produced the best-known solution, while

approach D was the second best with almost the same sol-

ution as the previous. Methods B and C produced slightly

worse solutions. The suboptimal solution degradation

occurs mostly due to the hydraulic results’ inaccuracy,

which resulted in higher penalty function value. The accel-

eration in algorithms using ΔQ methods is owed to the fact

that less equations need to be solved, as well as the way

the network is processed. The pre-processing stage, called

just once, performs a large proportion of the necessary

analysis, therefore later calls for the evaluation function

take much less computation time than in reference

algorithm.

In the case of the FOS network, tests with four different

GA evaluation function settings using two variations A and

D were done. Methods B and C could not be used in the pre-

sented manner since none of the pipe diameters was known

at the beginning. From Figure 6, it is clear that in all tests,

45 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded from http
by guest
on 20 April 2019
the values of the fitness function were similar for reference

algorithm R and the two examined variations of the ΔQ

method implementation A and D. For this example, none

of the used algorithms reached the best known solution,

and it can be concluded that in terms of the suboptimal sol-

ution, algorithms A, D and R do not outperform each other.

In case of A and D, finding these solutions took much less
Figure 6 | Comparison of suboptimal solutions obtained for different optimization algorithm r

Figure 7 | Comparison of speedup factors (Equation (5)) for different optimization algorithm r

s://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf
computation time (Figure 7). The speedup factor for algor-

ithm A ranged from 39.3 to 62.6 and for algorithm D from

57.6 to 105.6. Between approaches A and D, roughly the

same value of the fitness function was achieved, with algor-

ithm D taking significantly less time. It is appropriate to

point out the benefits of the current iteration flow correction

update. For a single test run of evaluation function in
uns with FOS.

uns with FOS.

46 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded fr
by guest
on 20 April 201
approach A for the FOS network, it took 23 iterations to

reach the desired accuracy for the pipe flows of 10�6 m3

s�1, as opposed to 39 iterations for solution without this

modification (about 40% reduction in number of iterations).

Similar numbers were obtained for different test runs but

this percentage clearly depends on the loops; configuration

and pipe diameters.
CONCLUSIONS

During the optimization of the WDN, hydraulic com-

putation of a network inside an evaluation function

consumes most of the computation time. In this paper, use

of the ΔQ method for hydraulic computation inside an

optimization algorithm is presented through several differ-

ent approaches. Each of these approaches requires a pre-

processing stage, in which the loops in the original water

network are detected through minimal basis loop detection

algorithm, and network split into the FBN. If a prebuilt net-

work exists, as in the NYT case, initial values of the flow

corrections are assumed through hydraulic computation of

this branch network.

The upgraded ΔQ method (A) approach computes the

correct values of the flow corrections inside each evaluation

function, the fixed ΔQ method (B) omits the iterative compu-

tation of the flow corrections by using the initial values

throughout the optimization run, while the variable ΔQ

method (C) includes the values of the flow corrections,

through multiplicative factors, as additional variables for

optimization. Finally, the fixed iteration ΔQ method (D) is

actually the approach A used with a fixed number of iter-

ations of Equation (3). Only methods A and D use the

hydraulic solver programmed as a DLL, as well as the refer-

ence algorithm (R) which uses EPANET2 in a DLL form.

The first tests of the presented variations were done on the

NYT problem. In all of the cases, significant computation

time reduction was achieved, primarily due to the fact that

the ΔQ method solves fewer equations than the GGA inte-

grated in EPANET2. These type of results are expected for

real size networks in which the number of loops is rarely

higher than 20% of the number of nodes (e.g., BWSN2)

(Ostfeld et al. ). This implies 80% less equations to be

solved with the ΔQ method.
om https://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf

9

On top of this, in the variations B and C, the network

hydraulics is solved only once in the pre-processing stage

which makes them even faster. In terms of the quality of

the suboptimal solutions obtained, only algorithm A mana-

ged to compute a global optimum. The others, B, C and D,

have shown a slight degradation in this performance indi-

cator, which is caused by the hydraulic inaccuracy.

Further testing was undertaken on the benchmark

example of the FOS network, where approaches A and D

were compared with the reference EPANET2 based algor-

ithm R. The tests, with four different GA configurations,

have shown a major speedup, with the speedup factor reach-

ing the value of over 100. Since method D had a fixed

number of iterations it was the fastest method tested. In

terms of finding the suboptimal solutions, both A and D

found similar solutions as algorithm R.

The obtained results have shown that the ΔQ method is

remarkably faster than EPANET2 when used in medium

and intermediate optimization problems. Further investi-

gation will be undertaken on real size water distribution

networks. Apart from just changing the hydraulic solver,

this approach can be utilized combined with other ways to

reduce computation time, such as parallelization, network

decomposition, etc.
ACKNOWLEDGEMENTS

The authors express their gratitude to the Serbian Ministry

of Education and Science for support through the project

TR37010: ‘Rain water drainage systems as part of the

urban and transport infrastructure’.
REFERENCES
Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou,
J., Ltaief, H., Luszczek, P. & Tomov, S.  Numerical
linear algebra on emerging architectures: The plasma and
magma projects. J. Physics Conf. Ser. 180, IOP Publishing,
012037.

Alonso, J. M., Alvarruiz, F., Guerrero, D., Hernández, V., Ruiz, P.
A., Vidal, A. M., Martínez, F., Vercher, J. & Ulanicki, B. 
Parallel computing in water network analysis and leakage
minimization. J. Water Resour. Plann. Manage. 126 (4),
251–260.

http://dx.doi.org/10.1088/1742-6596/180/1/012037
http://dx.doi.org/10.1088/1742-6596/180/1/012037
http://dx.doi.org/10.1088/1742-6596/180/1/012037
http://dx.doi.org/10.1061/(ASCE)0733-9496(2000)126:4(251)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2000)126:4(251)

47 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded from http
by guest
on 20 April 2019
Artina, S., Bragalli, C., Erbacci, G., Marchi, A. & Rivi, M. 
Contribution of parallel NSGA-II in optimal design of water
distribution networks. J. Hydroinform. 14 (2), 310–323.

Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A. & Toth, P.  On
the optimal design of water distribution networks: a practical
MINLP approach. Optim. Eng. 13, 219–246.

Burger, G.  Parallel computing in urban water management: A
Model-Based Parallel Computing Approach to Reduce the
Runtime of Applications in Urban Water Management.
Doctoral dissertation, University of Innsbruck, Austria.

Burger, G., Sitzenfrei, R., Kleidorfer, M. & Rauch, W.  Parallel
flow routing in SWMM 5. Environ. Modell. Softw. 53, 27–34.

Craeco, E. & Franchini, M.  Fast multi-objective design
algorithm combined with an a posteriori procedure for
reliability evaluation under various operational scenarios.
Urban Water J. 9, 385–399.

Craeco, E. & Franchini, M.  Comparison of Newton-Raphson
global and loop algorithms for water distribution network
resolution. J. Hydraul. Eng. 140, 313–321.

Cross, H.  Analysis of flow in networks of conduits or
conductors. Bulletin University of Illinois No. 286.

Crous, P., van Zyl, J. & Roodt, Y.  The potential of graphical
processing units to solve hydraulic network equations.
J. Hydroinform. 14, 603.

Dandy, G. C., Simpson, A. R. & Murphy, L. J.  An improved
genetic algorithm for pipe network optimization. Water
Resour. Res. 32, 449–458.

Di, P., Berardi, L., Khu, S. T. & Savic, D.  Efficient multi-
objective optimal design of water distribution networks on a
budget of simulations using hybrid algorithms. Environ.
Modell. Softw. 24, 202–213.

Diao, K. & Rauch, W.  Controllability analysis as a pre-
selection method for sensor placement in water distribution
systems. Water Res. 47 (16), 6097–6108.

Diao, K., Wang, Z., Burger, G., Chen, C.-H., Rauch, W. & Zhou, Y.
 Speedup of water distribution simulation by domain
decomposition. Environ. Modell. Softw. 52, 253–263.

Hoffman, J. D.  Numerical Methods for Engineers and
Scientists, 2nd edn. Marcel Dekker, New York, USA.

Holland, J.H. Genetic algorithms.ScientificAmerican267, 66–72.
Ivetić, D., Vasilić, Ž., Prodanović, D. & Stanić, M. 

Implementing ΔQ method to accelerate the optimization of
pressurized pipe networks. In: Proceedings of the 16th Annual
Water Distribution Systems Analysis Conference, WDSA,
14–17 July, Bari, Italy, Procedia Engineering, Elsevier.

Jha, K.  Automatic minimal loop extraction and initialisation
for water pipe network analysis. Int. J. Simul. Syst. Sci.
Technol. 8, 8–19.

Jungnickel, D.  Graphs, Networks and Algorithms, 2nd edn.
Springer-Verlag, Berlin, Heidelberg, Germany.

Larock, B. E., Jeppson, R. W. & Watters, G. Z.  Hydraulics of
Pipeline Systems. CRC Press LLC, Boca Raton, Florida, USA.

Marques, J., Cunha, M. C., Sousa, J. & Savić, D.  Robust
optimization methodologies for water supply systems design.
Drinking Water Eng. Sci. 5, 31–37.
s://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf
Montesinos, P., Guzman, A. G. & Ayuso, J. L.  Water
distribution network optimization using a modified genetic
algorithm. Water Resour. Res. 35 (11), 3467–3473.

Neelakantan, T. R. & Suribabu, C. R. Optimal design of water
distribution networks by a modified genetic algorithm. J. Civil
Environ. Eng. 1 (1), 20–34.

Ostfeld, A., Uber, J. G., Salomons, E., Berry, J. W., Hart, W. E.,
Philips, C. A., Watson, J., Dorini, G., Jonkergouw, P.,
Kapelan, Z., di Pierro, F., Khu, S., Savic, D., Eliades, D.,
Polycarpou, M., Ghimire, S. R., Barkdoll, B. D., Gueli, R.,
Huang, J. J., McBean, E. A., James, W., Krause, A.,
Leskovec, J., Isovitsch, S., Xu, J., Guestrin, C., Van Briesen,
J., Small, M., Fischbeck, P., Preis, A., Propato, M., Piller,
O., Trachtman, G., Wu, Z. Y. & Walski, T.  The battle
of the water sensor networks (BWSN): A design challenge
for engineers and algorithms. J. Water Resour. Plann.
Manage. 134 (6), 556–568.

Rossman, L. A.  Discussion of ‘solution for water distribution
systems under pressure-deficient conditions’ by Wah Khim
Ang and Paul W. Jowitt. J. Water Resour. Plann. Manage. 133
(6), 566–567.

Savic, D. A. & Walters, G. A.  Genetic algorithms for least
cost design of water distribution networks. J. Water Resour.
Plann. Manage. 123 (2), 67–77.

Smith, L., Liang, Q. & Quinn, P.  A flexible hydrodynamic
modelling framework for GPUs and CPUs: Application to
the Carlisle 2005 floods. In: Proc. International Conference
on Flood Resilience: Experiences in Asia and Europe, 5–7
September, Centre for Water Systems, Exeter, UK.

Stanić, M., Avakumović, D. & Kapelan, Z.  Evolutionary
algorithm for determining optimal tree layout of water
distribution networks. In: Hydroinformatics 98 (V. Babovic
& L. C. Larsen, eds). Balkema, Rotterdam, The Netherlands,
pp. 901–910.

Stanić, M., Ivetić, D., Vasilić, Ž. & Prodanović, D. 
Improvement of application of genetic algorithms in
optimization of pressurized pipe networks. In: Proc. 16th
Conference of Society of Serbian Hydraulic Engineers, Donji
Milanovac, Serbia, University of Belgrade – Faculty of Civil
Engineering (In Serbian).

Suribabu, C. R.  Differential evolution algorithm for optimal
design of water distribution networks. J. Hydroinform. 12 (1),
66–82.

Todini, E. & Pilati, S.  A gradient method for the analysis of
pipe networks. In: International Conference on Computer
Applications for Water Supply and Distribution. Leicester
Polytechnic, Leicester, UK.

Todini, E. & Rossman, L. A.  Unified framework for deriving
simultaneous equation algorithms for water distribution
networks. J. Hydraul. Eng. 139, 511–526.

Van de Geijn, R. A.  Using PLAPACK: Parallel Linear Algebra
Package. MIT Press, Cambridge, MA, USA.

von zur Gathen, J.  Parallel linear algebra. In: Synthesis of
parallel algorithms (J. H. Reif, ed.). Morgan and Kaufmann,
Los Altos, CA, USA, pp. 574–617.

http://dx.doi.org/10.2166/hydro.2011.014
http://dx.doi.org/10.2166/hydro.2011.014
http://dx.doi.org/10.1007/s11081-011-9141-7
http://dx.doi.org/10.1007/s11081-011-9141-7
http://dx.doi.org/10.1007/s11081-011-9141-7
http://dx.doi.org/10.1016/j.envsoft.2013.11.002
http://dx.doi.org/10.1016/j.envsoft.2013.11.002
http://dx.doi.org/10.1080/1573062X.2012.690432
http://dx.doi.org/10.1080/1573062X.2012.690432
http://dx.doi.org/10.1080/1573062X.2012.690432
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000825
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000825
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000825
http://dx.doi.org/10.2166/hydro.2011.023
http://dx.doi.org/10.2166/hydro.2011.023
http://dx.doi.org/10.1029/95WR02917
http://dx.doi.org/10.1029/95WR02917
http://dx.doi.org/10.1016/j.envsoft.2008.06.008
http://dx.doi.org/10.1016/j.envsoft.2008.06.008
http://dx.doi.org/10.1016/j.envsoft.2008.06.008
http://dx.doi.org/10.1016/j.watres.2013.07.026
http://dx.doi.org/10.1016/j.watres.2013.07.026
http://dx.doi.org/10.1016/j.watres.2013.07.026
http://dx.doi.org/10.1016/j.envsoft.2013.09.025
http://dx.doi.org/10.1016/j.envsoft.2013.09.025
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.5194/dwes-5-31-2012
http://dx.doi.org/10.5194/dwes-5-31-2012
http://dx.doi.org/10.1029/1999WR900167
http://dx.doi.org/10.1029/1999WR900167
http://dx.doi.org/10.1029/1999WR900167
http://dx.doi.org/10.1061/(ASCE)0733-9496(2008)134:6(556)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2008)134:6(556)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2008)134:6(556)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2007)133:6(566.2)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2007)133:6(566.2)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2007)133:6(566.2)
http://dx.doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67)
http://dx.doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67)
http://dx.doi.org/10.2166/hydro.2010.014
http://dx.doi.org/10.2166/hydro.2010.014
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000703
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000703
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000703

48 D. Ivetić et al. | Speeding up the WDN design optimization using the ΔQ method Journal of Hydroinformatics | 18.1 | 2016

Downloaded fr
by guest
on 20 April 201
Wang, Q., Craeco, E., Franchini, M., Savić, D. & Kapelan, Z. a
Comparing low and high-level hybrid algorithms on the two-
objective optimal design of water distribution systems. Water
Resour. Manage. 29 (1), 1–16.

Wang, Q., Guidolin, M., Savic, D. & Kapelan, Z. b Two-
objective design of benchmark problems of a water
distribution system via MOEAs: Towards the best-known
om https://iwaponline.com/jh/article-pdf/18/1/33/389078/jh0180033.pdf

9

approximation of the true Pareto front. J. Water Resour.
Plann. Manage. 141 (3). doi:10.1061/(ASCE)WR.1943-5452.
0000460.

Zecchin, A., Thum, P., Simpson, A. & Tischendorf, C.  Steady-
state behavior of large water distribution systems: Algebraic
multigrid method for the fast solution of the linear step.
J. Water Resour. Plann. Manage. 138 (6), 639–650.
First received 31 January 2015; accepted in revised form 16 July 2015. Available online 13 August 2015

http://dx.doi.org/10.1007/s11269-014-0823-8
http://dx.doi.org/10.1007/s11269-014-0823-8
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000460
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000460
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000460
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000460
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000226
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000226
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000226

	Speeding up the water distribution network design optimization using the [Delta]Q method
	NOMENCLATURE
	INTRODUCTION
	METHODS
	The [Delta]Q method
	Minimal basis loops' detection
	Optimization method
	Implemented optimization algorithms
	The upgraded [Delta]Q method inside an optimization algorithm (Method A)
	The fixed [Delta]Q method inside an optimization algorithm (Method B)
	The variable [Delta]Q method inside an optimization algorithm (Method C)
	The fixed iteration [Delta]Q method inside an optimization algorithm (Method D)
	The reference method: EPANET2 DLL inside an optimization algorithm (Method R)

	Case networks
	NYT network
	FOS network

	RESULTS AND DISCUSSION
	CONCLUSIONS
	The authors express their gratitude to the Serbian Ministry of Education and Science for support through the project TR37010: ‘Rain water drainage systems as part of the urban and transport infrastructure’.
	REFERENCES

